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Abstract: Tail-biting convolutional codes extend the classical zero-termination convolutional codes:
Both encoding schemes force the equality of start and end states, but under the tail-biting each
state is a valid termination. This paper proposes a machine learning approach to improve the state-
of-the-art decoding of tail-biting codes, focusing on the widely employed short length regime as
in the LTE standard. This standard also includes a CRC code. First, we parameterize the circular
Viterbi algorithm, a baseline decoder that exploits the circular nature of the underlying trellis. An
ensemble combines multiple such weighted decoders, and each decoder specializes in decoding
words from a specific region of the channel words’ distribution. A region corresponds to a subset
of termination states; the ensemble covers the entire states space. A non-learnable gating satisfies
two goals: it filters easily decoded words and mitigates the overhead of executing multiple weighted
decoders. The CRC criterion is employed to choose only a subset of experts for decoding purpose.
Our method achieves FER improvement of up to 0.75 dB over the CVA in the waterfall region for
multiple code lengths, adding negligible computational complexity compared to the circular Viterbi
algorithm in high signal-to-noise ratios (SNRs).

Keywords: deep learning; error correcting codes; viterbi, machine learning; ensembles; tail-biting
convolutional codes

1. Introduction

Wireless data traffic has grown exponentially over recent years with no foreseen satu-
ration [1]. To keep pace with connectivity requirements, one must carefully attend available
resources with respect to three essential measures: reliability, latency, and complexity. As
error correction codes (ECC) are well renowned as means to boost reliability, the research
of practical schemes is crucial to meet demands.

One family of ECC that has had great impact on wireless standards is the convolutional
codes (CC). Specifically, tail-biting convolutional codes (TBCC) [2] were incorporated in
the 4G Long-Term Evolution (LTE) standard [3], and they are also considered for 5G hybrid
turbo/LDPC code-based frameworks [4].

The major practical difference between CC and TBCC lies in the termination constraint.
Conventional CC encoding appends zeros bits to impose zero states; TBCC encoding
requires no additional bits, avoiding the rate loss. Due to this rate loss aversion, TBCC
dominates classical CC in the short-length regime: They achieve the minimum distance
bound for a specified length block codes [5]. Our work focuses on improving decoding
performance of short length TBCC due to their significance.

Despite having great potential, the optimality of TBCC with respect to the reliability,
latency, and complexity measures is not yet guaranteed. For example, TBCC suffer from
increased complexity in the maximum-likelihood decoding as the initial state is unknown.
Under TBCC encoding the Viterbi algorithm (VA) [6] is not the maximum-likelihood
decoder (MLD); the MLD operates by running a VA per initial state, outputting the most
likely decoded codeword. Clearly, the complexity grows as the number of states.
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To bridge the high complexity gap, several suboptimal and reduced complexity
decoders have been proposed. Major works include the circular Viterbi algorithm (CVA) [7]
and the wrap-around Viterbi algorithm (WAVA) [8]. Both methods utilize the circular
nature of the trellis: They apply VA iteratively on the sequence of repeated log-likelihood
ratios (LLR) values computed from the received channel word. The more repetitions
employed, the lower the error rate is, yet at a cost of additional latency. Short-length codes
require the additional repetitions, as indicated in [7]: “it is very important that a sufficient
number of symbol times be allowed for convergence. If the number is too small. . . the path
chosen in this case will be circular but will not be the maximum likelihood path.”

Another common practice is to employ a list decoding scheme, for instance, the list
Viterbi algorithm (LVA), along with cyclic redundancy check (CRC) code [9–11]. According
to this scheme, a list of the most likely decoded codewords, rather than a single codeword,
is computed in the forward pass of the VA. The minimal path metric codeword that satisfies
the CRC criterion is output. Both the decrement in error rate and the increase in complexity
are proportional to the list size.

The additional repetitions and list size result in complexity overhead for short TBCC
decoding. To mitigate this overhead, one may take a novel approach, rooted in a data-
driven field: the machine learning (ML) based decoding.

