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Abstract: If regularity in data takes the form of higher-order functions among groups of variables,
models which are biased towards lower-order functions may easily mistake the data for noise. To
distinguish whether this is the case, one must be able to quantify the contribution of different orders
of dependence to the total information. Recent work in information theory attempts to do this
through measures of multivariate mutual information (MMI) and information decomposition (ID).
Despite substantial theoretical progress, practical issues related to tractability and learnability of
higher-order functions are still largely unaddressed. In this work, we introduce a new approach
to information decomposition—termed Neural Information Decomposition (NID)—which is both
theoretically grounded, and can be efficiently estimated in practice using neural networks. We
show on synthetic data that NID can learn to distinguish higher-order functions from noise, while
many unsupervised probability models cannot. Additionally, we demonstrate the usefulness of this
framework as a tool for exploring biological and artificial neural networks.

Keywords: information theory; information decomposition; neural coding

1. Introduction

At the center of statistics and machine learning is the idea that statistical regularities
in data can be leveraged to build models and make predictions. Regardless of whether the
model is specified by a simple parametric family, or learned incrementally using a deep
neural network, the hope is to come away with a succinct description of the underlying
relevant dependencies. Dependency in many settings commonly refers to the presence of
pairwise interactions, which can be measured using metrics like the mutual information
between two random variables. However, this is not the case in general, as any number of
multivariate functions may exist among a group of random variables. Defining a proper
measure of multivariate dependence is still an open and active area of research within
information theory.

While standard measures of dependence may be sufficient for many problems, there
are instances where we might expect higher-order interactions to play a critical role. For
example, in microprocessors [1], many important computations are implemented with
higher-order functions; such as XOR logic gates within full adders, and in error-correction
schemes used for memory storage/retrieval. Testing whether this is also true in biological
information processing (such as in neural circuitry [2] or in gene expression [3]) requires
methods of probabilistic modeling which are sensitive to this type of dependence. It is
expected that complex coordination at the level of individual units (such as neurons or
genes) gives rise to collective behavior in the system, but the importance of each unit (or
combinations of units) is often unknown.

Measures of multivariate correlation between units may produce a signature of the
underlying computation [4], and understanding this signature may be a useful step towards
understanding the full system. This has led many fields to explore ways in which the total
information can be decomposed, so as to make the underlying causes more transparent.
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One result of this research direction was an expansion in the arsenal of multivariate mutual
information (MMI) measures, including total correlation [5] and its generalization in the
Cohesion measures of [6]. An alternative outcome of this pursuit is the Partial Information
Decomposition [7], which is a promising framework for detailing the information that a
group of source variables provide about a target. While theoretical explorations of this
framework have yielded extensive results, practical application has only appeared in very
limited settings [8], owing to the computational challenges associated with estimating
the measures. The goal of this work is to begin investigating approaches to information
decomposition which are usable in real-world (i.e., high-dimensional) settings.

The main contributions of the paper are as follows. (1) We introduce a new class of
measures to determine the relevance of kth order interactions among a set of n variables
(n > k). As a special case, these measures can be further decomposed to specify the infor-
mation of order k that source variables X provide about a target variable Y. We arrive at the
formalism for this decomposition by modifying existing measures of the total information.
(2) We introduce an approach to estimate lower bounds on these measures based on an
incremental strategy that builds upon representations of lower-order information. (3) We
show that this approach leads to improved performance when the data contains higher-
order functions. (4) We apply this machinery to simultaneous neural recordings from a
salamander retina, and test the relevance of higher-order functions for understanding the
neural code. (5) We take the first steps towards a theoretical comparison between our
measures and PID on a suite of synthetic multivariate circuits. Sections 3, 4 and 6 explore
the theoretical properties and significance of our measures, while Sections 4.1 and 5 focus
on the practical implementation and challenges associated with probability estimation.

2. Related Work

Decomposition of higher-order interactions is an active area of research [7,9], with
reviews of proposed measures appearing in [10,11]. While previous works focus on
mathematically desirable properties of higher-order interaction measures, realistically
these measures can be tractably evaluated only on small systems. Understanding synergies
may be important for more complex systems, like the neural code [12], but existing methods
do not scale to analyze even moderately-sized datasets. Our approach is inspired by the
developing connection between latent factor modeling and rate-distortion theory [13,14].
Other recent work on tractable estimates of information measures focuses on mutual
information [15,16], which may motivate improved bounds for NID. Recent work has also
explored improving the interpretability of neural networks by reducing them to additive
models with interactions of bounded degree [17]. While such approaches may be similar in
spirit to our work, they assume that a network can learn the ground truth function, and
that the order can be “read off” by evaluating its weights. The results of Table 1 suggest that
this is unlikely for most networks if the data have truly higher-order functions. Although a
full test of our measures’ efficacy in deconstructing artificial neural networks is outside
the scope of this work, these results hint that our measures may be broadly applicable. In
particular, an informative and tractable decomposition of a neural networks input/output
mapping could unveil theoretical principles underlying learning and generalization, which
are still severely lacking in the field. On a practical note, such advancements may also leave
a positive impression on the field of fairness, which is leading the charge towards higher
ethical standards in AI. Decomposing dependence runs counter to decades of black-box
models, and may offer a path towards increased model transparency. Such transparency is
desirable for both model understanding and risk management (as with a medical doctor
attempting to interpret results that may save a patients life). Additionally, with a large
amount of discriminatory bias present in our data and models, one may question the degree
to which some biases remain elusive and hidden in plain sight due to their inherently
higher-order nature.
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3. MMI and Information Decomposition

