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Abstract: Only very recently, rescaling time has been recognized as a way to achieve adiabatic
dynamics in fast processes. The advantage of time-rescaling over other shortcuts to adiabaticity
is that it does not depend on the eigenspectrum and eigenstates of the Hamiltonian. However,
time-rescaling requires that the original dynamics are adiabatic, and in the rescaled time frame,
the Hamiltonian exhibits non-trivial time-dependence. In this work, we show how time-rescaling
can be applied to Dirac dynamics, and we show that all time-dependence can be absorbed into the
effective potentials through a judiciously chosen unitary transformation. This is demonstrated for
two experimentally relevant scenarios, namely for ion traps and adiabatic creation of Weyl points.
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1. Introduction

From the very beginning of quantum control, it has been recognized that circum-
venting the quantum adiabatic theorem [1] poses a formidable challenge. In essence,
this theorem asserts that any quantum process that is driven at rates larger than the
typical energy gaps, is inevitably accompanied by excitations [2–5]. In the real world,
these parasitic excitations are often not only undesirable, but even detrimental. For in-
stance, in adiabatic quantum computing [6], finite-time effects constitute a major source for
computational errors [7,8]. Thus, to circumvent, mitigate, and suppress such finite-time ex-
citations in controlled quantum processes, a wide variety of techniques has been developed.
Among the most successful approaches are transitionless quantum driving [9–13],
the fast-forward technique [14–17], and methods that rely on identifying the adiabatic
invariants [18–21], to name just a few. For a comprehensive exposition of the field “short-
cuts to adiabaticity”, we refer to recent reviews [22,23], a special collection of articles [24],
and a perspective [25].

Somewhat naturally, the majority of work has focused on quantum processes that
can be described by time-dependent Schrödinger equations. However, shortcuts to adia-
baticty have also found generalizations and applications in, e.g., open system dynamics [26],
classical dynamics [27,28], and even biologically relevant settings [29].
Complementing these efforts, the present paper focuses on relativistic quantum dynamics.
This is motivated by recent work that has generalized the fast-forward technique [30],
transitionless quantum driving [31], and invariant based methods [32] to controlled
Dirac dynamics.

The Dirac equation [33] was originally formulated to describe the properties of massive
spin-1/2 particles, such as electrons and quarks [34,35]. However, in recent years, it has
attracted wider attention [36–43], which is mostly motivated by the discovery of so-called
Dirac materials [44]. In these systems, the dispersion relation becomes linear, and hence
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the low-energy excitations behave more akin to massless Dirac particles than fermionic
Schrödinger particles.

In the context of shortcuts to adiabaticity, the technical challenges already present
for Schrödinger dynamics become significantly more involved for Dirac dynamics [45].
One way or another, implementing most shortcuts requires knowledge of the energy spec-
trum, or the use of highly non-local control fields. Therefore, any technique that requires
less detailed information about the dynamics appears highly desirable [25]. In the follow-
ing, we propose and demonstrate how the method of “time-rescaling” [46] is generalized
to Dirac dynamics. We will see that, while simply applying a scaling transformation is
mathematically straight forward, the potential physical implementations are markedly less
clear. This originates in the fact that rescaling time leads to an effectively time-dependent
mass [46]. We will show how this can be remedied by a judiciously chosen unitary
transformation of the Dirac equation. The experimental applicability of our findings is
demonstrated for two relevant systems, namely for ion traps and adiabatic pumping in
Weyl semimetals.

Due to the wide variety of concepts used in the following analysis, the narrative has
been written as self-contained as possible. In Section 2, we summarize the main proper-
ties of the Dirac equation, and briefly review time-rescaling for Schrödinger dynamics.
In Section 3, we develop the method of time-rescaling for general Dirac dynamics.
Section 4 is dedicated to adiabatically driving laser ion traps, and Section 5 presents
adiabatic pumping in Weyl semimetals. Finally, the analysis is concluded with a few
remarks in Section 6.

2. Preliminaries

We start by outlining notions and notations, and by briefly reviewing instrumental
results from the literature.

