
entropy

Article

Computing Integrated Information (Φ) in Discrete Dynamical
Systems with Multi-Valued Elements

Juan D. Gomez 1,†,§, William G. P. Mayner 1,2 , Maggie Beheler-Amass 1,‡, Giulio Tononi 1

and Larissa Albantakis 1,∗,§

����������
�������

Citation: Gomez, J.D.; Mayner, W.G.P.;

Beheler-Amass, M.; Tononi, G.;

Albantakis, L. Computing Integrated

Information (Φ) in Discrete Dynamical

Systems with Multi-Valued Elements.

Entropy 2021, 23, 6. https:// dx.doi.org/

10.3390/e23010006

Received: 21 November 2020;

Accepted: 17 December 2020

Published: 22 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Department of Psychiatry, Wisconsin Institute for Sleep and Consciousness, University of
Wisconsin-Madison, Madison, WI 53719, USA; jgomezvalencia@kettering.edu (J.D.G.);
mayner@wisc.edu (W.G.P.M.); mb7989@nyu.edu (M.B.-A.); gtononi@wisc.edu (G.T.)

2 Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
* Correspondence: albantakis@wisc.edu
† Current address: Kettering University, 1700 University Ave., Flint, MI 48504, USA.
‡ Current address: New York University, Department of Biology, 100 Washington Square E #1009,

New York, NY 10003, USA.
§ These authors contributed equally to this work.

Abstract: Integrated information theory (IIT) provides a mathematical framework to characterize the
cause-effect structure of a physical system and its amount of integrated information (Φ). An accom-
panying Python software package (“PyPhi”) was recently introduced to implement this framework
for the causal analysis of discrete dynamical systems of binary elements. Here, we present an update
to PyPhi that extends its applicability to systems constituted of discrete, but multi-valued elements.
This allows us to analyze and compare general causal properties of random networks made up of
binary, ternary, quaternary, and mixed nodes. Moreover, we apply the developed tools for causal
analysis to a simple non-binary regulatory network model (p53-Mdm2) and discuss commonly used
binarization methods in light of their capacity to preserve the causal structure of the original system
with multi-valued elements.

Keywords: causation; regulatory networks; binarization; coarse graining

1. Introduction

Discrete models of biological systems often rely exclusively on binary, or “Boolean”
variables with two functional states (“active/inactive”, “present/absent”, or “firing/not
firing”). Regulatory networks, in particular, are commonly translated into simplified logical
models in order to study the systems’ dynamics and the interactions between network
constituents in a qualitative manner [1,2]. Typically, the network elements (for example,
genes or proteins) can be idealized as on-off switches around an activity threshold that
regulates the levels of expression [3]. However, in some situations, two functional states are
insufficient for capturing an element’s behavior adequately, for instance, when an element
specifies various effects, depending on different levels of activity [4,5]. This is also the
case in neuroscience, where neurons, in their simplest representation, can be viewed as
logical elements that either fire or not [6]. Nevertheless, information between neurons
(or groups of neurons) may also be conveyed based on different modes of firing, which
requires models of neural networks with multiple functional states per element (e.g., 0: low
firing, 1: high firing, 2: bursting) [7–10].

Because the majority of tools and theorems available for the analysis of logical net-
works are restricted to the Boolean case, binarization methods for converting systems with
multi-valued elements into Boolean models have been developed as a way to extend the
utility of the available methods [5,11–13]. However, these binarization approaches mainly
focus on maintaining a model’s asymptotic dynamics, rather than preserving the causal
structure of the original non-binary system.