In this work, we build upon two distinct notions of multivariate mutual information
and its decomposition. The first is based on the decomposition of a particular measure
of total information, known as the total correlation [5]. Under certain conditions, the
total correlation can be generalized to preferentially weight information from higher-order
subsets, as in the family of Cohesion measures [6] or the information-geometric measures
of [18]. The second is the Partial Information Decomposition (PID) [7], which seeks to
split up the mutual information I(Y:X1:n) into a sum of multivariate contributions in X1:n
about a target variable Y. Note that the former measures do not set aside a special variable
Y, meaning the information they quantify is conceptually different from the PID. This
dichotomy is ever-present in the information decomposition literature, as illustrated by
work on entropy decompositions [19–21] that do not specify Y. For this reason, we refer to
the PID as a directed measure of MMI (as it is only defined with respect to a target variable),
and the former approaches as undirected measures. Most of the setup and experiments will
focus on the undirected setting; however, the directed case is touched upon in Section 6.

Total Correlation and Cohesion Measures

Consider a setting where a global measure of multivariate mutual information is
defined among X1:n such that a single scalar c is returned. This is the case with the total
correlation, which is frequently used as a measure of disentanglement in representation
learning [22,23]. Total correlation is minimized when all variables are statistically indepen-
dent and maximized when a bijective function exists between every pair of variables. One
way to extend this measure is as follows,

C(k)(X1:n) :=
1

(n−1
k−1)

∑
|A|=k

H(XA)− H(X1:n) ≥ 0 (1)

where the sum is taken over all (n
k) subsets XA of size k. When k = 1, this measure reduces

to the total correlation: TC(X) =
n
∑

i=1
H(Xi)− H(X1:n). This family of measures has been

referred to as Cohesion measures [6], with each value of k providing more sensitivity to
kth order dependence. For some k, C(k) is maximized when a bijective function exists
between every pair of size k subsets, and no dependence exists in lower orders (≤ k). These
measures have also been studied as upper bounds on information-geometric measures
of kth order information [18]. Ay et al. [18] also prove that these measures are monotone
decreasing as a function of k, meaning the following difference is greater than or equal
to zero,

C
(
k− 1 || k

)
:= C(k−1) − C(k) = 1

(n−1
k−2)

∑
|B|=k−1

H(XB)−
1

(n−1
k−1)

∑
|A|=k

H(XA) (2)

Using this fact, we can write any Cohesion measure as a sum of local differences to
obtain a more detailed decomposition of the total dependence:

C(k) =
n−2

∑
l=k
C
(
l || l + 1

)
+ C(n−1) (3)

This allows us to report a list of up to n− 1 non-negative values for the total correlation,
rather than a single scalar which is less informative. This decomposition is more tractable
than PID, as it does not require any additional optimization procedures and uses a fewer
number of terms. However, this comes at the expense of a less expressive decomposition,
which we will detail in forthcoming sections.



Entropy 2021, 23, 79 4 of 17

4. Neural Information Decomposition

For the local differences of Equation (2), the main computational challenges amount
to estimating a combinatorial number of subset entropies. While modern solutions to unsu-
pervised probability modeling [24–26] may provide approaches to estimate the entropy
of these higher-order marginals, they do not provide practical solutions for dealing with
such a large number of terms. One way forward is to subsample l subsets out of (n

k), and
estimate the entropy on this reduced set. We include this approach as a baseline when
l = n and show that it can work in certain cases. However, this strategy can severely
underestimate the total information at order k, depending on the underlying distribution
and how the subsets are selected.

Alternatively, one could propose a greedy strategy, wherein the estimation of higher-
order subsets is based on the solution to lower-order subproblems. At a high level, we
attempt to do this by constructing an incremental representation of the information at
order k− 1, and use this representation to inform modeling at order k. Our algorithm thus
resembles a dynamic programming approach, or architectures used for sequential decision
problems. Formally, we can rewrite Equation (2) in terms of a sum of conditional entropies,
representing the growth from (k− 1) to k order subsets (see Appendix A):

C(k− 1 || k) = 1

k(n−1
k−2)

∑
|B|=k−1

H(XB)−
1

k(n−1
k−1)

n

∑
i=1

∑
|B|=k−1

i 6∈B

H(Xi | XB) (4)

Instead of computing the first term outright, we can repeat the process of representing
higher-order subsets using conditional entropy terms. If we consider many values of k (as
in Equation (3)), we can move the first term of Equation (4) into C(k− 2||k− 1). Doing this
recursively until k = 1 leads to a simple formulation for the sum of local differences (proof
in Appendix B):

k

∑
l=1
C(l || l + 1) =

(k− 1)
k

n

∑
i=1

H(Xi)−
1
k

k

∑
l=2

1

(n−1
l−1)

n

∑
i=1

∑
|C|=l−1

i 6∈C

H(Xi|XC) (5)

Written this way, it becomes clear that these differences measure the incremental
reduction in uncertainty for each variable Xi as larger contexts of variables are considered.
As it currently stands, this quantity is still computationally difficult, owing almost entirely
to the combinatorial number of subsets. To alleviate some of this burden, we are interested
in bounding the rightmost sum in a way that avoids computing so many terms. We propose
to lower bound this sum using a representation φ

(l−1)
−i which is a function of all subsets XC

of size l − 1 that do not include i. To see why this is a lower bound, assume for the sake of
illustration that φ

(l−1)
−i = X̃C such that H(Xi|X̃C) = min H(Xi|XC) (i.e., the representation

copies the subset which maximally reduces uncertainty). Averaging over all subsets must
lead to higher uncertainty than the minimum, implying the representation is a lower bound.
Taking a Monte Carlo estimate of the expectation in each entropy term (where M is the
total number of samples) yields an expression for the differences in terms of conditional
log-likelihood.

