
entropy

Article

Transport Efficiency of Continuous-Time Quantum Walks
on Graphs

Luca Razzoli 1,* , Matteo G. A. Paris 2,3 and Paolo Bordone 1,4,*

����������
�������

Citation: Razzoli, L.; Paris, M.G.A.;

Bordone, P. Transport Efficiency of

Continuous-Time Quantum Walks on

Graphs. Entropy 2021, 23, 85.

https://doi.org/10.3390/e23010085

Received: 27 November 2020

Accepted: 7 January 2021

Published: 9 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia,
I-41125 Modena, Italy

2 Quantum Technology Lab, Dipartimento di Fisica Aldo Pontremoli, Università Degli Studi di Milano,
I-20133 Milano, Italy; matteo.paris@fisica.unimi.it

3 INFN, Sezione di Milano, I-20133 Milano, Italy
4 Centro S3, CNR-Istituto di Nanoscienze, I-41125 Modena, Italy
* Correspondence: luca.razzoli@unimore.it (L.R.); paolo.bordone@unimore.it (P.B.)

Abstract: Continuous-time quantum walk describes the propagation of a quantum particle (or an
excitation) evolving continuously in time on a graph. As such, it provides a natural framework
for modeling transport processes, e.g., in light-harvesting systems. In particular, the transport
properties strongly depend on the initial state and specific features of the graph under investigation.
In this paper, we address the role of graph topology, and investigate the transport properties of
graphs with different regularity, symmetry, and connectivity. We neglect disorder and decoherence,
and assume a single trap vertex that is accountable for the loss processes. In particular, for each
graph, we analytically determine the subspace of states having maximum transport efficiency. Our
results provide a set of benchmarks for environment-assisted quantum transport, and suggest
that connectivity is a poor indicator for transport efficiency. Indeed, we observe some specific
correlations between transport efficiency and connectivity for certain graphs, but, in general, they
are uncorrelated.

Keywords: transport on graph; quantum walk; transport efficiency; connectivity

1. Introduction

A continuous-time quantum walk (CTQW) is the quantum mechanical counterpart
of the continuous-time random walk. It describes the dynamics of a quantum particle
that continuously evolves in time in a discrete space, e.g., on the vertices of a graph,
obeying the Schrödinger equation [1,2]. The Hamiltonian describing a CTQW is usually
the Laplacian matrix L, which encodes the topology of the graph and it plays the role of the
kinetic energy of the walker. Experimentally [3], CTQWs can be implemented on nuclear-
magnetic-resonance quantum computers [4], optical lattices of ultracold Rydberg atoms [5],
quantum processors [6], and photonic chips [7]. The applications of CTQWs range from
implementing fast and efficient quantum algorithms [8,9], e.g., for spatial search [10] and
image segmentation [11], to implementing quantum logic gates by multi-particle CTQWs
in one-dimension (1D) [12], from universal computation [13] to modeling and simulating
quantum phenomena, e.g., state transfer [14–16], quantum transport, and for characterizing
the behavior of many-body systems [17,18].

Indeed, modeling quantum transport processes by means of CTQWs is a well-es-
tablished practice and an appropriate mathematical framework. Quantum transport has
been investigated with this approach on restricted geometries [19], semi-regular spider-
net graphs [20], Sierpinski fractals [21], and on large-scale sparse regular networks [22].
CTQWs have been used in order to model transport of nonclassical light in coupled
waveguides [23], coherent exciton transport on hierarchical systems [24], small-world
networks [25], Apollonian networks [26], and on an extended star graph [27], coherent
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transport on complex networks [28], and exciton transfer with trapping [29,30]. It is worth
noting that CTQWs do not necessarily perform better than their classical counterparts,
since the transport properties strongly depend on the graph, the initial state, and on the
propagation direction under investigation [31]. A measure of the efficiency of quantum and
classical transport on graphs by means of the density of states has been proposed in [32].

Biological systems are known to show quantum effects [33,34] and efficient transport
processes. Hence, the great interest in also studying CTWQs to model, e.g., exciton transport
on dendrimers [35], photosynthetic energy transfer [36], environment-assisted quantum
transport [37], dephasing-assisted transport on quantum networks and biomolecules [38],
excitation transfer in light-harvesting systems [39,40], and its limits [41]. There also stud-
ies concerning disorder-assisted quantum transport on hypercubes and binary trees [42],
because the latter can model a dendrimer-like structure for artificial light-harvesting sys-
tems [43,44].

Therefore, a full characterization of the transport properties on different structures is
desired. Formally speaking, the CTQW Hamiltonian modeling transport processes shows
similarities with the CTQW Hamiltonian adopted to study the spatial search. Both of them
consist of the sum, with proper coefficients, of the Laplacian matrix, which is accountable
for the motion of the walker on the graph, and the projector onto one or more specific
vertices. This projector is the trapping Hamiltonian in transport problems and the oracle
Hamiltonian in spatial search problems. The regularity, global symmetry, and connectivity
of the graph have proved to be unnecessary for fast spatial search [45–47] by invoking
certain graphs, e.g., complete bipartite graphs, strongly regular graphs, joined complete
graphs, and a simplex of complete graphs, as counterexamples of these false beliefs. In this
work, we address the transport by CTQW on the above mentioned graphs, which are
different in terms of regularity, symmetry, and connectivity, and we assess the transport
efficiency for initial states that are localized at a vertex and for an initial superposition of
two vertices. Our focus is on the role of connectivity, if any. Indeed, regularity and global
symmetry are not required for efficient transport, because removing some edges in the
complete graph and the hypercube, which are regular and highly symmetric graphs, has
been shown to improve the transport efficiency [48].

The paper is organized, as follows. In Section 2, we introduce CTQWs on a graph.
In Section 3, we review the dimensionality reduction method to analyze CTQW prob-
lems [48], according to which we obtain a reduced model of the Hamiltonian encoding
the problem that is considered and the reduced Hamiltonian still fully describes the dy-
namics that are relevant to the problem. In Section 4, we define the Hamiltonian modeling
the transport on graphs and the transport efficiency as a figure of merit to measure the
transport properties of the system. For each graph considered, we provide the reduced
Hamiltonian and compute the transport efficiency for different initial states. In Section 5,
we assess different measures of connectivity in order to characterize each graph considered.
Finally, we present our conclusions in Section 6. In Appendix A, we report and refine the
proof of the equality of the two subspaces that are required for computing the transport
efficiency. In Appendix B, we determine the basis states spanning such a subspace for each
graph considered.

2. Continuous-Time Quantum Walks

A graph is a pair G = (V, E), where V denotes the non-empty set of vertices and E
the set of edges. The order of the graph is the number of vertices, |V| = N. We define the
adjacency matrix

Ajk =

{
1 if (j, k) ∈ E,
0 otherwise,

(1)

which describes the connectivity of G, and D the diagonal degree matrix with Djj = deg(j),
the degree of vertex j. In terms of these matrices, we introduce the graph Laplacian
L = D− A, which is the matrix representation of the graph. According to this definition, L
is positive semidefinite and singular.
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The CTQW is the propagation of a quantum particle with kinetic energy when confined
to a discrete space, e.g., a graph. The CTQW on a graph G takes place on a N-dimensional
Hilbert spaceH = span({|v〉 | v ∈ V}), and the kinetic energy term (h̄ = 1) T = −∇2/2m
is replaced by T = γL, where γ ∈ R+ is the hopping amplitude of the walk. The state of
the walker obeys the Schrödinger equation

i
d
dt
|ψ(t)〉 = H|ψ(t)〉 , (2)

with Hamiltonian H = γL. Hence, a walker starting in the state |ψ0〉 ∈ H continuously
evolves in time, according to

|ψ(t)〉 = U(t)|ψ0〉 , (3)

with U(t) = exp[−iHt] the unitary time-evolution operator. The probability to find the
walker in a target vertex w is therefore |〈w| exp[−iHt]|ψ0〉|2.

3. Dimensionality Reduction Method

In most CTQW problems, the quantity of interest is the probability amplitude at
a certain vertex of the graph. The graph encoding the problem to solve often contains
symmetries that allow for us to simplify the problem, since the evolution of the system
actually occurs in a subspace of the complete N-dimensional Hilbert space H that is
spanned by the vertices of the graph. We can determine the minimal subspace that
contains the vertex of interest and it is invariant under the unitary time evolution via the
dimensionality reduction method for CTQW, as proposed by Novo et al. [48], which we
briefly review in this section for completeness. Such a subspace, also known as a Krylov
subspace [49], contains the vertex of interest and all powers of the Hamiltonian applied to
it. The relevance and the power of this method is that the graph encoding a given problem
can be mapped onto an equivalent weighted graph, whose order is lower than the order
of the original graph and whose vertices are the basis states of the invariant subspace.
The corresponding reduced Hamiltonian still fully describes the dynamics that are relevant
to the considered problem.