2.1. Relativistic Quantum Mechanics: The Dirac Equation

The Dirac equation has its origin in an attempt to reconcile special relativity and quan-
tum mechanics [33]. In its original inception and in first quantization, it correctly describes
the properties of massive spin-1/2 particles. It can be written in space representation
as [34],

ih̄ Ψ̇(x, t) =
[
α · (−ih̄c∇+ A(x, t)) + α0 mc2 + I4 V(x, t)

]
Ψ(x, t) . (1)

Here, Ψ(x, t), the 4-dimensional Dirac spinor, i.e., the wave function of a charged
spin-1/2 particle with rest mass m at position x = (x1, x2, x3), and c is the speed of light.
As usual, we denote the derivative with respect to time by a dot.

In covariant form the matrices α = (α1, α2, α3) and α0 can be expressed as [34,35],

α0 = γ0 and γ0 αk = γk . (2)

The γ-matrices are commonly written in terms of 2× 2 sub-matrices with the Pauli-
matrices σx, σy, σz and the identity I2 as,

γ0 =

(
I2 0
0 −I2

)
γ1 =

(
0 σx
−σx 0

)
γ2 =

(
0 σy
−σy 0

)
γ3 =

(
0 σz
−σz 0

)
. (3)

Finally, A(x, t) is the vector potential, and V(x, t) is the scalar potential. The electric
and magnetic fields, E(x, t) and B(x, t), are given by

E(x, t) = −∇V(x, t)− Ȧ(x, t) and B(x, t) = ∇× A(x, t) . (4)

Note that the Dirac equation is gauge invariant [35], and we can thus choose mathe-
matically convenient representations.
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In the following, it will also prove convenient to introduce the Dirac–Hamiltonian
HD, with which Equation (1) can be expressed in basis-independent form,

ih̄
∣∣Ψ̇(t)

〉
= HD(t) |Ψ(t)〉 . (5)

Hence, the Dirac Equation (5) becomes formally identical to the time-dependent
Schrödinger equation. It is worth emphasizing, however, that the standard Schrödinger
Hamiltonian is quadratic in momentum, whereas the Dirac–Hamiltonian is linear. This is a
direct consequence of the relativistic energy–momentum relation, and it will become instru-
mental in the following analysis. Moreover, for massive particles, the Dirac–Hamiltonian
contains the rest energy, which is not present in pure spin systems or in Schrödinger dy-
namics. We will see in the following that when rescaling time, this additional term requires
special attention.

2.2. Time-Rescaling of Schrödinger Dynamics

Time-rescaling was put forward by Bernardo in Ref. [46] as an alternative method for
finding shortcuts to adiabaticity, that does not depend on the instantaneous eigenstates of
the dynamics. To this end, Ref. [46] considers the time-dependent Schrödinger equation

ih̄ |ψ̇(t)〉 =
(

p2

2m
+ V(x, t)

)
|ψ(t)〉 = H(t) |ψ(t)〉 , (6)

where H(t) is the standard Hamiltonian. The solution of Equation (6) can be expressed in
terms of the unitary evolution operator,

U(τ) = T> exp
{
− i

h̄

∫ τ

0
dt H(t)

}
(7)

where T> denotes time-ordering.
Time-rescaling is then nothing else but a transformation of the time variable in the

exponent of the unitary evolution. We have

U(τ) = T> exp

{
− i

h̄

∫ f−1(τ)

f−1(0)
ds ḟ (s) H( f (s))

}
, (8)

where f (t) is an arbitrary rescaling function. It is then easy to see that Equation (8) can
be exploited as a shortcut to adiabaticity for any

∣∣ f−1(τ)− f−1(0)
∣∣ ≤ τ. If the original

dynamics (7) describes an adiabatic process, then Equation (8) achieves the same adiabatic
dynamics in shorter time, for all rescaling functions f (t) that obey the boundary conditions

f−1(0) = 0, f−1(τ) = τ/a, and ḟ (0) = ḟ (τ/a) = 1 (9)

where a > 1 determines the “time contraction factor” [46].
The shortcoming of this technique is that in rescaled variables, the new Hamilto-

nian becomes H̃(t) ≡ ḟ (t)H( f (t)). Generically, this leads to a time-dependent mass,
which is not easy to realize in experimental scenarios. In Appendix A, we show how this
can be remedied with the help of a canonical transformation. In particular, we show that
time-rescaling and counterdiabetic driving are equivalent for scale-invariant problems [13].