Still a growing field, ML-based decoding attempts to bridge the gap between simple
analytical models and the nonlinear observable reality. Contemporary literature is split
between two different model choices: model-free and model-based. Model-free works
include those in [12–14], which leverage on state-of-the-art (SOTA) neural architectures with
high neuronal capacity (i.e., ones that are able to implement many functions). On the other
hand, under model-based approaches [15–18], a classical decoder is assigned learnable
weights and trained to minimize a surrogate loss function. This approach suffers from
high inductive bias due to the constrained architecture, leading to limited hypothesis space.
Nonetheless, it generalizes better to longer codes than the model-free approach: Empirical
simulations show that unrealistic fraction of codewords from the entire codebook must
be fed to the network to achieve even moderate performance (see Figure 7 in [12]). One
notable model-based method by Shlezinger et al. is the ViterbiNet [19]. This method
compensates for nonlinearity in the channel with expectation-maximization clustering; an
NN is utilized to approximate the marginal probability. This method holds great potential
for dealing with nonlinear channels.

One recent innovation, referred to as the ensemble of decoders [20], combined the ben-
efits of model-based approach with the list decoding scheme. This ensemble is composed
of learnable decoders, each one called an expert. Each expert is responsible for decoding
channel words that lie in a unique part of the input space. A low-complexity gating func-
tion is employed to uniquely map each channel word to its respective decoder. The main
intuition behind this divide-and-conquer approach is that combination of multiple diverse
members is expected to perform better than all individual basic algorithms that compose
the ensemble. The paper shows this approach can achieve significant gains: Up to 1.25 dB
on the benchmark.

The main contributions of this paper are the innovation of the model-based weighted
circular Viterbi algorithm (WCVA) and its integration in the gated WCVAE, a designated
ensemble of WCVA decoders, accompanied by a gating decoder. Next, we elaborate on the
following major points.

1. WCVA—A parameterized CVA decoder, combining the optimality of the VA with a
data-driven approach in Section 3.1. Viterbi selections in the WCVA are based on the
sums of weighted path metrics and the relevant branch metrics. The magnitude of
a weight reflect the contribution of the corresponding path or branch to successful
decoding of a noisy word.

2. Partition of the channel words space—We exploit the domain knowledge regarding the
TBCC problem and partition the input space to different subsets of termination states in
Section 3.3; Each expert specializes on codewords that belong to a single subset.
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3. Gating function—We reinforce the practical aspect of this scheme by introducing a
low-complexity gating that acts as a filter, reducing the number of calls to each expert.
The gating maps noisy words to a subgroup of experts based on the CRC checksum
(see Section 3.4).

Simulations of the proposed method on LTE-TBCC appear in Section 4.
Please see Supplementary Materials for introduction video and python code.

2. Background
2.1. Notation

Boldface upper-case and lower-case letters refer to matrices and vectors, respectively.
Probability mass functions and probability density functions are denoted with P(·). Sub-
scripts refer to elements, with the ith element of the vector x symbolized as xi, while
superscripts in brackets, e.g., x(j), index the jth vector in a sequence of vectors. A slice of a
vector (xi, . . . , xj) is denoted by xi;j. At last, (·)T is for the transpose operation and ‖·‖ is
for the L1 norm. Throughout the paper, terms i, j, k refer to indices.

2.2. Problem Formalization

Consider the block-wise transmission scenario of CC through the additive white
Gaussian noise (AWGN) channel, see Figure 1. Prior to transmission, the message word
m ∈ {0, 1}Nm is encoded twice: By an error detection code and by an error correction
code. The CRC encodes m with systematic generator matrix GCRC. Its parity check matrix
is HCRC. We denote the detection codeword by u ∈ {0, 1}Nu and the codebook with U .
Then, the CC encodes u with generator matrix GCC. As a result, the codeword c is a bits
sequence c = (c(1), . . . , c(Nu)) with c(i) ∈ {0, 1}1/RCC where RCC denotes the rate of the CC.
For brevity, we denote V = 1/RCC; the length of the CC calculated as Nc = Nu ·V.

GCRC GCC

BPSK
modulator

+

n
2
σ2
n

Decoder
F

m u c x y ` û

Transmitter
Receiver

Figure 1. System diagram.