− 1
k

k

∑
l=2

1

(n−1
l−1)

n

∑
i=1

∑
|C|=l−1

i 6∈C

H(Xi|XC) ≥
1

kM

M

∑
s=1

k

∑
l=2

n

∑
i=1

log p(X(s)
i | φ

(l−1)
−i ) (6)

Note that if we start from k = 1 and build up to larger values of k, each local difference
only needs to compute n terms if the representations φ are known. We will discuss
different ways of constructing φ in the next section. The goal is to maximize this term—
or equivalently, minimize its negative value—in order to represent information up to
order k. The final objective can thus be seen as minimizing a weighted sum of negative
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log-likelihoods for each Xi, conditioned on summarized contexts from different orders.
Estimating the quantities in Equation (6) defines the core of our Neural Information
Decomposition (NID) approach, with Neural in this context referring to the use of powerful
neural networks. While this is the first work to combine the pragmatism of neural density
estimation with ideas from information decomposition, we expect many future works to
explore and refine this concept. NID can thus be seen as a descriptive term, referring to
space of solutions attempting to bridge the gap between these fields.

4.1. Choosing the Representations φ

While our experiments only focus on parameterizing the log-probabilities of Equation (6)
under a Bernoulli or Categorical distribution, a Gaussian log-likelihood or normalizing
flow [27,28] could be used in the continuous case. The architecture underlying NID is
made up of two simple components: we first take an existing lower-order representation
φ
(k−1)
−i (or learnable bias at the start for φ

(0)
−i ) and compute statistics ψ

(k)
j 6=i = f (φ(k−1)

−i , Xj 6=i)

for each Xj 6= Xi using a 2-layer feedforward network. This process generates new can-
didate representations by expanding the context with information from one additional
variable (Xj). We then use these statistics to build new higher-order representations

φ
(k)
−i = g(ψ(k)

j 6=i ∀j 6= i) through a summary or pooling operation over all candidate statistics.
This entire process is represented visually in Figure 1 below on a simple three variable
example. The choice of summary function is difficult, as preserving exclusively kth order
information in φ

(k)
−i requires appropriate constraints on g(ψ(k)

j 6=i ∀j 6= i). While these con-
straints can be achieved with certain operations—such as min/max pooling—we found
them too restrictive to learn meaningful representations in practice. For most experiments,
we chose to use mean pooling as a representation function. While this pooling can learn to
represent information between statistics which is above the desired value of k, the informa-
tion is heavily constrained due to the linearity of the function. Although the one-to-one
correspondence between layer number and order of information is lost under this opera-
tion, we provide evidence that it does not drastically deviate from the ground truth order.
In the following section, we will compare this architecture to baselines from sequence
modeling (LSTMs, RNNs, and GRUs), generative models (variational autoencoders), and
autoregressive density estimators.

Figure 1. Above is a visual representation of the steps for our algorithm. In the three variable case,
we predict each variable using contexts of size 1 and 2. These contexts are generated incrementally
by first generating independent features (ψ, learned by a neural network), then combining/selecting
(φ, a constrained aggregation such as mean) those that are most informative. This produces incre-
mental likelihood estimates for x1, and the same procedure is done for each xi separately.
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5. Experiments

To facilitate reproducibility, the code and scripts for running experiments can be
found in the supplementary. Additionally, we have included information about model
architectures and metrics in Appendix F. Our experiments aim to test whether the NID
architecture and the objective of Equation (6) can be used to effectively model higher-
order interactions. In comparison to standard approaches, NID provides a more detailed
description of where the information exists in a distribution, which may be desirable when
attempting to understand certain systems. We show that NID performs as well or better on
synthetic data with higher-order interactions, while simultaneously producing an accurate
and expressive decomposition.

5.1. Distinguishing Error-Correcting Codes From Noise

In our first set of experiments, we introduce two synthetic datasets that only contain
higher-order dependencies (i.e., all lower order information is indistinguishable from
noise). The first of these is based on the high-dimensional parity distribution. We gener-
ate data by drawing uniform samples from the 2n−1 hypercube, then add an additional
random variable corresponding to the parity of the previous n− 1. In each dataset, we
generated roughly 100, 000 samples, and used a 70/30 train/validation split. Even this
simple example is deceptively challenging from a learning perspective, with theoretical
results for related problems, such as learning parity with noise [29], the classical XOR
problem in supervised learning [30], overparameterization in XOR detection [31], and the
depth of computation required for learning higher-order functions [32]. Recent work has
also illustrated the practical failure of standard deep networks to efficiently learn/represent
the parity function [33].