The unitary evolution (3) can be expressed as

|ψ(t)〉 =
∞

∑
k=0

(−it)k

k!
Hk|ψ0〉 , (4)

so |ψ(t)〉 is contained in the subspace I(H, |ψ0〉) = span({Hk|ψ0〉 | k ∈ N0}). This
subspace of H is invariant under the action of the Hamiltonian and, thus, also of the
unitary evolution. Naturally, dim I(H, |ψ0〉) ≤ dimH = N, but, if the Hamiltonian is
highly symmetrical, only a small number of powers of Hk|ψ0〉 are linearly independent, so
the dimension of I(H, |ψ0〉) can be much smaller than N.

Let P be the projector onto I(H, |ψ0〉), so we have that

U(t)|ψ0〉 = PU(t)P|ψ0〉 =
∞

∑
k=0

(−it)k

k!
(PHP)k|ψ0〉 = e−iPHPt|ψ0〉 = e−iHredt|ψ0〉 , (5)

where Hred = PHP is the reduced Hamiltonian, and we used the fact that P2 = P (projec-
tor), P|ψ0〉 = |ψ0〉, and PU(t)|ψ0〉 = U(t)|ψ0〉.

For any state |φ〉 ∈ H, which we consider to be the solution of the CTQW problem,
we have

〈φ|U(t)|ψ0〉 = 〈φ|PPU(t)P|ψ0〉 = 〈φ|Pe−iHredt|ψ0〉 = 〈φred|e−iHredt|ψ0〉 , (6)
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where, the reduced state, |φred〉 = P|φ〉. Reasoning analogously with the projector P′ onto
the subspace I(H, |φ〉), we obtain

〈φ|U(t)|ψ0〉 = 〈φ|e−iH′redt∣∣ψ0red
〉

, (7)

with H′red = P′HP′ and
∣∣ψ0red

〉
= P′|ψ0〉.

An orthonormal basis of I(H, |φ〉), as denoted by {|e1〉, . . . , |em〉}, can be iteratively
obtained, as follows: the first basis state is |e1〉 = |φ〉, then the successive ones are obtained
by applying H on the current basis state and orthonormalizing with respect to the previous
basis states. The procedure stops when we find the minimum m such that H|em〉 ∈
span({|e1〉, . . . , |em〉}). The reduced Hamiltonian, i.e., H written in the basis of the invariant
subspace, has a tridiagonal form, so the original problem is mapped onto an equivalent
problem that is governed by a tight-binding Hamiltonian of a line with m sites.

4. Quantum Transport

The CTQW on a graph G(V, E) of N vertices provides a useful framework to model,
e.g., the dynamics of a particle or a quasi-particle (excitation) in a network. The quantum
walker moves under the Hamiltonian

H = γL = γ ∑
i∈V

deg(i)|i〉〈i| − γ ∑
(i,j)∈E

(|i〉〈j|+ |j〉〈i|) , (8)

which can be read as a tight-binding Hamiltonian with uniform nearest-neighbor couplings
γ and on-site energies γ deg(i). In the following, we set the units such that γ = h̄ = 1, so
hereafter time and energy will be dimensionless.

However, in general, an excitation does not stay forever in the system in which it
was created. In biological light-harvesting systems, the excitation gets absorbed at the
reaction center, where it is transformed into chemical energy. In such a scenario, the total
probability of finding the excitation within the network is not conserved. We assume a
graph in which the walker can only vanish at one vertex w ∈ V, known as trap vertex or trap.
The component of the walker’s wave function at the trap vertex is absorbed by the latter at
a trapping rate κ ∈ R+ [28]. Therefore, to phenomenologically model such loss processes
we have to change the Hamiltonian (8), so we introduce the trapping Hamiltonian

Htrap = −iκ|w〉〈w| , (9)

which is anti-hermitian. This leads to the desired non-unitary dynamics that are described
by the total Hamiltonian

H = L− iκ|w〉〈w| . (10)

This Hamiltonian has the same structure as the Hamiltonian for the spatial search
of a marked vertex w [10], i.e., it is the sum of the Laplacian matrix and the projector
onto |w〉, with proper coefficients. For spatial search, the projector onto |w〉 plays the
role of the oracle Hamiltonian and the search Hamiltonian is hermitian. For quantum
transport, the projector onto |w〉, because of the pure imaginary constant, plays the role of
the trapping Hamiltonian (9) and the transport Hamiltonian (10) is not hermitian.

The transport efficiency is a relevant measure for a quantum transport process [37],
which can be defined as the integrated probability of trapping at the vertex w

η = 2κ
∫ +∞

0
〈w|ρ(t)|w〉 dt = 1− Tr

[
lim

t→+∞
ρ(t)

]
, (11)

where 2κ〈w|ρ(t)|w〉dt is the probability that the walker is successfully absorbed at the
trap within the time interval [t, t + dt] and ρ(t) = |ψ(t)〉〈ψ(t)| is the density matrix of the
walker. The second equality of Equation (11) is due to the following reason. The surviving
total probability of finding the walker within the graph at time t is 〈ψ(t)|ψ(t)〉 = Tr[ρ(t)]
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and it is ≤1 because of the loss processes at the trap vertex. Because the transport efficiency
is the integrated probability of trapping in the limit of infinite time, we can also assess the
transport efficiency as the complement to 1 of the probability of surviving within the graph,
which is the complementary event.

In this scenario, there is no disorder in the couplings or site energies of the Hamiltonian
or decoherence during the transport. In this ideal regime computing the transport efficiency
amounts to finding the overlap of the initial state with the subspace Λ(H, |w〉) spanned
by the eigenstates of the Hamiltonian |λk〉 having a non-zero overlap with the trap |w〉,
as proved by Caruso et al. [40]. Indeed, the dynamics are such that the component of the
initial state within the space Λ is absorbed by the trap, whereas the component outside
this subspace, i.e., in Λ̄ = H \Λ, remains in the graph (see Figure 1). Let us expand the
initial state on the basis of the eigenstates of the Hamiltonian

|ψ0〉 =
m

∑
k=1
〈λk|ψ0〉|λk〉+

N

∑
k=m+1

〈λk|ψ0〉|λk〉 = |ψΛ〉+ |ψΛ̄〉 , (12)

where we assume the eigenstates form an orthonormal basis (in the case of degenerate
energy levels, we consider the eigenstates after orthonormalization) and are ordered in
such a way that Λ = span({|λk〉 | 1 ≤ k ≤ m}) and Λ̄ = span({|λk〉 | m + 1 ≤ k ≤ N}).
The components in Λ̄ are not affected by the open-dynamics that act at the trap vertex
w. The remaining components evolve in the subspace Λ that is defined by having a finite
overlap with the trap and are therefore absorbed at the trap. In the limit of t → +∞
the net result is the following: the total survival probability of finding the walker in
the graph is 〈ψΛ̄|ψΛ̄〉 ≤ 1, i.e., it is due to the part of the initial state expansion in Λ̄;
instead, the part of the initial state expansion in Λ is fully absorbed at the trap, and so
η = 〈ψΛ|ψΛ〉 = ∑m

k=1 |〈λk|ψ0〉|2. A further consequence of this is that, if the system is
initially prepared in a state |ψ0〉 ∈ Λ̄, then the walker will stay forever in the graph without
reaching the trap (η = 0); if the system is initially prepared in a state |ψ0〉 ∈ Λ, then the
walker will be completely absorbed by the trap (η = 1).

H

〈ψ0|ψ0〉 = 1

Subspace Λ

|ψΛ〉

|w〉

Subspace Λ̄

|ψΛ̄〉 t→ +∞

H

〈ψ(∞)|ψ(∞)〉 ≤ 1

Subspace Λ

0

|w〉

Subspace Λ̄

|ψΛ̄(∞)〉

Figure 1. The quantum walker is in the initial state |ψ0〉 (12) and it has components in Λ(H, |w〉), the subspace spanned by
the eigenstates of the Hamiltonian having a non-zero overlap with the trap |w〉, and in Λ̄ = H \Λ, the complement of Λ in
the complete Hilbert spaceH. In the limit of t→ +∞, the dynamics are such that the component having non-zero overlap
with the trap is fully absorbed by the trap, i.e., |ψΛ̄(∞)〉 = 0, whereas the component in Λ̄ survives. The dynamics are not
unitary and the total survival probability of finding the walker within the graph is not conserved, i.e., 〈ψ(∞)|ψ(∞)〉 ≤ 1.

If, on the one hand, this analytical technique allows for one to compute the trans-
port efficiency without solving dynamical equations, on the other hand diagonalizing
the Hamiltonian might still be a hard task. The dimensionality reduction method in
Section 3 allows for one to avoid diagonalizing the Hamiltonian, since it can be proved that
Λ(H, |w〉) = I(H, |w〉) (see Appendix A). Hence, we compute the transport efficiency as

η =
m

∑
k=1
|〈ek|ψ0〉|2 , (13)
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i.e., as the overlap of the initial state |ψ0〉 with the subspace I(H, |w〉) = span({|ek〉 | 1 ≤
k ≤ m}).