After encoding, the codeword c is BPSK-modulated (0 → 1, 1 → −1) and x is
transmitted through the channel with noise n ∼ N (0, σ2

n I). At the receiver, one decodes
the LLR word ` rather than y. The LLR values are approximated based on the bits i.i.d.
assumption and Gaussian prior ` = 2

σ2
n
· y. The decoder is represented by a function

F (·) : RNc → {0, 1}Nu that outputs the estimated detection codeword û. Our end goal is to
find u that maximizes the a posteriori optimization problem:

û = arg max
u∈U

P(u|`). (1)

Note that we solve for u rather than m as bit flips in either the systematic information
bits or in the CRC bits are considered as errors.
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2.3. Viterbi Decoding of CC

Naive solution of Equation (1) is exponential in Nm. However, it can be simplified
following Bayes:

arg max
u∈U

P(u|`) = arg max
u∈U

P(u)P(`|u) (2)

where P(`) is omitted, as this term is independent of u.
The time complexity of the solution to Equation (2) is yet exponential, but may be

further reduced to linear dependency in the memory’s length by following the well known
Viterbi algorithm (VA) [6]. We formulate notation for this algorithm in the following
paragraphs.

Denote the memory of the CC by ν and the state space by S = {0, . . . , 2ν − 1}.
Convolutional codes can be represented by multiple temporal transitions, each one is a
function of two arguments: the input bit and the current state. The trellis diagram is one
convenient way to view these temporal relations, each trellis section is called a stage. We
refer to the work in [21] for a comprehensive tutorial regarding CC.

Let the sequence of states be represented by s ∈ SNu+1. Following the properties of
the CC, a 1-to-1 correspondence between the codeword u and the state sequence s exists:

arg max
u∈U

P(u)P(`|u) = arg max
s∈SNu+1

P(s)P(`|s).

Plugging the Markov property into the previous equation leads to:

arg max
s∈SNu+1

P(s)P(`|s) =

arg max
s∈SNu+1

Nu

∏
i=1

P(si+1|si)P(`iV−V+1;iV |si+1, si) =

arg max
s∈SNu+1

Nu

∑
i=1

log(P(si+1|si) + log(P(`iV−V+1;iV |si+1, si))

where the last transition is due to the monotonic nature of the log function.
Next, denote the path metric λi = −log(P(si+1|si)) and the branch metric, repre-

senting the transition over a trellis edge, as βi = −log(P(`iV−V+1;iV |si+1, si)). Then,
substituting these values into the last equation:

arg max
s∈SNu+1

P(s)P(`|s) = arg min
s∈SNu+1

Nu

∑
i=1

λi + βi. (3)

Taking a dynamic programming approach, the Viterbi algorithm solves
Equation (3) efficiently:

λi(s) = min
s′∈S

λi−1(s′) + βi, s ∈ S (4)

starting from i = 2 up to i = Nu + 1, in an incremental fashion, with the initialization:

λ1(s) =

{
−λmax if s = s1

0 otherwise
(5)

and s1 = 0. The constant λmax is called the LLR clipping parameter.
To output the decoded codeword û, one has to perform the trace-back operation

Π : RNc × S → U . This operation takes the LLR word along with a termination state
and outputs the most likely decoded codeword: Π(`, s′) = û. Specifically, it calculates
the sequence of states ŝ that follows the minimal λi(s) values at each stage, starting from
sNu+1 = s′ backwards. Then, the sequence ŝ is mapped to the corresponding estimated
codeword û. Under the classical zero-tail termination, û = Π(`, 0) is returned.
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2.4. Circular Viterbi Decoding of TBCC

TBCC work under the assumption of equal start and end states. Their actual values
are determined by the last ν bits. As such, the MLD with a list of size 1 is the decoded u
whose matching λNu+1(s′) value is minimal, combining the decisions from multiple VA
runs, one from each state s′.

As mentioned in Section 1, the complexity of this MLD grows exponentially in the
memory’s length. The CVA is a suboptimal decoder that exploits the circular nature of the
TBCC trellis, executing VA for a specified number of repetitions, where each new VA is
initialized with the end metrics of the previous repetitions. The CVA starts and ends its
run at the zero state, being error prone near the zero tails.

Explicitly, the forward pass of the CVA follows Equation (4) for i ∈ {2, . . . , I · Nu}
with I denoting an odd number of replications. The same initialization as in Equation (5) is
used. The bits of the middle replication are the least error-prone, being farthest from the
zero tails, thus returned:

ûi = (Π(`, 0))i+b I
2c·Nu

for i ∈ {1, . . . , Nu}.

3. A Data-Driven Approach to TBCC Decoding

This section describes our novel approach to decoding: Parameterization of the CVA
decoder, and its integration into an ensemble composed from specialized experts and a
low-complexity gating.