In the following, we will generalize and analyze Equation (8) for the time-dependent
Dirac Equation (5). Special focus will be put on experimental accessibility of the arising
time-dependent terms.
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3. Time-Rescaling of Dirac Dynamics

It is easy to see that the solution of the time-dependent Dirac Equation (5) can be
expressed as

UD(τ) = T> exp
{
− i

h̄

∫ τ

0
dtHD(t)

}
. (10)

Hence, the time-rescaled dynamics become

UD(τ) = T> exp

{
− i

h̄

∫ f−1(τ)

f−1(0)
ds H̃D(s)

}
, (11)

where H̃D(t) = ḟ (t)HD( f (t)) is the time-rescaled Dirac–Hamiltonian.
Hence, it appears to be rather straightforward to employ time-rescaling as a shortcut

to adiabaticity also in Dirac dynamics. That the situation is not quite that simple becomes
apparent when inspecting the explicit form of the Dirac–Hamiltonian (1). Notice, that while
time-rescaling Schrödinger dynamics only led to a time-dependent mass, for Dirac dynam-
ics, the time-scaled Hamiltonian H̃D(t) is governed by an effectively time-dependent speed
of light, c̃(t) = ḟ (t) c, and an effectively time-dependent rest energy m̃(t)c̃(t)2 = ḟ (t)mc2.

We will see in the following Section 4 that considering c̃(t) and m̃(t) is perfectly
reasonable and realizable in ion traps, which are described by an effective Dirac equation.
In general, however, it seems rather implausible that the speed of light and the rest energy
can be considered time-dependent control parameters. Thus, we continue the analysis by
proposing a canonical transformation that maps the effective time dependence exclusively
onto vector and scalar potential, A(x, t) and V(x, t).

For the sake of simplicity, and without loss of generality, we continue by considering
a system that is restricted to the x-direction. In this case, the 4-component Dirac spinor
can be separated into two identical 2-component bispinors. For mathematical convenience,
we choose a representation in which the (1 + 1)-dimensional Dirac equation reads [47,48],

H̃D(t) =
[
c̃(t) p + Ã(x, t)

]
σx + m̃(t)c̃(t)2 σz + Ṽ(x, t) I2 , (12)

and where we introduced the time-rescaled potentials Ã(x, t) = ḟ (t)A(x, t) and
Ṽ(x, t) = ḟ (t)V(x, t).

Absorbing the Time-Dependence into the Potentials

Our goal is now to find a unitary transformation that allows one to write the time-
rescaled Hamiltonian in standard form, i.e., with time-independent speed of light and rest
mass. Arguably, the simplest ansatz is given by

K(t) = exp{iφ(t) σx} = cos(φ(t)) I2 + i sin(φ(t)) σx . (13)

Thus, we obtain

HD(t) = K†(t) H̃D(x, p, t)K(t)− ih̄ K†(t) ∂t K(t)

=
[
c̃(t) p + Ã(x, t) + φ̇(t)

]
σx + m̃(t)c̃(t)2 cos(2φ(t)) σz

+ m̃(t)c̃(t)2 sin(2φ(t)) σy + Ṽ(x, t) I2 ,

(14)

and the corresponding solution is given by Φ(x, t) = K(t)Ψ(x, t). We immediately observe
that the time-dependent rest energy is multiplied by cos(2φ(t)), whereas the kinetic term
is modified by φ̇(t). Therefore, the two effectively time-dependent quantities, m(t) and
c(t), can be fully described by φ(t) and its derivative φ̇(t), respectively.