We consider as the initial state either a state localized at a vertex, |ψ0〉 = |v〉, or a
superposition of two vertices, |ψ0〉 = (|v1〉+ eiθ |v2〉)/

√
2. The localized initial state is a

paradigmatic choice to take into account the fact that an excitation is usually created locally
in a system. We also considered a superposition in order to investigate possible effects of
coherence. The transport efficiency for the superposition of two vertices

ηs =
1
2

m

∑
k=1

∣∣∣〈ek|v1〉+ eiθ〈ek|v2〉
∣∣∣2 (14)

can be easily assessed, in some cases, when knowing the transport efficiency η1 and η2 for
an initial state localized at v1 and v2, respectively. If |v1〉 and |v2〉 have the same overlap
with the basis states, i.e., 〈ek|v1〉 = 〈ek|v2〉 for 1 ≤ k ≤ m, then η1 = η2 = η, and we have

ηs(θ) =
1
2

∣∣∣1 + eiθ
∣∣∣2η = (1 + cos θ)η , (15)

so 0 ≤ ηs(θ) ≤ 2η. Instead, if |v1〉 and |v2〉 have nonzero overlap with different basis states,
i.e., 〈ek|v1〉 6= 0 for 1 ≤ k ≤ m1 and 〈ek|v2〉 6= 0 for m1 + 1 ≤ k ≤ m2, with m2 ≤ m, then
we have

ηs =
1
2
(η1 + η2) , (16)

and it is does not depend on θ.
In the following sections, we study quantum transport on different graphs that are

relevant in terms of symmetry, regularity, and connectivity. For each graph, we determine
the basis of the subspace in which the system evolves, the reduced Hamiltonian (10),
and the transport efficiency (13) for an initial state localized at a vertex or a superposition
of two vertices that is not covered by Equation (15). To analytically deal with a graph, we
will group together the vertices that identically evolve by symmetry [45–47,50]. We mean
that such vertices behave identically under the action of the Hamiltonian, in the sense
that they are equivalent upon the relabeling of vertices, as well as, e.g., all of the vertices
in a complete graph are equivalent. This does not mean that the time evolution |v1(t)〉
of an initial state localized at a vertex v1 is exactly equal to the time evolution |v2(t)〉 of
another initial state localized at v2 6= v1, but it means that these two time evolutions are
the same upon exchanging the labels of the two vertices. Note that the Hamiltonian (10)
acts on a generic vertex as the Laplacian, except for the trap vertex, which, thus, forms a
subset of one element, itself. The equal superpositions of the vertices in each subset form a
orthonormal basis for a subspace of the Hilbert space and the Hamiltonian written in such a
basis still fully describes the evolution of the system. However, we point out that such basis
spans a subspace which, in general, is not the subspace I(H, |w〉) we need to compute the
transport efficiency. Nevertheless, this grouping of vertices provides a useful framework
to analytically deal with the system and, for this reason, we will introduce it. Clearly,
identically evolving vertices have the same transport properties. However, vertices that
are not equivalent for the Hamiltonian can provide the same transport efficiency. For this
reason, in the following, we will stress when this is the case.

4.1. Complete Bipartite Graph

The complete bipartite graph (CBG) G(V1, V2, E) is a highly symmetrical structure,
which, in general, is not regular. The CBG has two sets of vertices, V1 and V2, such that each
vertex of V1 is only connected to all of the vertices of V2 and vice versa. The set of CBGs is
usually denoted as KN1,N2 , where the orders of the two partitions N1 = |V1| and N2 = |V2|
are such that N1 + N2 = N, with N the total number of vertices. The CBG is non-regular as
long as N1 6= N2 (see K4,3 in Figure 2), and the star graph is a particular case of CBG with
N1 = N − 1 and N2 = 1. Without a loss of generality, we assume the trap vertex w ∈ V1.
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b

b

b

w

V1

a

a

a

V2

Figure 2. Complete bipartite graph K4,3. The trap vertex w ∈ V1 is colored red. Identically evolving
vertices have the same transport properties and are identically colored and labeled.

The system evolves in a 3-dimensional subspace (see Appendix B.1) that is spanned
by the orthonormal basis states

|e1〉 = |w〉 , |e2〉 =
1√
N2

∑
i∈V2

|i〉 , |e3〉 =
1√

N1 − 1 ∑
i∈V1,
i 6=w

|i〉 . (17)

This is also the basis that we would obtain by grouping together the identically
evolving vertices in the subsets Va = V2 and Vb = V1 \ {w} (see Figure 2) [45]. In this
subspace, the reduced Hamiltonian is

H =

(1− α)N − iκ −
√
(1− α)N 0

−
√
(1− α)N αN −

√
(1− α)(αN − 1)N

0 −
√
(1− α)(αN − 1)N (1− α)N

 , (18)

where α = N1/N ∈ Q+, N2 = (1− α)N, since N1 + N2 = N. Notice that, for G to be a
CBG, α must satisfy the condition 1/N ≤ α ≤ 1− 1/N.

If the initial state is localized at a vertex v 6= w, then the transport efficiency is

η =


1

αN − 1
if v ∈ V1 ,

1
(1− α)N

if v ∈ V2 ,
(19)

and we observe that

η1 < η2 ⇔ 2α > 1 +
1
N

, (20)

where η1(2) := η(v ∈ V1(2)). Instead, if the initial state is a superposition of two vertices,
each of which belongs to a different partition, i.e., v1 ∈ V1 \ {w} and v2 ∈ V2, then the
transport efficiency

ηs =
N − 1

2N(αN − 1)(1− α)
(21)

follows from Equation (16), so clearly η2(1) ≤ ηs ≤ η1(2), where the alternative depends on
the condition (20). The transport efficiency depends on the parameters of the graph, N and
α, as well as on the initial state (see Figure 3). Whether we consider an initial localized state
or a superposition of two localized states, the asymptotic behavior is η = O(1/N) if N1
and N2 are both sufficiently large.
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Figure 3. Transport efficiency η as a function of the order N of the complete bipartite graph for different values of α = N1/N,
with N1 = |V1|, and different initial states. Transport efficiencies η1(2) (19) when the initial state is localized at a vertex in
V1(2), and ηs (21) when the initial state is the superposition of two vertices, one in V1 and the other in V2. The trap vertex
w ∈ V1.

4.2. Strongly Regular Graph

A strongly regular graph (SRG) with parameters (N, k, λ, µ) is a graph with N vertices,
not complete or edgeless, where each vertex is adjacent to k vertices; for each pair of
adjacent vertices, there are λ vertices adjacent to both, and for each pair of nonadjacent
vertices there are µ vertices that are adjacent to both [51,52]. If we consider the red vertex w
in Figure 4, this means that there are k yellow adjacent vertices, and N− k− 1 blue vertices,
all at distance 2. SRGs have a local symmetry, but most have no global symmetry [46].
The four parameters (N, k, λ, µ) are not independent and, for some parameters, there are
no SRGs. One necessary, but not sufficient, condition is that the parameters satisfy

k(k− λ− 1) = (N − k− 1)µ , (22)

which can be proved by counting, in two wayy, the vertices at distance 0, 1, and 2 from a
given vertex. Let us focus on the red vertex shown in Figure 4 and count the pairs of yellow
and blue vertices that are adjacent to it. On the left-hand side of Equation (22), the red
vertex has k neighbors, the yellow ones. Each yellow vertex has k neighbors, one of which
is the red one and λ of which are other yellow vertices, so it is adjacent to k− λ− 1 blue
vertices. Hence, the number of pairs of adjacent yellow and blue vertices is k(k− λ− 1).
On the right-hand side of Equation (22), we consider the blue vertices, which, by definition,
are not adjacent to the red vertex. There are N − k − 1 blue vertices, since there are N
total vertices in the graph, one of which is red and k of which are yellow. Each of the blue
vertices is adjacent to µ yellow vertices, so there are (N − k− 1)µ pairs of yellow and blue
vertices. The condition (22) comes from equating these expressions [46].