Entropy 2021, 23, 6. https://dx.doi.org/10.3390/e23010006 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-9737-6260
https://orcid.org/0000-0003-1000-9917
https://dx.doi.org/10.3390/e23010006
https://dx.doi.org/10.3390/e23010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/e23010006
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/23/1/6?type=check_update&version=2

Entropy 2021, 23, 6 2 of 20

Integrated information theory (IIT) provides a mathematical framework for analyzing
the causal structure of discrete dynamical systems [14–16]. IIT was originally conceived as a
theory of consciousness [17–20] with the aim of providing a set of requirements that a phys-
ical system has to meet to be considered a substrate of subjective experience. To that end,
IIT starts by characterizing the essential properties of experience (“axioms”), which are then
translated into causal requirements for a system to constitute a physical substrate of con-
sciousness (“postulates”). The main measure, a system’s integrated information (Φ, “Phi”),
quantifies the irreducible causal constraints that a system exerts onto itself (above a back-
ground of external influences). The more integrated information that a system brings about,
the more it can be regarded as a unitary whole as opposed to merely a collection of parts,
which makes Φ a measure of causal autonomy [21,22]. Because a system with high Φ needs
to be both strongly integrated and differentiated (informative) [23], Φ may also serve as a
general measure of complexity [24–26]. Consequently, IIT’s mathematical framework has
proven to be useful and relevant for research on complexity [24,27,28], emergence [29,30],
and certain biological questions [22], in addition to the study of consciousness.

A Python software package (“PyPhi”) that implements the mathematical framework
of IIT was released shortly after the latest official update to the IIT formalism (“IIT 3.0”) [14]
and it is presented in [31]. PyPhi’s overall functionality has two parts: (1) system-level:
to unfold the full cause-effect structure (CES) of a system of interacting elements and to
compute its Φ value, and (2) mechanism-level: to identify the intrinsic cause and effect of a
particular set of elements within the system and measure its irreducibility (ϕ, “small phi”).

IIT’s mathematical formalism is generally applicable to discrete dynamical systems
with a finite state space. However, so far, PyPhi has been limited to systems of binary
elements for reasons of simplicity and efficiency in the implementation and computation.
Here, we introduce an extension of PyPhi that makes it possible to compute the cause–effect
structures and Φ values of discrete dynamical systems constituted of elements with more
than two states. This PyPhi extension to multi-valued elements is now available as part of
the original PyPhi package (at: https://github.com/wmayner/pyphi/tree/nonbinary).

In order to demonstrate its utility, in the following we will: (1) analyze and compare
random samples of 1000 deterministic and probabilistic systems constituted in varying
ways of elements with two to eight states; and, (2) compare the causal properties of a simple
non-binary regulatory network model (p53-Mdm2) to its proposed Boolean equivalents.
This is followed by a discussion of the utility of binarization methods for understanding
the causal structure of a system and the advantages of considering the original system
with multi-valued elements. Below, we first provide a brief overview of IIT and the PyPhi
functionality. Details regarding the IIT formalism and its implementation for non-binary
systems are described in the Methods, Section 5.

2. Theory and Pyphi Implementation

Starting from a set of “axioms” that jointly capture the essential properties of phe-
nomenology, IIT proposes a corresponding set of requirements regarding the causal prop-
erties of the substrate, which are referred to as “postulates”:

Existence: the system must have cause-effect power—it must be able to take and
make a difference.
Intrinsicality: the system must have cause-effect power upon itself.
Composition: the system must be composed of parts that have cause-effect power
within the whole.
Information: the system’s cause-effect power must be specific.
Integration: the system’s cause-effect power must not be reducible to that of its parts.
Exclusion: the system must specify a maximum of intrinsic cause-effect power.

Next, IIT uses these postulates as the foundation of a mathematical framework that
calculates the cause–effect structure (CES) of any given physical system that is discrete
and dynamical, with a finite state space [14,16]. The CES is composed of the set of “causal
distinctions” (previously termed “concepts”) [14,32] specified by all mechanisms within

https://github.com/wmayner/pyphi/tree/nonbinary

Entropy 2021, 23, 6 3 of 20

the system. A mechanism in IIT is any set of elements within the system that specifies
integrated information (ϕ, “small phi”) about its possible cause and effect within the
system by being in its particular current state. Mechanisms that are constituted of a single
element are referred to as “first-order” mechanisms, while mechanisms that are constituted
of multiple elements are referred to as “higher-order” mechanisms. Note that, by the
composition postulate, higher-order mechanisms specify their own cause and effect within
the system if they are irreducible to their parts (ϕ > 0) [16]. A mechanism, its cause and
effect, and the associated ϕ value, together, form a causal distinction.