We start by choosing
cos(2φ(t)) = 1/ ḟ (t) (15)
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for which the rest energy becomes time-independent. In complete analogy to the Schrödinger
case [46], the time-dependence of the kinetic term can then be absorbed into the vector
potential. In particular, we define

A(x, p, t) ≡ Ã(x, t) + ( ḟ (t)− 1) c p +
f̈ (t)

2 ḟ (t)
√[

ḟ (t)
]2 − 1

, (16)

which is nothing else but Ã(x, t) expressed in the corresponding interaction picture, plus a
position-independent term.

Thus, we are only left with the pseudoscalar term [49,50], that is proportional to σy.
Pseudoscalar potentials correspond physically to driving the system with circularly polar-
ized light. Now, defining a new (scalar) potential

V(x, t) ≡ mc2
√[

ḟ (t)
]2 − 1 σy + Ṽ(x, t) I2 , (17)

we finally obtain
HD(t) = [cp +A(x, p, t)] σx + mc2 σz +V(x, t) , (18)

where all the time dependence has been absorbed into the potentials. At first glance,
the momentum-dependent vector potential may look unphysical. However, this is simply
a consequence of the fact that the system is non-conservative, and hence the driven system
will experience an intertial force [51], due to the “acceleration” from the time-rescaling.

In conclusion, we have shown that, while in Dirac dynamics we have two, instead of
only one, effectively time-dependent parameters, a simple unitary transformation allows to
absorb the time-dependence entirely into vector and scalar potentials. The resulting vector
potential is fully analogous to what was proposed in Ref. [46] for Schrödinger dynamics,
and the scalar potential contains a simple pseudoscalar term.

4. Dirac Dynamics in Laser Ion-Traps

It has been experimentally demonstrated that under certain conditions ions in laser
traps can be described by effective Dirac dynamics [52–55]. In general, the applied laser
field couples internal vibrational levels of the ion and its motional degrees of freedom.
Hence, the total Hamiltonian reads,

Htot = Hm + He + Hint (19)

where Hm and He describe motional and electronic degrees of freedom, respectively.
The interaction Hamiltonian Hint can be written in (1 + 1) dimensions as [53]

Hint(t) = 2η ∆ γ [p− A(t)] σx + h̄ω σz (20)

where η = k
√

h̄/2mν is the Lamb–Dicke parameter, m denotes the mass of the trapped ion,
and ν is the axial frequency of the confining Paul trap. Note that the effective interaction
can be tuned by applying an external magnetic field described by A(t). Furthermore,
∆ =

√
h̄/2mν and is the width the ground-state wave-function, and γ is the strength of

the interaction, which is varied by modulating the laser source. Finally, ω describes the
detuning of the laser and the resonance frequency of the two-level atom. In principle,
both γ and ω can be controlled externally, and varied as a function of time.

We immediately recognize Hint as the Dirac–Hamiltonian (12) for a vanishing scalar
potential, and [53]

c̃(t) = 2η ∆ γ(t) and m̃(t)c̃(t)2 = h̄ω(t) . (21)

Hence, Hint is already in the time-dependent form required to implement a shortcut
to adiabaticity by means of time-rescaling.
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A Simple Demonstration

Before we continue, it is instructive to demonstrate time-rescaled Dirac dynamics in
ion traps with a simple example. To this end, consider a simple scenario, in which we again
choose V(x, t) = 0. In the interaction picture, we have

HD(p, t) = Hint(t) =
[

p− sin2(πt/2τ)
]

σx + cos2(πt/2τ) σz. (22)

Note that the latter Hamiltonian is written in instantaneous units of 2η ∆ γ(t). Thus,
we simply have A(t) = sin2(πt/2τ) and h̄ω(t) = cos2(πt/2τ). Its instantaneous eigen-
states can be expressed as

|Φ(t)〉 = cos(θt/2)|0〉+ sin(θt/2)|1〉 (23)

where |0〉 and |1〉 are basis states of σz and θt = Arctan[(pt − A(t))/h̄ω(t)], where pt is the
instantaneous momentum. We immediately observe that for large enough τ, this simple
Dirac–Hamiltonian (22) describes adiabatic dynamics, i.e., a system prepared in an initial
eigenstate will remain in the corresponding, instantaneous eigenstate.