3.1. Weighted Circular Viterbi Algorithm

Nachmani et al. [17] presented a weighted version of the classical Belief Propa-
gation (BP) decoder [22]. This learnable decoder is the deep unfolding of the BP [23].
This weighted decoder outperforms the classical unweighted one by training over channel
words, adjusting the weights to compensate for short cycles that are known to
prevent convergence.

We follow the favorable model-based approach as well, parameterizing the branch
metrics that correspond to edges of the trellis. We add another degree of freedom for
each edge, assigning weights to the path metrics as well. Considering the complexity
overhead, we only parameterize the middle replication. This formulation unfolds the
middle replication of the CVA as a Neural Network (NN):

λi(s) = min
s′∈S

wi,s′ ,sλi−1(s′) + wi,ββi (6)

for
⌊

I
2

⌋
· Nu ≤ i ≤

⌈
I
2

⌉
· Nu.

Our goal is to calculate parameters {wi,s,s′ , wi,β} that achieve termination states equal
to the ground-truth start and end states. The exact equality criterion is non-differentiable;
thus, we minimize the multi-class cross entropy loss, acting as a surrogate loss [24]:

L(s, λ) = − log σ(λl(sNu+1))

where λl(·) = λd I
2e·Nu

(·) stands for the last learnable layer, and σ being the
softmax function:

σ(λl(s)) =
eλl(s)

∑
s′∈S

eλl(s′)

This specific choice encourages the equality of the end states in the mid-replication to their
ground-truth values. Note that the gradients back-propagate through the non-differentiable
min criterion in Equation (6) as in the maximum pooling operation: They only affect the
state that achieved the minimum metric.
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One fallacy of this approach is the similar importance for all edges, contrary to the
BP, where not all edges are created equal (e.g., ones that participate in many short cycles).
All edges are of the same importance as derived from the problem’s symmetry: Due to the
unknown initial state, each state is equally likely.

This indicates that training this architecture may leave the weights as they are, or at
worst even lead to divergence. To fully exploit the performance gained by the adjustment
of the weights, one must first break the symmetry. We alter the uniform prior over the
termination states by assigning only a subset of the termination states to a single decoder.
We further elaborate on this proposition below.

3.2. Ensembles in Decoding

Ensembles [25,26] shine in data-driven applications: They exploit independence
between the base models to enhance accuracy. The expressive power of the ensemble
surpasses that of a single model. Thus, whereas a single model may fail to capture
high-dimensional and nonlinear relations in the dataset, a combination of such models
may succeed.

Nonetheless, ensembles also encompass computational complexity which is linear
in the number of base learners, being unrealistic for practical considerations. To reduce
complexity, our previous work [20] suggests to employ a low complexity gating decoder.
This decoder allows one to uniquely map each input word to a single most fitting decoder,
keeping the overall computation complexity low. We further elaborate on the gated
ensemble, referred to as gated WCVAE, in Section 3.3 and gating in Section 3.4.

3.3. Specialized-Experts Ensemble

The WCVAE is an ensemble comprised of WCVA experts, each one specialized on
words from a specific subset of termination states. We begin by discussing the forming of
the experts in training, see Figure 2 for the relevant flowchart.

`

Calculate s1

Match (`,u)
to D(i)

Train the ith

decoder on D(i)

Figure 2. Training flowchart.

3.4. Gating

Let the number of trainable WCVA decoders in the WCVAE be α, with each decoder
possessing I repetitions. To form the experts, we first simulate many message words
randomly, each message word is encoded and transmitted through the channel. The initial
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state of a transmitted word u, known in training, is denoted by s1 as before. Then, we add
the tuple (`, u) to the dataset representing the subset of states that include state s1:

D(i) = {(`, u) :
2ν

α
· (i− 1) ≤ s1 ≤

2ν

α
· i− 1} (7)

with i ∈ {1, . . . , α} and ν is yet the memory of the CC. Each dataset accumulates a high
number of words by the above procedure.

All the WCVA decoders are trained as in the guidelines of Section 3.1, with one excep-
tion: The ith decoder is trained with the corresponding D(i). Subsequently, α specialized
experts are formed, each one specializes on decoding words affiliated to a specific subset
of termination states. Each codeword has equal probability to appear, thus the distribu-
tion over the termination states is uniform. We further elaborate on the intuition to this
particular division of close-by states in Section 4.4.

One common practice is to separate TBCC decoding into an initial state estimation
followed by decoding. For example, Fedorenko et al. [27] run a soft-input soft-output (SISO)
decoder prior to LVA decoding. This prerun determines the most reliable starting state.