In Table 1, we report values for the negative log-likelihood on four different sizes
of parity data, with mean and deviation across 5 random initializations. Each of the
approaches in the top half of the table attempt to model the joint density of the data,
with the first three being sequence models (RNN, LSTM, and GRU) and the remaining
being autoregressive density estimators (MADE, MADE-U, and MADE-S). As n− 1 of
the variables are indistinguishable from noise, we only report the negative log-likelihood
for the last variable in the sequence/autoregressive prediction. This value represents
how well a given architecture can reproduce the parity mapping for a fixed ordering of
the variables. If the model learns the correct functional relationship, it should report 0
nats (appearing as bolded values in the table), and if cannot distinguish the relationship
from noise, it should report 0.693 nats. For the sequence models, we attempt to predict
the next variable in the sequence from the current variable and some cumulative latent
representation. The autoregressive models are all MADE networks [25] which parameterize
the logits of Bernoulli random variables. We explored two ways of incorporating multiple
autoregressive orderings into MADE, by either (a) ensembling the outputs of unique MADE
networks for each ordering (MADE-U), or (b) using a single MADE network shared across
all orderings (MADE-S). In both cases, we selected a linear number of orderings at random,
since parity is symmetric in the ordering of variables. Note that doing this implies MADE-U
and MADE-S test the naive baseline introduced in Section 4 when k = n. For values of
k < n there is no structure to learn, and each model correctly returns the log-likelihood of
random noise. We found that the performance of most models degraded in the large parity
regime. For 15 and 20 parity, none of the sequence models were able to identify the ground
truth relationship. Note that we avoid injecting additional supervision in these models,
such as providing variable length sequences, introducing symmetry priors, or predicting
the cumulative parity. The autoregressive models did much better in these cases, with most
of the variants converging to the ground truth. Adding multiple orderings (MADE-U and
MADE-S) helped the autoregressive models in the higher-dimensional cases. While both
extensions performed similarly on all experiments, MADE-U used a separate model for
each of the n orderings, making it extremely inefficient in the number of parameters.
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Table 1. Negative log-likelihood for various models on parity data.

Model 5-Parity 10-Parity 15-Parity 20-Parity

RNN 0.01± 0.01 0.04± 0.01 0.693± 0.03 0.693± 0.02
LSTM 0.05± 0.05 0.02± 0.01 0.693± 0.01 0.693± 0.01
GRU 0.01± 0.01 0.01± 0.01 0.693± 0.01 0.693± 0.01

MADE 0.02± 0.01 0.03± 0.02 0.05± 0.2 0.475± 0.15
MADE-U 0.01± 0.01 0.02± 0.01 0.04± 0.01 0.08± 0.03
MADE-S 0.04± 0.01 0.03± 0.01 0.03± 0.01 0.09± 0.04

Autoencoder 2.79± 0.67 6.5± 0.43 8.18± 1.2 12.57± 1.2
Gaussian VAE 3.24± 0.14 6.15± 0.22 10.38± 0.01 13.85± 0.01

NID 0.01± 0.01 2.28± 0.6 4.78± 1.1 11.12± 1.4
NID + MLP 0.01± 0.01 0.01± 0.01 0.03± 0.01 0.05± 0.02

In the bottom half of Table 1, we compare models that lower bound the joint density.
The first two models are generative models (Autoencoders and Gaussian Variational
Autoencoders), and the remaining are variants of the NID algorithm. While both of these
approaches optimize a lower bound, they differ in how they measure the quality of a
learned representation. To discourage memorization, autoencoders create a bottleneck
in the architecture and often add noise to the compressed intermediate representation.
However, this is not a hard constraint on the flow of information through the network,
and autoencoders are still prone to memorization. In contrast, NID attempts to predict Xi
using only information from other variables Xj, which prevents the network from passing
information about Xi directly to the output. Unlike the sequence and density models,
which could only meaningfully predict a single variable, both of these approaches can
potentially predict every variable. For this reason, we report the sum of negative log-
likelihoods for all variables. By Equation (6), we see that NID contains a different term
for reconstruction at each order k. We chose k = 5 for these experiments (i.e., the NID
network has 5 layers of incremental likelihood estimation), and show the reconstruction
at the final value of k for the sake of comparison. In the case of parity, we found a larger
number of layers to be detrimental to performance for two reasons: (1) early layers have
nothing to predict (by design of the experiment), leading to an inefficient utilization of
model parameters and computation; (2) early representations heavily influence future
computations, and networks with a large number of layers were prone to unstable learning
dynamics. This was especially noticeable in parity, as early layers do not have a salient
gradient signal to follow during training. The left half of Table 2 below shows how the
differences between intermediate layers compare to the ground truth decomposition for
5-parity. Recall that the local differences of Section 4 measure the incremental change
in likelihood when increasing the subset size, and Equation (6) measures the change in
likelihood when utilizing contextual representations of increasing size. Using mean as our
representation function allowed the network to detect structure at earlier contextual size
(between layers 3 and 4) than the ground truth subset size of 4 and 5.

Table 2. Local differences for 5-Parity (Left) and MDS (n = 7, k = 3) (right) in nats.

Order (k) C (1||2) C (2||3) C (3||4) C (4||5) C (1||2) C (2||3) C (3||4) C (4||5)
Ground Truth 0 0 0 0.693 0 0 3.4 2.04

NID 0 0 0.648 0.409 0 1.49 0.77 0.01

We found that NID consistently outperforms the autoencoders in terms of reconstruc-
tion. To further verify that the network is learning to identify the correct relationships
instead of memorizing the input, we freeze the weights/gradients of a trained NID model
and feed its outputs into a small feed-forward MLP (NID + MLP). By the nature of parity, if
the ground truth function is known for at least one variable, then a simple linear function
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can extend this prediction to all other variables. We see that this is indeed the case for NID,
as NID + MLP is able to achieve near perfect reconstruction. If we attempt to do the same
thing with the output of the autoencoders, we do not observe any change in the overall
reconstruction. This implies that the autoencoders are memorizing noise information to
improve reconstruction, rather than learning useful or meaningful features from the data.