Now let us assume that the desired target state of the dynamics is∣∣Φtarget
〉
= (1/

√
2)(|0〉+ |1〉), which is the instantaneous eigenstate of HD(p, t) at t = τ.

Using time-rescaling, this target state can be reached in a shorter time. To this end,
we choose the rescaling function f (t) [46] to read

f (t) = a t− τ (a− 1)
2πa

sin
(

2πat
τ

)
(24)

where as before, a ≥ 1 is the acceleration factor. It is easy to see [46] that this choice
fulfills all boundary conditions (9), and notice that, for a = 1, we simply have f (t) = t, i.e.,
we recover the original dynamics.

It is then a simple exercise to solve the dynamics numerically for the original Hamil-
tonian, HD(t), (22) and its time-rescaled companion, H̃D(t) = ḟ (t)HD(t). To illustrate
our findings, we choose the system to be initially prepared in |Φ(0)〉 (23), and compute
the fidelity of the time-evolved state with respect to initial and target state, Fi(t) and Ff (t),
respectively. These are given by

Fi(t) =
∣∣∣∣∫ +∞

−∞
dp 〈Ψ(p, t)|Φ(0)〉

∣∣∣∣2 and Ff (t) =
∣∣∣∣∫ +∞

−∞
dp
〈
Ψ(p, t)

∣∣Φtarget
〉∣∣∣∣2 . (25)

In Figure 1, we depict the fidelities for a range of values of a. As expected, we see that
for a > 1, the target state is reached in time τ/a.

0.2 0.4 0.6 0.8 1.0
Time (t), for τ=1

0.5

0.6

0.7

0.8

0.9

1.0

Fidelity

Fi(t;a = 1)

Ff(t;a = 1)

Fi(t;a = 2)

Ff(t;a = 2)

Fi(t;a = 4)

Ff(t;a = 4)

Figure 1. Fidelity of the time-evolved state with respect to initial and target state (25) for a = 1, 2, 4 and τ = 1. Other
parameters are set such that h̄ = c = 1.
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5. Time-Rescaling Weyl Semimetals: Shortcuts to Adiabatic Pumping

As a second example we discuss time rescaling in the context of adiabatic pumping
for Weyl semimetals. To this end, we need to apply the above developed framework to
Floquet theory, first.

5.1. Floquet Theory and Time-Rescaling

The solution of periodically driven many-body Hamiltonians can be expanded in the
so-called Floquet states [56]. To this end, consider a general Hamiltonian [57],

H(t) = ∑
k

Hnm(k, t)an,ka†
m,k + h.c. (26)

where k is the wave vector in the first Brilloin zone. Here, a and a† are the fermionic
annihilation and creation operators, and n and m are indices associated with the system’s
degrees of freedom. If this Hamiltonian is periodic in time, H(t) = H(t + T), the single
particle wave function can be written as [56,58],

ψ(k, t) = exp
{
− i

h̄
E(k)t

}
φ(k, t) (27)

where φ(k, t) = φ(k, t + T) is the Floquet mode with periodicity T. The quasienergies E(k)
are eigenvalues of the Floquet operator equation, and they satisfy,

(H(k, t)− ih̄ ∂t) φ(k, t) = E(k) φ(k, t). (28)

Hence, the E(k) exhibit the corresponding Floquet band structure, if the E(k) are also
periodic in momentum space. Interestingly, for fermionic systems, Floquet theories predict
a variety of topological states of matter [57], which we will be exploiting in the following.