The system evolves in a 3-dimensional subspace (see Appendix B.2) spanned by the
orthonormal basis states

|e1〉 = |w〉 , |e2〉 =
1√
k

∑
(i,w)∈E

|i〉 , |e3〉 =
1√

N − k− 1 ∑
(i,w)/∈E

|i〉 . (23)
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This is also the basis that we would obtain by grouping together the identically
evolving vertices in the subsets Va = {i | (i, w) ∈ E} and Vb = {i | (i, w) /∈ E} (see Figure
4) [46]. In this subspace, the reduced Hamiltonian is

H =

k− iκ −
√

k 0
−
√

k k− λ −
√

µ(k− λ− 1)
0 −

√
µ(k− λ− 1) µ

 . (24)

If the initial state is localized at a vertex v 6= w, then the transport efficiency is

η =


1
k

if (v, w) ∈ E ,

1
N − k− 1

if (v, w) /∈ E .
(25)

Instead, if the initial state is a superposition of two vertices one of which is adjacent to
w and the other is not, i.e., (v1, w) ∈ E and (v2, w) /∈ E, then the transport efficiency

ηs =
N − 1

2k(N − k− 1)
(26)

follows from Equation (16).

w
a

b

b

a a

b

b

a

(a)

a

b

b b

b

w

a

b b

a

(b)

Figure 4. Two strongly regular graphs: (a) Paley graph with parameters (9, 4, 1, 2) (parametrization
(27) for µ = 2); (b) Petersen graph with parameters (10, 3, 0, 1). The trap vertex w is colored red.
Identically evolving vertices have same transport properties and are identically colored and labeled.

A family of SRGs is the Paley graphs (see Figure 4a), which are parametrized by

(N, k, λ, µ) = (4µ + 1, 2µ, µ− 1, µ) (27)

where N must be a prime power (i.e., a prime or integer power of a prime [53]) such that
N ≡ 1 (mod 4). According to the parametrization (27), whether we consider an initial
localized state or a superposition of two localized states, the transport efficiency on a Paley
graph is η = 1/2µ (see Equations (25) and (26)), regardless of the fact that the vertices
considered are adjacent or not to w.

4.3. Joined Complete Graphs

The transport efficiency on a complete graph, when the initial state is localized at
a vertex v 6= w, is η = 1/(N − 1) [40,48]. Here, we consider two complete graphs of
N/2 vertices that are joined by a single edge (see Figure 5). The two vertices, b1 and b2,
forming the “bridge” have degree N/2, whereas all of the others have degree N/2− 1. We
denote each complete graph by K(k)

N/2 = (Vk, Ek), with k = 1, 2, where |V1| = |V2| = N/2.
Therefore, the resulting joined graph is such that V = V1 ∪V2 and E = E1 ∪ E2 ∪ {(b1, b2)}.
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b1

aw

a

a a

K(1)
6 = (V1, E1)

c

cc

b2

c c

K(2)
6 = (V2, E2)

Figure 5. A graph with 12 vertices constructed by joining two complete graphs of 6 vertices by a
single edge (b1, b2), the bridge. The trap vertex w ∈ V1 is colored red. Identically evolving vertices
have same transport properties and are identically colored and labeled. The vertices b1 and b2 show
the same transport efficiency, even if they behave differently under the action of the Hamiltonian.

Grouping together the identically evolving vertices, we define the subsets Va =
V1 \ {w, b1} and Vc = V2 \ {b2} (see Figure 5). The system evolves in a 4-dimensional
subspace (see Appendix B.3) that is spanned by the orthonormal basis states

|e1〉 = |w〉 ,

|e2〉 =
1√

N/2− 1

(
∑

i∈Va

|i〉+ |b1〉
)

,

|e3〉 =
1√

(N − 3)(N/2− 1)

[
∑

i∈Va

|i〉 − (N/2− 2)|b1〉+ (N/2− 1)|b2〉
]

,

|e4〉 =
1√

(N − 3)[N(N/2− 2) + 1]

[
∑

i∈Va

|i〉 − (N/2− 2)(|b1〉+ |b2〉)− (N − 3) ∑
i∈Vc

|i〉
]

. (28)

We point out that this basis spans a subspace of dimension 4, thus smaller than the 5-
dimensional subspace spanned by the basis that is defined by grouping together the
identically evolving vertices [47]. In the subspace that is spanned by the basis states
{|e1〉, . . . , |e4〉}, the reduced Hamiltonian is

H =



N/2− 1− iκ −
√

N/2− 1 0 0

−
√

N/2− 1 N
N−2 −

√
N−3

N/2−1 0

0 −
√

N−3
N/2−1

1
N−3

(
N2

2 − 7 + 1
N/2−1

) √
(N/2−1)[N(N/2−2)+1]

N−3

0 0
√

(N/2−1)[N(N/2−2)+1]
N−3

N/2−1
N−3


. (29)

If the initial state is localized at a vertex v 6= w, then the transport efficiency is

η =



2(N − 1)
N(N − 4) + 2

if v ∈ Va ,

1
2
+

N − 3
N(N − 4) + 2

if v ∈ {b1, b2} ,

2(N − 3)
N(N − 4) + 2

if v ∈ Vc .

(30)
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Assuming that each complete graph has N/2 ≥ 3 vertices, then ηc < ηa ≤ ηb, where the
subscript refers to an initial state localized at vertex in Vc, in Va, and in the bridge {b1, b2},
respectively. Instead, if the initial state is a superposition of two vertices, then

ηs(θ) =



(N − 2)[N + 4(1 + cos θ)]

4[N(N − 4) + 2]
=

1
4
+ O

(
1
N

)
if v1 ∈ Va ∧ v2 ∈ {b1, b2} ,

2(N − 2− cos θ)

N(N − 4) + 2
=

2
N

+ O
(

1
N2

)
if v1 ∈ Va ∧ v2 ∈ Vc ,

(N − 2)[N − (N − 4) cos θ]− 4
2[N(N − 4) + 2]

=
1− cos θ

2
+ O

(
1
N

)
if v1 = b1 ∧ v2 = b2 ,

N(N + 2) + 4(N − 4) cos θ − 16
4[N(N − 4) + 2]

=
1
4
+ O

(
1
N

)
if v1 ∈ {b1, b2} ∧ v2 ∈ Vc .

(31)

We observe that, for the superposition of v1 ∈ Va and v2 ∈ Vc, the transport efficiency
ηs(π) is equal to η for an initial state that is localized at v ∈ Va. For the superposition of b1
and b2, i.e., of the vertices of the bridge, we have ηs(π) = 1. This means that such a state
belongs to I(H, |w〉), indeed

1√
2
(|b1〉 − |b2〉) =

1√
N − 2

(|e2〉 −
√

N − 3|e3〉) . (32)

For an initial state localized at b1 or b2, we have the same transport efficiency ηb (30).
However, the two vertices b1 and b2 have different overlap with the basis states |ek〉, so the
transport efficiency (31) for the superposition of them is not given by Equation (15).

4.4. Simplex of Complete Graphs

We call M-simplex of complete graphs what is formally known as the first-order
truncated M-simplex lattice. The truncated M-simplex lattice is a generalization of the
truncated tetrahedron lattice [54] and it is defined recursively. The graph of the zeroth
order truncated M-simplex lattice is a complete graph of M + 1 vertices. The graph for
the (n + 1)th order lattice is obtained by replacing each of the vertices of the nth order
graph with a complete graph of M vertices. The truncated simplex lattice has been studied
in various problems, e.g., in statistical models [55], self-avoiding random walks [56],
and spatial search [47,57]. The M-simplex is, therefore, obtained by replacing each of the
M + 1 vertices of a complete graph with a complete graph of M vertices (see Figure 6).
Each of the new M vertices is connected to one of the edges coming to the original vertex.
The graph is regular, vertex transitive, and there are N = M(M + 1) total vertices.

f

fe

d
f

f

fe

d
f

f

f
e

d

f

f

f
e

d

fc

c
c

b

c

a

a

a
w

a

Figure 6. 5-simplex of complete graphs. The trap vertex w is colored red. Identically evolving
vertices have same transport properties and are identically colored and labeled. The vertices in
Vc and Vd show the same transport efficiency, even if they behave differently under the action of
the Hamiltonian.