The second dataset is based on error-correcting codes (MDS codes [34]), which can be
thought of as a generalization of the parity function. In MDS codes, the dependence exists
among any subset of greater than k variables, while all subsets of size k are independent.
Each conditional marginal in an MDS code is parameterized by a Categorical distribution
with discrete support q = n, compared to q = 2 for parity. As with the previous synthetic
dataset, we compare the aforementioned approaches on this data, with results appearing
in Table 3. As a slight change of notation, the bolded values in this Table represent the best
approach (in terms of NLL) for each column/dataset. These data are strictly harder than
the parity problem, and many of the approaches did poorly in comparison. In particular,
both of the autoencoders were unable to distinguish structure from noise in any of the
datasets. Although NID was able to perform well in some cases, we observed a large
amount of variability and sensitivity to initial conditions on this data in comparison to
parity (as seen in the deviation for NID across almost every MDS experiment). However,
when freezing and combining with an MLP (as with the parity experiments), the variability
reduces substantially. This can be explained as follows. The reported values correspond to
a sum of independent predictors for each Xi based on contexts of increasing order. If even
a single one of these predictors learns the true function, then the MLP can use it to predict
all other variables. High variability in the standard setting implies that the true function
is not always learned for each Xi, whereas low variability in NID + MLP implies the true
function is learned consistently at least once.

Table 3. Negative log-likelihood for various models on MDS data.

Model MDS (n = 7, k = 3) MDS (n = 7, k = 5) MDS (n = 11, k = 3) MDS (n = 11, k = 5)

RNN 5.72± 0.04 13.62± 0.01 7.30± 0.02 26.36± 0.01
LSTM 5.92± 0.02 4.56± 0.07 7.40± 0.06 26.36± 0.01
GRU 5.86± 0.07 13.63± 0.01 26.36± 0.01 26.36± 0.01

MADE 4.27± 0.11 4.39± 0.16 10.53± 0.17 12.47± 0.32
MADE-U 4.61± 0.8 4.63± 0.4 10.85± 0.24 12.25± 0.27
MADE-S 4.52± 0.13 4.22± 0.12 11.36± 0.22 11.97± 0.32

Autoencoder 13.63± 0.01 13.64± 0.01 26.38± 0.01 26.36± 0.02
Gaussian VAE 13.62± 0.01 13.62± 0.01 26.37± 0.01 26.37± 0.01

NID 1.67± 0.42 6.47± 2.12 6.48± 2.52 14.46± 4.14
NID + MLP 0.04± 0.02 0.29± 0.07 0.01± 0.01 0.35± 0.05

5.2. Higher-Order Interactions in the Neural Code

In their work on using maximum entropy methods to test for collective behavior in
the neural code, the authors of [35] used data collected from simultaneous recordings of
a salamander retina. These data were recently made open source [36], and they contain
a description of the setting under which experiments were conducted, along with the
pipeline for data collection. To summarize some of the key points, the data consists of
neural spike trains recorded from salamander retinal ganglion cells, with potentials binned
at 20 ms (meaning any activation of a single neuron within the time window is recorded
as 1). In total, there are 160 neurons and approximately 300,000 samples gathered over
a period of 2 h. This data is one of very few public datasets that contain simultaneous
measurements of neurons from a multi-electrode array (MLA). Simultaneous recording
is critical for studying the neural code, as neuron co-activation (population coding) and
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temporal locality (rate coding) are the main contenders for how information is encoded in
the brain.

To further explore the collective hypothesis, we applied models from the previous
section to this data in a number of different ways. The left side of Table 4 shows the
negative log-likelihood obtained by autoencoders and Gaussian variational autoencoders.
In addition to the standard MLP architecture used in previous sections, we test how well
these models do when using a Convolutional architecture. On the right side of Table 4,
we use MADE-S and parameterize a linear number of subsets using a sliding window
of size k (the baseline mentioned at the beginning of Section 4). Note that, unlike the
parity experiment, it makes sense in this context to use k < n. The numbers reported in
Table 4 were from the k which produced the best likelihood, which happened to be 50 in
our experiments (shown in Figure 2 as MADE-50). We compare the above approaches
against NID using mean pooling (NID-Mean) and max pooling (NID-Maxpool) as the
representation function. Additionally, in Table 5 we report the intermediate reconstruction
of NID-Mean at each layer (as in Table 2). If we plot the negative log-likelihood for each
neuron across different methods—or when blocks of size k are used in MADE-S, an average
over the k appearances of this neuron in the loss—we observe that many neurons are almost
perfectly predictable, with a select few responsible for the gap in reconstruction. Figure 2
shows a random selection of 40 neurons, with plots for the remaining 120 appearing in
Appendix E.

Table 4. Negative log-likelihood for various methods on salamander retinal ganglion data.

AE-MLP AE-Conv VAE-MLP VAE-Conv MADE-S NID-Maxpool NID-Mean

15.85 12.64 17.78 19.16 18.10 18.89 11.61

Table 5. Local differences between NID layers on salamander retinal ganglion data.

Order (k) C (1||2) C (2||3) C (3||4) C (4||5) C (5||6)
NID 15.23 53.42 18.2 10.44 2.08

Figure 2. Reconstruction error for individual neurons across multiple approaches. MADE corresponds to a standard
autoregressive model without any reorderings. MADE-5 and MADE-50 are variants of MADE-S with k = 5 and k = 50,
respectively. AE and GVAE correspond to Autoencoder and Gaussian Variational Autoencoder. The neurons are colored
such that dark blue is the highest (0.999) and dark red is the lowest (0.817) likelihood reported on a held out test set.