The major advantage of the Floquet ansatz (27) is that the time evolution operator can
be factorized. We have [59],

UF(nT, 0) = T>
n

∏
k=1

exp
{
− i

h̄

∫ T

0
dt H(t)

}
(29)

and |ψ(nT)〉 = UF(nT, 0) |ψ(0)〉. Thus, it is not difficult to realize that time rescaling can
be used to shorten the periodicity of the solutions, and in particular, we can write

UF(nT, 0) = T>
n

∏
k=1

exp

{
− i

h̄

∫ f−1(T)

f−1(0)
ds ḟ (s)H( f (s))

}
(30)

where, as above, s is the re-scaled time variable and ḟ (s) is the re-scaling function.
If we again consider time acceleration, i.e.,

∣∣ f−1(T)− f−1(0)
∣∣ = T/a for a > 1,

then the periodicity of the Floquet states is shorted by a factor of 1/a. In the following,
we will exploit this observation for adiabatic evolution between Floquet points, or in other
words, will we use time rescaling as a shortcut to adiabatic pumping.

In this context, it is also interesting to note that typically, a periodically driven Hamil-
tonian does not have to be periodic in momentum space. However, it is still possible to
introduce the Floquet operator in terms of a periodic momentum transport variable [60].
Experimentally, this transport variable can be manifested by phase-shifting two optical-
lattice potentials in a ratchet accelerator (RA) model [60], and its infinitesimal evolution
corresponds to tracing out the entire Floquet band topology, by moving between different
eigenstates of the Floquet operator.

5.2. Shortcut to Adiabatic Creation of Weyl Points

Only rather recently, it has been shown that Floquet points can exhibit linear dispersion
relations. For instance, Refs. [61,62] found topological phases that correspond to Weyl
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semimetals with three-dimensional Dirac “cones”. This was achieved, by considering
a modified, extended kicked Harper model and the careful tuning of “hopping” and
“kicking” strengths.

We will now briefly outline how time-rescaling can be applied to create these Weyl
points in Floquet theory in shorter time. To this end, we consider the off-diagonal kicked
Harper model, whose Hamiltonian reads [62]

H(t) =
N−1

∑
n=1

{[
J + (−1)nλ cos

(
φy
)]
|n + 1〉〈n|+ h.c.

}
+

N−1

∑
n=1

∑
j
(−1)n[V1 + V2 cos(Ωt)] cos(φz)|n〉〈n|

(31)

where n is the lattice site index, J and λ are parameters controlling the hopping strength,
N is the total number of lattice sites. Furthermore, V1 is the onsite potential, V2 represents
the coupling with the harmonic driving field, and Ω = 2π/T. As before, T is the period of
driving, and H(t) = H(t + T). In this model [62], φy and φz are quasimomenta, that can
take any value in (−π, π]. Therefore, we can simplify the analysis again to (1 + 1) dimen-
sions. It is also interesting to note, that Weyl chirality can be manifested by observing
the time evolution of the mean position, 〈∆x〉. This is facilitated by adiabatic transport in
momentum space [60], or rather by the adiabatic variation of φy and φz. Thus, we focus
now on applying time rescaling for adiabatic transport to observe the Weyl chirality in
〈∆x〉.

For a single mode k, we have [62]

Hk(t) = 2J cos(k)σx + 2λ sin(k) cos
(
φy
)
σy + [V1 + V2 cos(Ωt)] cos(φz)σz . (32)

It can be shown that the corresponding quasienergy spectrum exhibits band touching
points with linear dispersion relation [61,62].

For the time-dependent variation of φy(t) and φz(t), Equation (32) can be written
as [62]

Ĥk(t) =
[
2J cos(k) cos(2α) + 2λ sin(k) cos

(
φy(t)

)
sin(2α)

]
σx

+
[
−2J cos(k) cos(2α) + 2λ sin(k) cos

(
φy(t)

)
sin(2α)

]
σy + V1 cos(φz(t)) σz

(33)

where α = V2 cos(φz(t)) sin(Ωt)/h̄Ω. The corresponding time-rescaled Hamiltonian be-
comes, H̃k(t) ≡ ḟ (t)Ĥk(t), and we now need to verify that H̃k(t) also exhibits the desired
Weyl chirality.