Entropy 2021, 23, 85 12 of 24

Grouping together the identically evolving vertices, we define the subsets Va, Vc,
Vd, Ve, and Vf (see Figure 6), having cardinality |Va| = |Vc| = |Vd| = |Ve| = M − 1,
and |Vf | = (M− 1)(M− 2). The yellow vertices a are adjacent to w and belong to the same
complete graph. The blue vertex b is adjacent to w, but it belongs to a different complete
graph. The orange vertices c are adjacent to b and belong to the same complete graph.
The green vertices d, even if, at distance 2 from w, like the vertices c, are adjacent to a,
and so they form a different subset. The magenta vertices e are adjacent to c and belong
to complete graphs other than the one the vertices c belong to. The cyan vertices f are
adjacent to e and d. Independent of M, the system evolves in a 5-dimensional subspace
(see Appendix B.4) that spanned by the orthonormal basis states

|e1〉 =|w〉 ,

|e2〉 =
1√
M

(
∑

i∈Va

|i〉+ |b〉
)

,

|e3〉 =
√

M√
(M− 1)(M2 − 2M + 4)

{
M− 2

M

[
∑

i∈Va

|i〉 − (M− 1)|b〉
]
+ ∑

i∈Vc∪Vd

|i〉
}

,

|e4〉 =
√

M2 − 2M + 4√
(M− 1)(M3 + 2M2 − 8M + 16)

 2(M− 2)
M2 − 2M + 4

[
∑

i∈Va

|i〉 − (M− 1)|b〉
]

− (M− 2)2

M2 − 2M + 4 ∑
i∈Vc∪Vd

|i〉 − 2 ∑
i∈Ve

|i〉 − ∑
i∈Vf

|i〉

 ,

|e5〉 =
1

M
√
(M− 1)(M− 2)(M3 + 2M2 − 8M + 16)

− 4(M− 2)

[
∑

i∈Va

|i〉 − (M− 1)|b〉
]

+2(M− 2)2 ∑
i∈Vc∪Vd

|i〉 −M2(M− 2) ∑
i∈Ve

|i〉+ 2(M2 − 2M + 4) ∑
i∈Vf

|i〉

 . (33)

Note that, when the basis states include the vertices in Vc and Vd, they always involve
the equal superposition of all the vertices in Vc ∪Vd. Thus, these vertices are equivalent for
quantum transport, even if they behave differently under the action of the Hamiltonian.
We point out that this basis spans a subspace of dimension 5, thus being smaller than
the 7-dimensional subspace spanned by the basis that is defined by grouping together
the identically evolving vertices [47,50]. In the subspace that is spanned by the basis
states {|e1〉, . . . , |e5〉}, the reduced Hamiltonian is a symmetric tridiagonal matrix with
cumbersome elements, so we store the main diagonal and the superdiagonal, as follows



H1,1 H1,2
...

...
Hn,n Hn,n+1

...
...

H5,5 ∗

 =



M− iκ −
√

M
3M−2

M
−
√

(M−1)(M2−2M+4)

M

M4−2M3+4M2−4M+8

M(M2−2M+4)

√
M(M3+2M2−8M+16)

M2−2M+4

M(M4−2M3+20M2−40M+64)

(M3+2M2−8M+16)(M2−2M+4)

M(M+2)
√

(M−2)(M2−2M+4)

M3+2M2−8M+16

(M+2)(M3−4M+8)

M3+2M2−8M+16
∗


, (34)

where the ∗ denotes the missing element, because its index exceeds the size of the matrix.
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If the initial state is localized at a vertex v 6= w, then the transport efficiency is

η =



M2 − 2
M2(M− 1)

if v ∈ Va ,

M2 − 2M + 2
M2 if v = b ,

2
M2 if v ∈ Vc ∪Vd ,

1
M− 1

if v ∈ Ve ,

M2 − 2M + 4
M2(M− 1)(M− 2)

if v ∈ Vf .

(35)

Note that, for an initial state localized at b, which is the only vertex adjacent to w which
does not belong to the complete graph of w (see Figure 6), we have ηb ≈ 1 for large M.
Instead, if the initial state is a superposition of two vertices, then

ηs(θ) =



M(M2 − 2M + 4)− 4 + 4(M− 1) cos θ

2M2(M− 1)
=

1
2
+ O

(
1
M

)
if v1 ∈ Va ∧ v2 = b ,

M2 + 2M− 4 + 2(M− 2) cos θ

2M2(M− 1)
=

1
2M

+ O
(

1
M2

)
if v1 ∈ Va ∧ v2 ∈ Vc ∪Vd ,

1
M

+
1

M2 if v1 ∈ Va ∧ v2 ∈ Ve ,

M(M2 −M− 4) + 8− 4(M− 2) cos θ

2M2(M− 1)(M− 2)
=

1
2M

+ O
(

1
M2

)
if v1 ∈ Va ∧ v2 ∈ Vf ,

M2 − 2M + 4− 2(M− 2) cos θ

2M2 =
1
2
+ O

(
1
M

)
if v1 = b ∧ v2 ∈ Vc ∪Vd ,

1
M2 −

1
M

+
M

2(M− 1)
=

1
2
+ O

(
1
M

)
if v1 = b ∧ v2 ∈ Ve ,

M(M3 − 5M2 + 11M− 12) + 8
2M2(M− 1)(M− 2)

+
2

M2 cos θ =
1
2
+ O

(
1
M

)
if v1 = b ∧ v2 ∈ Vf ,

1
M2 +

1
2(M− 1)

=
1

2M
+ O

(
1

M2

)
if v1 ∈ Vc ∪Vd ∧ v2 ∈ Ve ,

3M2 − 8M + 8 + 2(M− 2)2 cos θ

2M2(M− 1)(M− 2)
=

3/2 + cos θ

M2 + O
(

1
M3

)
if v1 ∈ Vc ∪Vd ∧ v2 ∈ Vf ,

1
M2 +

1
M
− 1

M− 1
+

1
2(M− 2)

=
1

2M
+ O

(
1

M2

)
if v1 ∈ Ve ∧ v2 ∈ Vf .

(36)

Whenever the superposition of two vertices involves the vertex b, we have ηs ≈ 1/2
for large M and, in particular, ηs(π) = 1/2 for v1 = b ∧ v2 ∈ Vc ∪Vd, independent of M
(see Figure 7). Whenever the superposition involves a vertex in Ve, the transport efficiency
does not depend on θ. Moreover, we observe that the equal superposition of the vertices in
Ve belongs to I(H, |w〉, since

1√
M− 1 ∑

i∈Ve

|i〉 = − 1√
M3 + 2M2 − 8M + 16

(
2
√

M2 − 2M + 4|e4〉+ M
√

M− 2|e5〉
)

, (37)

and so this state provides η = 1.
In the M-simplex of complete graphs, the total number vertices is N = M(M + 1),

so the asymptotic behavior of the transport efficiency must be understood, according to
M = O(

√
N).
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Figure 7. Transport efficiency ηs(θ) (36) as a function of M for different initial states |ψ0〉 = (|v1〉+
eiθ |v2〉)/

√
2. M is the number of vertices in each of the M + 1 complete graphs forming the M-

simplex. The initial states are the possible equal superposition of two vertices, one of which is b.

5. Measures of Connectivity

The vertex connectivity v(G) and edge connectivity e(g) of a graph G are, respectively,
the number of vertices or edges that we must remove to make G disconnected [58]. These
are the two most common measures of graph connectivity, and

v(G) ≤ e(G) ≤ δ(G) , (38)

i.e., both v(G) and e(G) are upper bounded by the minimum degree of the graph δ(G) [59].
Another measure follows from the Laplace spectrum of the graph. The second-

smallest eigenvalue a(G) of the Laplacian of a graph G with N ≥ 2 vertices is the algebraic
connectivity [60,61] and, to a certain extent, it is a good parameter to measure how well a
graph is connected. In spectral graph theory it is well known, e.g., that a graph is connected
if and only if its algebraic connectivity is different from zero. Indeed, the multiplicity of
the Laplace eigenvalue zero of an undirected graph G is equal to the number of connected
components of G [52]. For a complete graph, we know that v(KN) = e(KN) = N − 1
and a(KN) = N. Instead, for a noncomplete graph G, we have a(G) ≤ v(G), and so
a(G) ≤ e(G) [58].

The results of the different measures of connectivity for each graph are shown in
Table 1. Vertex, edge, and algebraic connectivities for the complete and the complete
bipartite graphs are from [58]. The measures of connectivity for the M-simplex of complete
graphs are from [47].

The vertex connectivity of a SRG is v(G) = k [52] and the edge connectivity is e(G) = k.
The latter follows from Equation (38), since δ(G) = k, or using the fact that, if a graph has
diameter 2, as the SRG has [62], then e(G) = δ(G) [59]. We need the Laplace spectrum in
order to assess the algebraic connectivity. The eigenvalues of the adjacency matrix A are

1
2

[
λ− µ±

√
(λ− µ)2 + 4(k− µ)

]
, k , (39)

and the scaling of them with N depends on the type of SRG. Indeed, SRGs can be classified
into two types [51,59,62]. Type I graphs, for which (N − 1)(µ − λ) = 2k. This implies
that λ = µ− 1, k = 2µ, and N = 4µ + 1. They exist if and only if N is the sum of two
squares. Examples include the Paley graphs (see parametrization (27)). Type II graphs,
for which (µ− λ)2 + 4(k− µ) is a perfect square d2, where d divides (N − 1)(µ− λ)− 2k,
and the quotient is congruent to N− 1 (mod 2). Type I graphs are also type II graphs if and
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only if N is a square [51]. The Paley graph (9, 4, 1, 2) is an example of this (see Figure 4a).
Not all of the SRGs of type II are known, only certain parameter families, e.g., the Latin
square graphs [51], and certain graphs, e.g., the Petersen graph (see Figure 4b), are. Hence,
we consider the algebraic connectivity only for the SRGs of type I. According to the
parametrization of the SRG of type I and to the fact that D = kI, the eigenvalues of
L = D− A are

0,
1
2
(N ∓

√
N) , (40)

from which the algebraic connectivity is a(G) = (N −
√

N)/2, since µ = (N − 1)/4 and
k = (N − 1)/2.