Similarly, our work presents a gating decoder which acts as a coarse state estimation.
The gating is composed of two parts: a single forward pass of the CVA and a multiple
trace-backs phase. We only employ the gating in the evaluation phase; Check Figure 3 for
the complete flow.

First, a forward pass of a CVA is executed on the input word `, as in Equation (4).
As all states are equiprobable, the initialization is chosen as λ1(s) = 0, ∀s ∈ S instead of
Equation (5). After calculating λi(s) for every state and stage, the trace-back Π(·) runs α
times, each time starting from a different state. The starting states are spread uniformly
over S , with the decoded words given as

`

Execute CVA
forward-pass gating

Run multiple
trace-backs ũ(i)

Calculate all gi

Decode with decoders i1, . . . , ik
having minimal gi values

Output ũ(i)

Choose û(i)

of minimal
CRC value

∀i, gi 6= 0

∃i, gi = 0

Figure 3. Evaluation flowchart.

ũ(i) = Π(`,
2ν

α
· (i− 1

2
)), 1 ≤ i ≤ α. (8)
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Notice that the trace-back is a cheap operation, compared to the forward pass [7].
Next, the value of the CRC syndrome is calculated for each trace-back:

gi = ‖ũ(i)HT
CRC‖ (9)

with gi = 0 indicating that no error has occurred (or is detectable). In case that a single
gi is zero, the corresponding decoded word ũ(i) is output. If more than one gi is zero, the
decoded word is chosen randomly among all candidates. Only if no i exists such that
gi = 0, the word ` continues for additional decoding at the ensemble.

Note that each computed value gi 6= 0 is correlative with the ascription of the word `
to the termination state 2ν

α · (i− 1
2 ). Though the ground-truth termination state may not

necessarily have the minimum gi, this minimal value still hints that the ground-truth state
is close by. As a result, decoding with the decoder corresponding to the minimal gi is
satisfactory. If multiple gi1 , . . . , gik share the same minimal value then decoders i1, . . . , ik

decode the word, choosing the output û(i) of minimal CRC value among the candidates.

4. Results
4.1. Performance and Complexity Comparisons

The WCVAE was simulated with CRC codes and TBCC that are in accordance with
the LTE standard. Note that while LTE employs QPSK modulation, we used BPSK for
simplicity. A code of specific length is denoted with (Nc, Nu, Nm), referring to the code’s
length, detection codeword’s length, and message’s length, respectively. A summary of
relevant code parameters appears in Table 1.

Table 1. Code parameters

Symbol Definition Value

ν CC memory size 6
- CC polynomials (133, 171, 165)

RCC CC rate 1/3
- CRC length 16

We compared both the gated WCVAE and the WCVAE to the next common baselines:

1. 3-repetition CVA—a fixed-repetitions CVA [7].
2. List circular Viterbi algorithm (LCVA)—an LVA that runs CVA instead of a VA; All

other details are as explained in Section 1.
3. List genie VA (LGVA)—an LVA decoder with list of size α, that runs from a known

ground-truth state; The optimal decoded codeword is chosen by the CRC criterion. The
FER of the gated and non-gated WCVAE are lower bounded by this genie-empowered
decoder.

All Monte Carlo experiments ran on a validation dataset composed of signal-to-noise
ratio (SNR) values in the range of −2 dB to 2 dB with a step of 1 dB. Simulations at each
point continued until at least 500 errors were accumulated. The number of decoders was
set to α = 8. As words are drawn from the channels arbitrarily, the notion of “epoch”
which refers to the number of full transitions over the training dataset is ill defined: We
instead provide the number of training mini-batches. All decoders, i.e., the gating and
the experts, were executed with I = 3 repetitions. The overall hyperparameters for the
ensemble training are depicted in Table 2.

Figure 4 presents the results for the two different lengths: Both in error rate and
computational complexity (measured in VA runs). The method achieves FER gains of up
to 0.75 dB and 0.625 dB gain over the CVA in the waterfall region, for the lengths 13 and
15, respectively. Our method also surpasses the LCVA by a small margin. Considering
the complexity of the scheme, the number of VA runs decreases as a function of the SNR
and converges with the 3-repetition CVA in high SNR values. As the trace-back has
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negligible complexity compared to the forward pass of the VA [7], one may claim that the
computational complexities at evaluation are similar.