In close proximity of the band-touching bounds [62], we can write

H̃k(t) ' ḟ (t)
{

Hpert + [`π −V1kz sin(φl)] σz
}

(34)

where we introduced [62]

Hpert =
{
−2Jkx cos[`c sin(Ω f (t))]− 2λky sin[`c sin(Ω f (t))]

}
σx

+
{

2Jkx sin[`c sin(Ω f (t))]− 2λky cos[`c sin(Ω f (t))]
}

σy .
(35)

Moreover, we have kx = k − π/2, ky = φy − π/2, kz = φz − φl , c = V2/V1 and
φl = cos−1(`π/V1). Finally, ` denotes the quantum number of the quasienergy.
Adiabatic momentum transport is then achieved by parametrizing φy and φz according to
φy = φy,0 + r cos(θ(t)) and φz = φz,0 + r sin(θ(t)) and evolving θ(t) over a time period
T0 � T [62]. Thus, it is worth emphasizing that the relevant Floquet operator quantifies
this periodicity, T0, in momentum space, and not the time period of the driving field T.
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Solving for the time evolution operator exactly is hardly feasible. However, the
Floquet operator (29) can be obtained from time-dependent perturbation theory. It can be
shown [62] that we have for the first period

UF(T0, 0) ' I+ i
(
2Jkx σx + 2λky σy

)
J (`c) (36)

where J is the Bessel function of the first kind. It is then a simple exercise to show that we
obtain for the time-rescaled Floquet operator

ŨF(T0/a, 0) ' I+ i
(
2Jkx σx + 2λky σy

)
J (`c) (37)

which is identical to the Floquet operator (36). However, due to time rescaling, ŨF has a
periodicity of T0/a, which for a > 1, described sped-up dynamics. Since the time-rescaled
Floquet operator is identical to the original UF(T0, 0), all further steps of the analysis in
Ref. [62] remain true, yet the Weyl chirality is obtained with periodicity T0/a.

Finally, we briefly remark on the complexity of the time-dependence in the time-
rescaled dynamics. As before, in H̃k(t), all original parameters are multiplied by ḟ (t).
In particular, this requires both kicking and hopping strengths to be varied with time.
However, it is not hard to see that, in complete analogy to the above in Section 3,
the time dependence can be absorbed into potentials. This can be facilitated again with, e.g.,
the simplest unitary transformation K(t) (13).

6. Concluding Remarks

Controlling quantum systems is a ubiquitous goal in the development of quantum
technologies. To this end, shortcuts to adiabaticity provide a powerful tool kit to steer
quantum system towards desired target states. However, most techniques are rather
complicated to be implemented in realistic scenarios, since most of them require exquisite
knowledge about the eigenspectrum of the driven Hamiltonians.

Time scaling relies on the simple idea that, rather than controlling single states,
faster dynamics can be achieved by simply transforming the dynamics to a new time-
frame. To utilize time rescaling as a shortcut to adiabaticty, two criteria need to me met:
(i) the original dynamics is adiabatic, and (ii) the resulting Hamiltonian has to be realizable
and physical.

Using time rescaling as a shortcut was originally proposed only for Schrödinger
dynamics. The natural question arose, whether also relativistic dynamics can be treated
in this framework. To answer this question, we have analyzed Dirac dynamics in first
quantization. In the second quantization, one has to be concerned with pair production
and radiation, and hence a quantum field theoretic description becomes inevitable.

In the present paper, we have shown that time-rescaling can be directly applied
to Dirac dynamics, and that the aforementioned criteria are met by at least two exper-
imentally relevant scenarios, namely laser ion traps and the adiabatic creation of Weyl
points. Thus, we remain optimistic that time-rescaling will, indeed, find applications in
experimental settings.
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Appendix A. Shortcuts to Adiabaticity from Time Rescaling in Scale
Invariant Problems

This appendix is dedicated to the question of whether time-rescaling is related to,
or even equivalent to, other techniques for shortcuts to adiabaticity. To this end, we analyze
the method for scale-invariant problems, in both classical and quantum dynamics.