Table 1. The minimum degrees and vertex, edge, and algebraic connectivities of the graphs with N
vertices that are considered in this work. For these graphs, the vertex and the edge connectivities are
equal. Note that, in the M-simplex of complete graphs, N = M(M + 1).

Graph G δ(G) v(G) = e(G) a(G)

Complete KN N − 1 N − 1 N
Complete bipartite KN1,N2 min(N1, N2) min(N1, N2) min(N1, N2)
Strongly regular (Type I) (N − 1)/2 (N − 1)/2 (N −

√
N)/2

Joined complete KN/2 N/2− 1 1 O(1/N)
M-simplex M = O(

√
N) M = O(

√
N) 1

For the joined complete graphs we have v(G) = e(G) = 1, because of the bridge (see
Figure 5) [63]. The Laplace spectrum is

0,
N
2

,
1
4

[
N + 4±

√
N(N + 8)− 16

]
, (41)

from which the algebraic connectivity is a(G) = [N + 4−
√

N(N + 8)− 16]/4.
Subsequently, we assess whether connectivity of the graph may provide or not some

bounds on the transport efficiency for an initial state localized at a vertex. First, we focus on
the regular graphs considered in this work, for which δ(G) = v(G) = e(G), and this is equal
to the degree. For a complete graph, we have 1/a(G) ≤ η = 1/(N − 1), and 1/(N − 1) is
also the reciprocal of the degree. For a SRG of type I, we have η = 2/(N − 1) ≤ 1/a(G)
for µ ≥ 1, and 2/(N − 1) is also the reciprocal of the degree. Hence, from these two
examples, we see that the reciprocal of the algebraic connectivity does not provide a
common bound on η. For the M-simplex of complete graphs, we observe that a(G) = 1,
from whose reciprocal we obtain the obvious upper bound η ≤ 1. Note also that, in general,
the transport efficiency for an initial state that is localized at vertex of a regular graph is not
the reciprocal of the degree, as shown, e.g., by the transport efficiency on a general SRG
(25) (degree k) and on the M-simplex (35) (degree M).

Now, we focus on the non-regular graphs. For the joined complete graphs, the
reciprocal of the vertex and edge connectivity provides the obvious bound η ≤ 1, whereas
neither the reciprocal of δ(G) nor that of a(G) provide a unique bound on η. Indeed, they
are an upper or lower bound on η, depending on the initial state and the order of the
graph (see Equation (30)). For the CBG, the vertex, edge, and algebraic connectivity is
min(N1, N2) and its reciprocal is an upper or lower bound on the transport efficiency (19),
depending on the geometry of the graph. Indeed, we have η1 ≤ η2 ≤ 1/ min(N1, N2) for
α > 1/2, i.e., N1 > N2, and 1/ min(N1, N2) = η2 ≤ η1 for α ≤ 1/2, i.e., N1 ≤ N2.

In conclusion, just by focusing on the transport efficiency for an initial state localized
at a vertex, we observe that the connectivity is a poor indicator for the transport efficiency.
First, because it does not provide any general lower or upper bound for estimating the
transport efficiency, and transport efficiency and connectivity are generally uncorrelated
(see Figure 8). Second, because transport efficiency strongly depends on the initial state,
or, rather, on the overlap of this with the subspace spanned by the eigenstates of the
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Hamiltonian having non-zero overlap with the trap vertex, as shown in Section 4. Note
that, analogously, we have found no general correlation between the transport efficiency
and normalized algebraic connectivity, which is the second-smallest eigenvalue of the
normalized Laplacian matrix L of elements Ljk = Ljk/

√
deg(j)deg(k) [64].

0 1 5 10 15
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0.6

0.8
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0
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0.6

0.8

Figure 8. Scatter plot of the correlation between the transport efficiency η and (a) the edge or vertex connectivity, e(G) and
v(G) respectively, or (b) the algebraic connectivity a(G) (see also Table 1). Same color denotes results for the same graph:
complete graph (CG, N = 6, 8, 10, 12), complete bipartite graph (CBG, N = 12, 18, 24, 30, α = 2/3), strongly regular graphs
of type I (SRG, N = 13, 17, 25, 29), joined complete graphs (JCG, N = 12, 18, 24, 30), and M-simplex of complete graphs
(SCG, M = 3, 4, 5, 6). For a given a graph, different markers denote initial states localized at different vertices v. Note that,
for the SRG of type I η = 1/2µ = 2/(N− 1), independent of the fact that (v, w) ∈ E or (v, w) /∈ E. We observe some specific
correlations between the transport efficiency and connectivity for a given graph, but, globally, among different graphs,
transport efficiency and connectivity are uncorrelated.

6. Conclusions

In this work, we have addressed the coherent dynamics of transport processes on
graphs in the framework of continuous-time quantum walks. We have considered graphs
having different properties in terms of regularity, symmetry, and connectivity, and we have
modeled the loss processes via the absorbing of the wavefunction component at a single
trap vertex w. We have adopted the transport efficiency as a figure of merit in order to assess
the transport properties of the system. In the ideal regime, as the one we have adopted,
where there is no disorder or decoherence processes during the transport, the transport
efficiency η can be computed as the overlap of the initial state with the subspace Λ(H, |w〉)
spanned by the eigenstates of the Hamiltonian having non-zero overlap with the trap vertex.
According to the dimensionality reduction method, we have determined the orthonormal
basis of such subspace with no need to diagonalize the Hamiltonian. Therefore, any initial
state that is a linear combination of such basis states provides the maximum transport
efficiency η = 1. We have considered, as the initial state, either a state localized at a vertex
or a superposition of two vertices, and computed the corresponding transport efficiency.
Overall, the most promising graph seems to be the M-simplex of complete graphs, since
it allows for us to have a transport efficiency that is close to 1 for large M for an initially
localized state. Transport with maximum efficiency is also possible on other graphs, if
the walker is initially prepared in a suitable superposition state. However, the coherence
of these preparations is likely to be degraded by noise, and the corresponding transport
efficiency may be hard to be achieved in practice.
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Our results suggest that connectivity of the graph is a poor indicator for the transport
efficiency. Indeed, we observe some specific correlations between transport efficiency and
connectivity for certain graphs, but in general they are uncorrelated. Moreover, transport
efficiency depends on the overlap of the initial state with Λ(H, |w〉), and the reciprocal
of the measures of connectivity that we have assessed does not provide a general and
consistent either lower or upper bound on η. However, the topology of the graph is
encoded in the Laplacian matrix, which contributes to defining the Hamiltonian. Thus,
connectivity somehow affects the transport properties of the system in the sense that it
affects the Hamiltonian.

On the other hand, the transport efficiency is the integrated probability of trapping in
the limit of infinite time, thus other figures of merit for the transport properties, such as the
transfer time, which is the average time that is required by the walker to get absorbed at the
trap, and the survival probability might highlight the role of the connectivity of the graph,
if any. Moreover, the role of the trap needs to be further investigated, when considering
more than one trap vertex, different trapping rates, and different trap location. Our
analytical results are proposed as a reference for further studies on the transport properties
of these systems and as a benchmark for studying environment-assisted quantum transport
on such graphs. Indeed, our work paves the way for further investigation, including the
analysis of more realistic systems in the presence of noise.
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Appendix A. Subspace of the Eigenstates of the Hamiltonian with Non-Zero Overlap
with the Trap

In this appendix, we show that the subspace Λ(H, |w〉) of the eigenstates of the
Hamiltonian having nonzero overlap with the trap is equal to the subspace I(H, |w〉) =
span({Hk|w〉 | k ∈ N0}) introduced in Section 3. This proof is from the Supplementary
information of [48]. We report it for sake of completeness and because we refine a key point,
not addressed in the original proof, about the right and the left inverse of a matrix.