Even for a relatively small value of k = 5 (shown in Figure 2 as MADE-5), NID
performs comparably or better than both autoregressive models and autoencoders, and
often does better at modeling critical neurons. This result lends itself to the following
interpretation. While lower-order dependency might be global among the collection of
neurons (for example, through redundant activations), higher-order dependency is likely
not a global property. This observation is supported by the capability of all approaches
to almost perfectly model most neurons. At the local level, some neurons are difficult
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to completely predict with standard approaches, but can be predicted with NID-Mean.
This might imply that the activity of certain neurons depends on higher-order functions
among neighboring neurons (or, more generally, functions for which our approach is more
capable of modeling). Given what is known about the Neurophysiology of the retina,
these results may not be so surprising. Most of the neuronal processing in early visual
areas is thought to be feedforward, with a sparse collection of inhibitory cell types (such as
amacrine and horizontal cells) that play a role in defining spatial receptive fields [37]. The
neurons that are more difficult to predict may correspond to these laterally interconnected
neurons, although there is no way for us to test this hypothesis on the current data. One
interesting path forward for future work would be analyze data in which cell types are
known, to see if they could be differentiated purely by their activation patterns (as opposed
to their connectivity structure [38], or the use of imaging). Additionally, evaluation of
different brain regions (other than early sensory processing) may yield more interesting
(higher-order) information profiles.

6. Directed Multivariate Information of Order-k

In Neuroscience, it is often desirable to quantify the effect of a stimulus on some
response, such as the firing of a particular group of neurons [39,40]. The partial information
decomposition (PID) of [7] was proposed with this task in mind, and has since sparked an
active research community focused on how multivariate information about a target can
be decomposed into a sum of non-negative quantities. In the case of three variables (two
source variables and one target), the PID yields four individually meaningful terms:

I(Y : X1,2) = R(Y; X1,2) + S(Y; X1,2) + U(Y; X1) + U(Y; X2). (7)

for appropriate definitions of redundant R(·) [41], synergistic S(·) [10], and unique
U(·) [42] information. Much of the recent work in this community is aiming to find
a consistent definition of these terms [43,44], solving theoretical issues regarding the
incompatibility of local positivity and the so-called identity axiom [45].

One issue that limits the applicability of this decomposition is computational tractabil-
ity. When moving beyond the three variable case, the number of terms grows super
exponentially in the number of variables based on the (n− 1)th Dedekind number (i.e., the
total number of monotone Boolean functions among X) [7]. Additionally, each term
often requires optimizing over some convex polytope in the space of probability distribu-
tions [46,47], which is non-trivial in all but the smallest cases. Exploring a middle-ground
between tractability and expressibility is necessary if methods of information decomposi-
tion are to be used on high-dimensional data.

6.1. Directed Local Differences

Although Equations (2) and (3) make a positive step towards a more tractable de-
composition, they are not immediately comparable to the directed formulation of standard
information decomposition approaches. Below, we introduce a novel extension of these
measures by showing how a measure of directed MMI about Y of order k can be obtained
from the undirected setting. We can express Cohesion for a particular value of k over the
joint distribution containing X and Y as

C(k)(X1:n, Y) =
1

( n
k−1)

∑
|B|=k−1

H(Y, XB) +
1

( n
k−1)

∑
|A|=k

H(XA)− H(Y, X1:n) (8)

Here, we assume that the total number of variables (including Y) is n + 1. This
expression can be rewritten as a Cohesion measure that only depends on X, a weighted
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local difference from k− 1 to k, and a remainder of terms which we label C(k)Y (proof in
Appendix D).

C(k)(X1:n, Y) = C(k)(X1:n) + C
(k)
Y (X1:n) +

(k− 1)
n
C(k− 1 || k)

C(k)Y (X1:n) :=
1

( n
k−1)

∑
|B|=k−1

H(Y|XB)− H(Y|X1:n).
(9)

By representing C(k)(X1:n, Y) and C(k)(X1:n) in terms of their local differences, we can
thus define a local difference of consecutive directed MMI in a similar way to Equation (2).

CY(k− 1||k) := C(k−1)
Y − C(k)Y =

1
( n

k−1)
∑

|B|=k−1
H(Y|XB)−

1
(n

k)
∑
|A|=k

H(Y|XA) (10)

Each local difference is considered as a measure of information at order k in the
source variables X about a target variable Y. These measures are non-negative by the
data processing inequality; namely, going from subsets of size k− 1 to k cannot make Y
less predictable on average. Additionally, summing over all values of k from 0 to n (as in
Equation (3)) yields a decomposition of the mutual information:

I(Y : X) =
n

∑
k=1
CY(k− 1||k) = H(Y)− 1

n ∑
i

H(Y|Xi) +
1
n

n

∑
i=1

H(Y|Xi) · · · − H(Y|X1:n) (11)

We now compare these measures to a number of existing approaches on a set of
canonical synthetic examples.

6.2. Canonical Comparisons

One of the main benefits of these measures over existing approaches is that they can be
expressed entirely in terms of subset entropies. This means that no additional optimization
is needed if the ground truth probabilities are known. However, if the measures are not
in sufficient agreement with various axiomatic properties, their value may not accurately
reflect the ground truth interactions. To check if this is the case, we compare the directed
measures in the three variable (bivariate) case on a variety of small synthetic tests.

These tests appear frequently in the information decomposition literature when prob-
ing the axiomatic properties of a measure. Table 6 shows the results of this comparison,
where we interpret CY

(
0||1

)
as a measure of redundancy and CY

(
1||2

)
as a measure of

synergy. While the number of potential measures to compare against is large, we stick to
two classical measures with close ties to the PID: the first being the shared (S̃I, redundant)
and complementary (C̃I, synergistic) information associated with the BROJA measure [42],
and the second being the original Imin measure of redundancy from [7]. Surprisingly, the
values of our measures are consistent with classical lattice-based measures on a number of
examples. However, certain examples (ex: Unique) reveal limitations that come about due
to the reduced number of terms present in our decomposition.