(a) TBCC (87, 29, 13)

(b) TBCC (93, 31, 15)

Figure 4. FERand complexity plots for decoding LTE-TBCC.

Table 2. Hyper-parameters of the ensemble

Symbol Definition Value

α Ensemble size 8
I Repetitions per decoder 3

λmax LLR clipping 20
lr Learning rate 10−3

- Optimizer RMSPROP
- Loss Cross Entropy
- Training SNR range [dB] (−2)–0
- Mini-batch size 450
- Number of mini-batches 50
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4.2. Generalization to Longer Lengths

As mentioned in Section 1, one benefit of the model-based approach is the capability
to easily generalize to longer codes. This benefit should apply to our proposed method;
To test this notion, we trained and evaluated the WCVAE on the same code but over two
longer lengths. All other codes parameters and training hyperparameters are exactly as in
Tables 1 and 2.

Figure 5 depicts the performance over two longer codes. Notice that the gain is around
the 0.6 dB in FER, similarly to the one on the two shorter codes. This empirically shows
the generalization of the novel method to longer lengths. The training process remains as
simple as before, even as the length increases; There is no need to enforce a curriculum
based ramp-up method for convergence as in [14].

(a) TBCC (138, 46, 30) (b) TBCC (198, 66, 50)

Figure 5. Generalization to longer lengths.

4.3. Training Analysis

We provide further insights to the benefits of training by studying the performance
of the trained specialized decoders versus their non-trained counterparts. We fixed the
code to TBCC (87, 29, 13) and the SNR to 0 dB. Figure 6 depicts the FER as function
of the termination states, each subplot shows two decoders: The classical CVA and the
trained WCVA. The ith classical CVA had 3 repetitions, as before, and ran trace-back
from state 2ν

α · (i− 1). The trained WCVA is the ith decoder of the WCVAE, responsible
for decoding states { 2ν

α · (i− 1), . . . , 2ν

α · i− 1}. It ran trace-back from the same state. At
each point, codewords of the given state, and only this state, were simulated until 250
accumulated errors.

One may observe that the CVA has peak performance at the trace-back state, yet
at all other states it performs poorly. On the other hand, the WCVA decoders manage
a trade-off: They sacrifice performance over the trace-back state, compensating for this
loss by achieving lower error at other states. To conclude this part, note the specialized
decoders indeed specialize at decoding words with a termination state included in their
respective subset of termination states.
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Figure 6. Training analysis. Legend: (•) CVA, (F) WCVA.

4.4. Ensemble Size Evaluation

In Figure 7, we inspect the performance of our method over different ensemble sizes,
α ∈ {4, 8, 16, 32}. An ensemble with α decoders is denoted by α-WCVAE. We fixed the code
to TBCC (87, 29, 13) and simulated each ensemble with 500 accumulated errors (per point).
All other parameters and hyperparameters are the same as in Tables 1 and 2.

The figure implies that increasing the number of decoders by a factor of two results in
around 0.1 dB FER gain. This simulation empirically validates an intuitive assumption:
Our ensemble is more diverse as its size increases, i.e., it successfully captures a larger
portion of the input space.

Figure 7. The effect of different ensemble sizes on performance.

5. Discussion

This work follows the model-based approach and applies it for TBCC decoding,
starting with the parameterization of the common CVA decoder. Its parameterization relies
on domain knowledge to effectively exploit the decoder: A classical low-complexity CVA
acts as a gating decoder, filtering easy to decode channel words and directing harder ones
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to fitting experts; Each expert is specialized in decoding words that belong to a specific
subset of termination states. This solution improves the overall performance, compared to
a single decoder, as well as reduces the complexity in a data-driven fashion.

Future directions are to extend the ensemble approach to more use cases, such as
different codes and various learnable decoders. For example, an ensemble tailored for
polar codes, with a CRC-based gating, is one idea we intend to explore. This scenario is
indeed practical, as 5G standard incorporates polar codes accompanied by CRC codes.
Another direction is the theoretical study and analysis of the input space, e.g., the regions
of the pseudo-codewords [5] and tailbits errors [7]. This could direct the training of the
learnable decoder to surpass current results.

Supplementary Materials: An introduction video and python code are available at https://www.
youtube.com/watch?v=nrP61KiG8fE and https://github.com/tomerraviv95/TailBitingCC, respec-
tively.
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