Let Λ(H, |w〉) = span({|λ1〉, . . . , |λm〉}), where H|λk〉 = λk|λk〉 and m is the mini-
mum number of eigenstates of H having non-zero overlap with the trap, i.e., 〈w|λk〉 6= 0.
In case of a degenerate eigenspace, more than one eigenstate belonging to it can have a
non-zero overlap with |w〉, hence the need to find the minimum number m. The ambiguity
is solved as follows. We choose the eigenstate from this degenerate eigenspace having the
maximum overlap with |w〉, then we orthogonalize all the remaining eigenstates within
such eigenspace with respect to it. After orthogonalizing, these eigenstates have zero
overlap with |w〉 [40,48].
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Let dim(I(H, |w〉)) = m1, dim(Λ(H, |w〉)) = m2, and N the dimension of the com-
plete Hilbert space. First, we prove that I(H, |w〉) ⊆ Λ(H, |w〉), i.e., that any state
Hi|w〉 ∈ I(H, |w〉) also belongs to Λ(H, |w〉):

Hi|w〉 =
N

∑
k=1
〈λk|w〉Hi|λk〉 =

m2

∑
k=1
〈λk|w〉Hi|λk〉 =

m2

∑
k=1
〈λk|w〉λi

k|λk〉 , (A1)

since 〈λk|w〉 = 0 for m2 + 1 ≤ k ≤ N. Any state Hi|w〉 can therefore be expressed as a
linear combination of the eigenstates of the Hamiltonian having a non-zero overlap with
the trap, so Hi|w〉 ∈ Λ(H, |w〉)∀i ∈ N0. Second, we prove that Λ(H, |w〉) ⊆ I(H, |w〉),
i.e., that any state of Λ(H, |w〉) can be expressed as a linear combination of the states of
I(H, |w〉). We can write

∣∣λj
〉
=

m1

∑
i=1

cji Hi−1|w〉 =
m2

∑
k=1

m1

∑
i=1

cjiλ
i−1
k 〈λk|w〉|λk〉 =

m2

∑
k=1

m1

∑
i=1

cji Mik|λk〉 , (A2)

with matrix element Mik = λi−1
k 〈λk|w〉, provided that ∑m1

i=1 cji Mik = δjk. In terms of
matrices, this condition is Cm2×m1 Mm1×m2 = Im2×m2 , which means that C is the left inverse
of M, i.e., C = M−1

L . Analogously, rewriting Equation (A1) and then using the first equality
of Equation (A2), we have

H j−1|w〉 =
m2

∑
i=1
〈λi|w〉λ

j−1
i |λi〉 =

m2

∑
i=1

Mji|λi〉 =
m2

∑
i=1

m1

∑
k=1

Mjicik Hk−1|w〉 , (A3)

provided that ∑m2
i=1 Mjicik = δjk. In terms of matrices, this condition is Mm1×m2 Cm2×m1 =

Im1×m1 , which means that C is the right inverse of M, i.e., C = M−1
R . Therefore, M has a

left and a right inverse, so M must be square, m1 = m2 = m, and M−1
L = M−1

R = M−1 = C
is unique [65]. The condition under which Λ(H, |w〉) ⊆ I(H, |w〉) is thus that M must be a
m×m invertible matrix. The matrix M is invertible if det(M) 6= 0. We define two m×m
matrices, Vij = λi−1

j and the diagonal matrix Dij = δij
〈
λj
∣∣w〉, such that M = VD. Since〈

λj
∣∣w〉 = 0 for 1 ≤ j ≤ m, then det(V) 6= 0. The matrix V is of the Vandermonde form,

so det(V) = ∏1≤i<j≤m(λi − λj). This determinant is non-zero, since all of the states |λk〉,
for 1 ≤ k ≤ m, belong to different eigenspaces, so all the λk are different from each other.
Hence, det(M) = det(V)det(D) 6= 0, so M is always invertible and this condition ensures
that Λ(H, |w〉) ⊆ I(H, |w〉). This concludes the proof that Λ(H, |w〉) = I(H, |w〉).

Appendix B. Basis of I(H, |w〉) for Each Graph

In this appendixm we analytically derive the orthonormal basis {|ek〉} spanning
the subspace I(H, |w〉) for each graph considered. The first basis element is |e1〉 = |w〉,
the trap vertex, and the k-th element |ek〉 is obtained by orthonormalizing (O.N.) H|ek−1〉
with respect to the subspace spanned by {|e1〉, . . . , |ek−1〉}. The procedure stops when we
find the minimum m, such that H|em〉 ∈ span({|e1〉, . . . , |em〉}). The Hamiltonian (10) is
the sum of the Laplacian matrix, generating the CTQW on the graph, and the trapping
Hamiltonian (9), which projects onto the trap |w〉 with proper coefficient.

Appendix B.1. Complete Bipartite Graph

The Laplacian matrix of the CBG KN1,N2 is

L = N2 ∑
i∈V1

|i〉〈i|+ N1 ∑
j∈V2

|j〉〈j| − ∑
i∈V1

∑
j∈V2

(|i〉〈j|+ |j〉〈i|) , (A4)
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since deg(i ∈ V1) = N2 and deg(j ∈ V2) = N1 (see Figure 2). The basis states (17) are
obtained, as follows:

H|e1〉 = (N2 − iκ)|w〉 − ∑
j∈V2

|j〉 = (N2 − iκ)|e1〉 −
√

N2|e2〉
O.N.−−→ |e2〉 , (A5)

H|e2〉 =
N1√
N2

∑
j∈V2

|j〉 − 1√
N2

∑
i∈V1

∑
j∈V2

|i〉 = N1|e2〉 −
√

N2 ∑
i∈V1,
i 6=w

|i〉 −
√

N2|e1〉

= N1|e2〉 −
√

N2(N1 − 1)|e3〉 −
√

N2|e1〉
O.N.−−→ |e3〉 , (A6)

H|e3〉 =
N2√

N1 − 1 ∑
i∈V1
i 6=w

|i〉 − 1√
N1 − 1 ∑

i∈V1
i 6=w

∑
j∈V2

|j〉 = N2|e3〉 −
√

N2(N1 − 1)|e2〉 . (A7)

In conclusion, any state Hk|w〉 ∈ span({|e1〉, |e2〉, |e3〉})∀k ∈ N0, thus the states (17)
form an orthonormal basis for the subspace I(H, |w〉).

Appendix B.2. Strongly Regular Graph

The Laplacian matrix of the SRG with parameters (N, k, λ, µ) is

L = kI − ∑
(j,i)∈E

|j〉〈i| , (A8)

where I = ∑i∈V |i〉〈i| is the identity. Indeed, in a SRG each vertex has degree k, so the
diagonal degree matrix is D = kI (see Figure 4). The basis states (23) are obtained, as
follows:

H|e1〉 = (k− iκ)|e1〉 − ∑
(j,w)∈E

|j〉 = (k− iκ)|e1〉 −
√

k|e2〉
O.N.−−→ |e2〉 . (A9)

A remark is due in order to address the computation of the next basis states. The di-
ameter of a connected SRG G, i.e., the maximum distance between two vertices of G, is
2 [62]. This means that, given a vertex w, we can group all the other vertices in two subsets,
as follows: the subset of the vertices at a distance 1 from w (adjacent); the subset of the
vertices at a distance 2 from w (nonadjacent). Because of the structure of the SRG, where
two (non)adjacent vertices have λ (µ) common adjacent vertices, in the following we face
summations with repeated terms.

To determine the third basis state, we consider

H|e2〉 = k|e2〉 −
1√
k

∑
(i,w)∈E

∑
(j,i)∈E

|j〉 = (k− λ)|e2〉 −
√

k|e1〉 −
√

µ(k− λ− 1)|e3〉
O.N.−−→ |e3〉 . (A10)

To explain this, we have to focus on ∑(i,w)∈E ∑(j,i)∈E|j〉. The index of the first summa-
tion runs over the vertices i adjacent to w, whereas the index of the second summation
runs over the vertices j adjacent to i. On the one hand, the vertex w is counted k times,
because it has k adjacent vertices i, each of which, in turn, has j = w among its adjacent
vertices. On the other hand, the index of the second summation runs over the vertices
adjacent and nonadjacent to w, because of the structure of the SRG. Each vertex j adjacent
to w, i.e., (j, w) ∈ E, is connected to other λ vertices adjacent to w, so it is counted λ times.
Each vertex j nonadjacent to w, i.e., (j, w) /∈ E, is connected to µ vertices adjacent to w, so it
is counted µ times. Thus, we have

∑
(i,w)∈E

∑
(j,i)∈E

|j〉 = k|e1〉+ λ ∑
(j,w)∈E

|j〉+ µ ∑
(j,w)/∈E

|i〉 = k|e1〉+ λ
√

k|e2〉+ µ
√

N − k− 1|e3〉 . (A11)
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Accordingly, according to Equation (22), we can write µ
√
(N − k− 1) =

√
µk(k− λ− 1),

from which Equation (A10) follows.
Subsequently, we consider

H|e3〉 = k|e3〉 −
1√

N − k− 1 ∑
(i,w)/∈E

∑
(j,i)∈E

|j〉 = µ|e3〉 −
√

µ(k− λ− 1)|e2〉 . (A12)

Again, to explain this, we have to focus on the term ∑(i,w)/∈E ∑(j,i′)∈E|j〉 in the second
equality. The index of the first summation runs over the vertices i nonadjacent to w, whereas
the index of the second summation runs over the vertices j adjacent to i. Each vertex j
nonadjacent to w, i.e., (j, w) /∈ E, is connected to other k− µ vertices nonadjacent to w, so it
is counted k− µ times. Each vertex j adjacent to w, i.e., (j, w) ∈ E, is connected to k− λ− 1
vertices nonadjacent to w, so it is counted k− λ− 1 times. Thus, we have

∑
(i,w)/∈E

∑
(j,i)∈E

|j〉 = (k− λ− 1) ∑
(i,w)∈E

|i〉+ (k− µ) ∑
(i,w)/∈E

|i〉

= (k− λ− 1)
√

k|e2〉+ (k− µ)
√

N − k− 1|e3〉 . (A13)

So, according to Equation (22), we can write (k−λ− 1)
√

k =
√

µ(N − k− 1)(k− λ− 1),
from which Equation (A12) follows.