Table 6. For explanation of the generating process for each test case, see in [42].

Tests CY (0||1) CY (1||2) S̃I C̃I Imin

Redundant 1 0 1 0 1
Unique 1 1 0 1 1

XOR 0 1 0 1 0
AND 0.311 0.5 0.311 0.5 0.311

Red-XOR 1.5 1.5 1 1 1
XOR-AND 0.5 1 0.5 1 0.5
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Despite its use as a measure of redundancy in the previous examples, CY
(
0||1

)
actu-

ally captures all first-order information about the target Y. This implies that first-order
redundancy and unique information are confounded into a single scalar. To illustrate this
in more detail, we show in Appendix C how certain axioms for redundancy measures are
violated by our measures. The fact that unique information becomes confounded with other
relevant quantities at a particular order k is an immediate and inescapable consequence of
seeking out a tractable decomposition with fewer terms.

To further explore connections to PID, we compare results obtained from our mea-
sures in the tripartite case to the maxent/optimization approach of Makkeh et al. [48].
The circuits we tested on include three variable extensions of the Redundant, XOR, and
AND gates from Table 6, as well as the sum gate (Y = X1 + X2 + X3) and the copy gate
(Y = ((X1, X2), (X1, X3), (X2, X3))) described in [49]. To start, there are a number of strik-
ing similarities between values across approaches, despite fundamental differences in the
measures. The measure of redundancy (R) in MAXENT-3-PID is consistent with the first
local difference CY(0||1) on all examples except the Copy gate (see Table 7). However,
the redundancy value that MAXENT-3-PID obtains on this gate (0) is not consistent with
values obtained by existing measures [49], while the NID estimates are. Another curious
observation is that the value for synergy in MAXENT-3-PID is often equal to the sum of
the last two differences CY(1||2) + CY(2||3) (as in the case of the Sum and And gates). We
are unsure of the significance (if any) behind this fact, but it may prove to be an interesting
starting place for further investigation.

Table 7. Comparison between directed local differences and terms in the tripartite PID, as computed by the MAXENT-3-PID
software of Makkeh et al. [48].

Tests CY (0||1) CY (1||2) CY (2||3) R U (X1) U (X2) U (X3) U (X1,2) U (X1,3) U (X2,3) S

Red 1 0 0 1 0 0 0 0 0 0 0
XOR 0 0 1 0 0 0 0 0 0 0 1

3-AND 0.1379 0.1556 0.25 0.1379 0 0 0 0 0 0 0.4056
SUM 0.311 0.5 1 0.311 0 0 0 0 0 0 1.5
Copy 1 1 1 0 1 1 1 0 0 0 0

7. Conclusions

In this work, we proposed Neural Information Decomposition, a framework for repre-
senting and decomposing the contribution of different orders of functional dependence to
the total information. Motivated by the theoretical setup of Equation (5), we introduced an
architecture to incrementally build representations of information at a particular order k.
We demonstrated the applicability of this framework on synthetic examples constructed
to contain higher-order functions and on neural spike train data to test for signs of col-
lective computation in the neural code. We believe this work represents a positive first
step towards a tractable information decomposition, but there is still room to improve
(especially regarding the architecture and choices of representation function in Section 4.1).
In future work, we hope to expand the scope of applications to include the directed setting
of Equation (10). In particular, we are interested in measuring the kth order information in
neurons which is informative about some stimulus. This evaluation can also be applied to
artificial neural networks to try to make sense of their internal computations. Additionally,
we plan on further exploring the implications of results we have obtained on biological
neural networks, and what it can tell us about how the brain processes information.
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Appendix A.

Proof of Equation (4). This proof draws from the proof of Proposition 3.2 in [18]. Namely,
we can replace the second term of Equation (2) with

1

(n−1
k−1)

∑
|A|=k

H(XA) =
1

k(n−1
k−1)

n

∑
i=1

∑
|B|=k−1

i 6∈B

H(Xi | XB) +
n− (k− 1)

k(n−1
k−1)

∑
|B|=k−1

H(XB)

Substitution leads to the expression of Equation (4).

Appendix B.
Proof of Equation (5). Leveraging results from Equation (4):

C(k− 2 || k− 1) + C(k− 1 || k) =
1

(n−1
k−3)

∑
|C|=k−2

H(XC)−
1

(n−1
k−2)

∑
|B|=k−1

H(XB) +
1

k(n−1
k−2)

∑
|B|=k−1

H(XB)−
1

k(n−1
k−1)

n

∑
i=1

∑
|B|=k−1

i 6∈B

H(Xi | XB)

=
1

(n−1
k−3)

∑
|C|=k−2

H(XC)−
(k− 1)

k(n−1
k−2)

∑
|B|=k−1

H(XB)−
1

k(n−1
k−1)

n

∑
i=1

∑
|B|=k−1

i 6∈B

H(Xi | XB)

=
2

k(n−1
k−3)

∑
|C|=k−2

H(XC)−
1

k(n−1
k−2)

n

∑
i=1

∑
|C|=k−2

i 6∈C

H(Xi | XC)−
1

k(n−1
k−1)

n

∑
i=1

∑
|B|=k−1

i 6∈B

H(Xi | XB)

Repeating this procedure by continuing to add local differences all the way down to
the first values of k leads to the expression in Equation (5).