Appendix A.1. Classical Hamiltonian Dynamics

We start by considering a classical system that evolves under Hamiltonian,
scale-invariant dynamics. For such problems, it has been shown that the counterdiabatic
field facilitating transitionless quantum driving takes a particularly simple form [13].

The corresponding Hamiltonian is given by

H(x, p, t) =
p2

2m
+

1
γ2 V

(
x
γ

)
(A1)

where m is the mass of the particle, γ = γ(t) and V are the scale-invariant driving potentials
obeying V(x, t) = V(x/γ). Note that time rescaling can be applied directly to classical
dynamics, by replacing the commutator in the Heisenberg equation of motion with the
Poisson bracket.

The corresponding time-rescaled Hamiltonian becomes

H̃(x, p, t) = ḟ (t)
p2

2m
+

ḟ (t)
γ( f (t))2 V

(
x

γ( f (t))

)
(A2)

which has the same technical problem that we discussed in the main text, namely H̃(x, p, t)
contains an effectively time-dependent mass. Scaling time is actually a well-studied
problem in Hamiltonian dynamics, and it can be expressed in terms of an infinitesimal
canonical transformation [63].

Therefore, we now consider a generating function of the second kind [64]

F(x, p̄, t) = h1(t) xp̄ + h2(t) x2 (A3)

where h1 and h2 are two arbitrary functions of time. Accordingly, we have

p =
∂F
∂x

= h1 p̄ + 2h2 x and x̄ =
∂F
∂ p̄

= h1 x . (A4)

NotingH(x̄, p̄, t) = H̃(x̄, p̄, t) + ∂F/∂t, it is then straightforward to show that

H(x̄, p̄, t) =
ḟ h2

1
2m

p̄2 +

(
4h2

2 ḟ
2mh2

1
+

ḣ2

h2
1

)
x̄2 +

(
4h2 ḟ
2m

+
ḣ1

h1

)
p̄x̄ +

h2
1 f
γ̄2 V

(
x̄
γ̄

)
(A5)

where γ̄ = h1γ and we suppressed the time-dependence of the parameters to avoid clutter.
Choosing the arbitrary functions h1 and h2 as

h1 = 1/
√

ḟ and h2 = m f̈ /4 ḟ 2 (A6)

the non-local term disappears and the time-dependence of the kinetic terms is remedied.
Hence, we can write

H(x̄, p̄, τ) =
p̄2

2m
+

ḟ
γ2 V

 x̄
√

ḟ

γ

+ κx̄2 (A7)

with κ = m f̈ 2/8 ḟ 2 + m( ḟ f̈ − 2 f̈ 3)/4 ḟ .



Entropy 2021, 23, 81 11 of 13

In conclusion, we have shown that time-rescaling in scale-invariant problems is
equivalent to including an auxiliary field, which is simply given by a harmonic term.
Since it also has been shown that the counterdiabatic field in transitionless quantum
driving can be reduced to a harmonic term [13], we have that time-rescaling can indeed
facilitate transitionless quantum driving.

Appendix A.2. Scale-Invariant Schrödinger Dynamics

The analogous problem can also be solved for Schrödinger dynamics. In this case,
we write the quantum generating function as

F (x, p, t) = exp
{

i
h̄

α(t)x2
}

exp
{

i
h̄

β(t){x, p}
}

(A8)

for two arbitrary functions α(t) and β(t), and {x, p} = xp + px. Now choosing,

β(t) = log
(

ḟ (t)
)

and α(t) =
f̈ (t)
ḟ (t)

, (A9)

we obtain for H̃(t) = ḟ (t) H(t)

H(x, p, t) =
p2

2m
+

ḟ
γ2 V

(
x
ḟ γ

)
+ κq x2 , (A10)

and κq =
...
f / ḟ − f̈ 2/ ḟ 2 − f̈ 2/ ḟ 3. In complete analogy to the classical case, time-rescaling

in the original frame is facilitated by an auxiliary harmonic term.
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