In conclusion, any state Hk|w〉 ∈ span({|e1〉, |e2〉, |e3〉})∀k ∈ N0, thus the states (23)
form an orthonormal basis for the subspace I(H, |w〉).

Appendix B.3. Joined Complete Graphs

The Laplacian matrix of the two complete graphs KN/2 joined by a single edge
(b1, b2) is

L = L1 + L2 + |b1〉〈b1|+ |b2〉〈b2| − |b1〉〈b2| − |b2〉〈b1|︸ ︷︷ ︸
bridge

, (A14)

where

Lk =

(
N
2
− 1
)

∑
i∈Vk

|i〉〈i| − ∑
(i,j)∈Ek

|i〉〈j| (A15)

is the Laplacian matrix of the complete graph K(k)
N/2, with k = 1, 2. The bridge introduces

the edge between the vertices b1 and b2 and correctly makes the degree of such vertices
be N/2 (see Figure 5). Hence, L|v〉 = Lk|v〉 for any vertex v ∈ Vk \ {bk}. Instead, L|bk〉 =
(N/2)|bk〉 −∑(i,bk)∈Ek

|i〉 − |bk̄〉, where k̄ is the complement of k in {1, 2}.
Reasoning by symmetry, we introduce the subsets of the identically evolving ver-

tices, i.e., the subsets containing the vertices that behave identically under the action of
the Hamiltonian:

H|w〉 = (N/2− 1− iκ)|w〉 − ∑
i∈Va

|i〉 − |b1〉 , (A16)

H ∑
i∈Va

|i〉 = 2 ∑
i∈Va

|i〉 − (N/2− 2)(|w〉+ |b1〉) , (A17)

H|b1〉 = N/2|b1〉 − ∑
i∈Va

|i〉 − |w〉 − |b2〉 , (A18)

H|b2〉 = N/2|b2〉 − ∑
i∈Vc

|i〉 − |b1〉 , (A19)

H ∑
i∈Vc

|i〉 = ∑
i∈Vc

|i〉 − (N/2− 1)|b2〉 , (A20)

where Va = V1 \ {w, b1} and Vc = V2 \ {b2}. Note that the results of H applied on the
vertices b1 or b2 are different, and this is the reason why they form different subsets.
According to these preliminary results, the basis states (28) are obtained, as follows:



Entropy 2021, 23, 85 21 of 24

H|e1〉 =(N/2− 1− iκ)|w〉 − ∑
i∈Va

|i〉 − |b1〉
O.N.−−→ |e2〉 , (A21)

H|e2〉 =
1√

N/2− 1

[
−(N/2− 1)|w〉+ ∑

i∈Va

|i〉+ 2|b1〉 − |b2〉
]

O.N.−−→ |e3〉 , (A22)

H|e3〉 =
1√

(N − 3)(N/2− 1)

[
N/2 ∑

i∈Va

|i〉 − (N2/4− 3)|b1〉+ (N2/4− 2)|b2〉

−(N/2− 1) ∑
i∈Vc

|i〉
]

O.N.−−→ |e4〉 , (A23)

and it can be proved that

H|e4〉 =
√

N/2− 1
N − 3

(√
N(N/2− 2) + 1|e3〉+

√
N/2− 1|e4〉

)
. (A24)

In conclusion, any state Hk|w〉 ∈ span({|e1〉, . . . , |e4〉})∀k ∈ N0, thus the states (28)
form an orthonormal basis for the subspace I(H, |w〉).

Appendix B.4. Simplex of Complete Graphs

The Laplacian matrix is defined as L = D− A. For a M-simplex of complete graphs
the diagonal degree matrix is D = MI, since the graph is regular, and the adjacency matrix
is A = ∑M+1

m=1 A(m)
intra + Ainter, where

A(m)
intra = ∑

(i,j)∈Em

|i(m)〉〈j(m)| (A25)

is the intra-graph adjacency matrix, i.e., within the complete graph K(m)
M , and

Ainter =
M+1

∑
m=1

M

∑
i=1
|i(m)〉〈(M + 1− i)(m

′)| , (A26)

with m′ = 1 + mod(i + m− 1, M + 1), is the inter-graphs adjacency matrix, i.e., between
different complete graphs. The index m labels the complete graphs K(m)

M forming the M-
simplex. Note that Equation (A26) follows the labeling of the vertices in Figure A1 and it is
just one of the possible ways to computationally implement the inter-graphs contribution.

4
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2 1
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5
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1
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21
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5

3

K(6)
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43
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5

2
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w Vd = {d}

Va = {a} Ve = {e}

b Vf = { f }

Vc = {c}

Figure A1. Labeling of vertices in a 5-simplex of complete graphs. The trap vertex w is colored red

and assumed to be |1〉 in K(1)
5 . Same coloring denotes the subsets Vα of identically evolving vertices

α, with α = w, a, b, c, d, e, f (see also Figure 6). Note that each of the two vertices w and b forms a
subset of one element, itself.
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In this case, using the notion of adjacency and reasoning by symmetry to introduce
the subsets of the identically evolving vertices provide a framework which, analytically, is
simpler and clearer to deal with than explicitly using the Laplacian above defined. These
subsets contain the vertices which behave identically under the action of the Hamiltonian:

H|w〉 = (M− iκ)|w〉 − ∑
i∈Va

|i〉 − |b〉 , (A27)

H ∑
i∈Va

|i〉 = 2 ∑
i∈Va

|i〉 − (M− 1)|w〉 − ∑
i∈Vd

|i〉 , (A28)

H|b〉 = M|b〉 − |w〉 − ∑
i∈Vc

|i〉 , (A29)

H ∑
i∈Vc

|i〉 = 2 ∑
i∈Vc

|i〉 − (M− 1)|b〉 − ∑
i∈Ve

|i〉 , (A30)

H ∑
i∈Vd

|i〉 = M ∑
i∈Vd

|i〉 − ∑
i∈Va

|i〉 − ∑
i∈Ve

|i〉 − ∑
i∈Vf

|i〉 , (A31)

H ∑
i∈Ve

|i〉 = M ∑
i∈Ve

|i〉 − ∑
i∈Vc

|i〉 − ∑
i∈Vd

|i〉 − ∑
i∈Vf

|i〉 , (A32)

H ∑
i∈Vf

|i〉 = 2 ∑
i∈Vf

|i〉 − (M− 2)

(
∑

i∈Vd

|i〉+ ∑
i∈Ve

|i〉
)

. (A33)

Note that the results of H applied on the vertices in Vc or in Vd are different, and this
is the reason why they form different subsets. According to these preliminary results,
the basis states (33) are obtained, as follows:

H|e1〉 =(M− iκ)|w〉 − ∑
i∈Va

|i〉 − |b〉 O.N.−−→ |e2〉 , (A34)

H|e2〉 =
1√
M

(
2 ∑

i∈Va

|i〉 −M|w〉+ M|b〉 − ∑
i∈Vc∪Vd

|i〉
)

O.N.−−→ |e3〉 , (A35)

H|e3〉 =
√

M√
(M− 1)(M2 − 2M + 4)

M− 4
M ∑

i∈Va

|i〉 − (M− 1)2|b〉

+
M2 −M + 2

M ∑
i∈Vc∪Vd

|i〉 − 2 ∑
i∈Ve

|i〉 − ∑
i∈Vf

|i〉

 O.N.−−→ |e4〉 , (A36)

H|e4〉 =
1√

(M− 1)(M2 − 2M + 4)(M3 + 2M2 − 8M + 16)

(M2 − 4)

[
∑

i∈Va

|i〉 − (M− 1)|b〉
]

+2(M2 −M + 2) ∑
i∈Vc∪Vd

|i〉 −M(M2 − 2M + 8) ∑
i∈Ve

|i〉+ (M− 2)2 ∑
i∈Vf

|i〉

 O.N.−−→ |e5〉 , (A37)

and it can be proved that

H|e5〉 =
M + 2

M3 + 2M2 − 8M + 16

[
M
√
(M− 2)(M2 − 2M + 4)|e4〉+ (M3 − 4M + 8)|e5〉

]
. (A38)

In conclusion, any state Hk|w〉 ∈ span({|e1〉, . . . , |e5〉})∀k ∈ N0, thus the states (33)
form an orthonormal basis for the subspace I(H, |w〉).
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