Appendix C. Confounding Redundancy and Unique Information

We can observe the consequences of treating CY
(
0||1

)
as a measure of redundancy

when unique information is present. Kolchinsky [49] discusses a number desirable axioms
which a measure of redundancy should satisfy, including Symmetry, Self Redundancy, the
Deterministic Equality, and Monotonicity. We will briefly show that CY

(
0||1

)
satisfies these

axioms when no Unique information is present, and fails otherwise.
Symmetry: The symmetry axiom states that redundancy does not change under

permutation of the input variables X1:n, which is trivially true for H(Y)− 1
n

n
∑

i=1
H(Y|Xi).

Self Redundancy: The self redundancy axiom states that redundancy is equal to
the mutual information in the case of one input variable, which is also trivially true:
H(Y)− 1

1 H(Y|X1) = I(Y : X1).
Deterministic Equality: The deterministic equality axiom states that adding a source

variable will not change the redundancy if the new source is a deterministic function
of an existing source. In the simplest case, we can see that H(Y) − H(Y|X1) − H(Y) +
1
2 H(Y|X1) +

1
2 H(Y| f (X1)) = 0. More generally, if we take the difference between CY

(
0||1

)
for the n and n + 1 variable case (assuming Z = f (Xi) is the added source), we get

H(Y)− 1
n

n

∑
i=1

H(Y|Xi))− H(Y) +
1

n + 1

n

∑
i=1

H(Y|Xi) +
1

n + 1
H(Y|Z)

=
1

n + 1
H(Y|Z)− 1

n(n + 1)

n

∑
i=1

H(Y|Xi)
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If Z is as informative about Y as the mean over all existing sources (ex: when no
unique information exists and all source variables are deterministic functions of each other),
then the above quantity evaluates to 0 and the axiom is satisfied. If Z is more informative
about Y (alt. less), the quantity evaluates to a negative number (alt. positive), meaning the
axiom is not satisfied in most cases.

Monotonicity: The monotonicity axiom states that the redundancy decreases or stays
the same as new source variables are added. Interestingly, a similar axiom holds in the
other direction (i.e., increases or stays the same) for measures of union information [49].
Using the results detailed in the Deterministic Equality, we know that the monotonicity
axiom is satisfied when all sources are redundant, or when Z is less informative about Y
than the average over existing sources.

Appendix D.
Proof of Equation (9).

C(k)(X1:n, Y)

=
1

( n
k−1)

∑
|B|=k−1

H(XB) +
1

( n
k−1)

∑
|B|=k−1

H(Y|XB) +
1

( n
k−1)

∑
|A|=k

H(XA)− H(Y|X1:n)− H(X1:n)

=
1

(n−1
k−1)

∑
|A|=k

H(XA)− H(X1:n)−
(k− 1)

n(n−1
k−1)

∑
|A|=k

H(XA) +
(k− 1)

n(n−1
k−1)

∑
|B|=k−1

H(XB)

+
1

( n
k−1)

∑
|B|=k−1

H(Y|XB)− H(Y|X1:n)

= C(k)(X1:n) +
(k− 1)

n
C(k− 1||k) + C(k)Y (X1:n)

Appendix E. Additional Neuron Plots

These are the plots for the remaining 120 out of 160 neurons in the salamander
retina dataset:
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Appendix F. Model Architectures

Sequence Models: All sequence models were implemented in Tensorflow using stan-
dard keras models. For the parity data, all sequence models used the following configu-
rations: (a) 5 parity: 10 neurons, 1 layer; (b) 10 parity: 20 neurons, 1 layer; (c) 15 parity:
30 neurons, 2 layers; (d) 20 parity: 50 neurons, 3 layers.

For the MDS data, all sequence models used the following configurations: (a) 7/3
MDS: 30 neurons, 1 layer, 20-dimensional embedding; (b) 7/5 MDS: 50 neurons, 2 layer, 20-
dimensional embedding; (c) 11/3 MDS: 30 neurons, 2 layers, 20-dimensional embedding;
(d) 11/5 MDS: 50 neurons, 3 layers, 20-dimensional embedding.

Autoregressive Models: All autoregressive models were implemented in Tensorflow
using the tensorflow probability library and default MADE network. For the parity data,
all autoregressive models used the following configurations: (a) 5 parity: 10 neurons,
1 layer; (b) 10 parity: 20 neurons, 1 layer; (c) 15 parity: 30 neurons, 2 layers; (d) 20 parity:
50 neurons, 3 layers.

For the MDS data, all autoregressive models used the following configurations for
the MADE network: (a) 7/3 MDS: 35 neurons, 2 layer; (b) 7/5 MDS: 50 neurons, 3 layer;
(c) 11/3 MDS: 55 neurons, 2 layers; (d) 11/5 MDS: 55 neurons, 3 layers

MLPs: For autoencoders based on MLPs, we used a 6-layer architecture for both
encoder and decoder. Activations between each layer were ReLU, with the smallest layer
(output of the encoder) equaling 20 neurons for the neural data, and smaller than the input
size for synthetic data (2 for 5-parity, 3 for 10-parity, and 5 for 20-parity). For the MLP used
after autoregressive models, we used a simple 2-layer MLP with ReLU activations.

Convolutional: All autoencoders using a convolutional architecture on the salaman-
der retina dataset used the following architecture.

32 filt, 2 × 2 kernels, stride 1, pad 0, batchnorm, ReLU
16 filt, 3 × 3 kernels, stride 2, pad 1, batchnorm, ReLU
8 filt, 2 × 2 kernels, stride 2, pad1, batchnorm, ReLU
4 filt, 3 × 3 kernels, stride 2, pad 1, batchnorm, ReLU
1 filt, 1 × 1 kernels, stride 1, pad 1, linear activation
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