As a measure of a system’s intrinsic cause-effect power, the IIT formalism defines, as its
main quantity, the integrated information (Φ, “Phi”) of a system of interacting elements.
Φ measures how irreducible a system’s CES is under a system partition that renders part
of the system independent from the rest.

Before the experimental results of this manuscript are reported, some relevant terms
that are related to the usage of PyPhi need to be introduced. For specifics on how Φ is
calculated in the case of multi-valued elements, see Section 5. For information regarding
the general usage of PyPhi, we refer to its documentation available at https://pyphi.
readthedocs.io and [31].

Input: let us begin with the most fundamental item, the Transitional Probability
Matrix (TPM). The TPM is a matrix (either deterministic or probabilistic) that specifies
the probability with which any state of a system transitions to any other system state,
as described in the Methods, Section 5.1. The TPM is determined by the update functions
of the system elements and obtained by perturbing the system into all its possible states.
It is a matrix of size S× S, where S is the total number of possible system states. Moreover,
S = (S1S2 · · · Sn), where Si is the number of states of element i.

The TPM is the starting point and—assuming binary elements—is sufficient to com-
pute the integrated information Φ of a system. However, allowing for systems with
multi-valued elements requires an additional input that specifies the number of states of
each system element (“num_states_per_node”, in our implementation), as systems with
different numbers of elements may still have the same total number of states S (see below).
Moreover, an adjacency matrix may be specified that, as the name indicates, serves to
describe who is connected to whom within the network (i.e., a binary matrix). If provided,
the adjacency matrix may speed up PyPhi computations. However, because it can also
be inferred from the TPM (and the num_states_per_node input), it is not essential to
the computation.

Output: to obtain the Φ value of a system, as well as its cause-effect structure (CES),
which includes the causal distinctions and ϕ values of the system’s mechanisms, a “system
irreducibility analysis” (SIA) is performed. While the full IIT analysis includes a search for
the subsystem that specifies a maximum of Φ, our goal here is to compare systems with
different types of multi-valued elements. For this reason, we are mainly interested in the
properties of the system as a whole. In PyPhi, we thus select the complete set of nodes as
the subsystem to be evaluated.

3. Results
3.1. Comparison of Random Systems with Varying Numbers of Elements and States

Thus far, numerical analyses of the IIT formalism and its quantities has been conducted
solely on binary systems (see, for example, [16,24,33]). Extending PyPhi beyond binary
systems allows for us to systematically explore the effect of a greater number of states
per element on a system’s integrated information (Φ) and cause–effect structure (CES).
In general, the capacity for information increases with the size of the state space, and
the capacity for composition with the number of system elements. If we hold the number of
system elements fixed, having more states per element corresponds to a higher capacity for
information due to the larger overall state space. However, if we keep the size of the state
space fixed, having more states per element means fewer elements in the system and, thus,

https://pyphi.readthedocs.io
https://pyphi.readthedocs.io

Entropy 2021, 23, 6 4 of 20

fewer possible higher-order mechanisms. This decrease in the capacity for composition
may negatively impact the system’s integration.

In order to investigate the interplay between composition, information, and integration
in systems constituted of multi-valued elements, we deployed our extended version of
PyPhi and analyzed ten different classes of networks with different numbers of elements,
topologies, and state spaces, evaluating a set of 1000 networks per class (see Table 1).
For comparison, we included two classes of binary systems within the data set. In total,
8000 deterministic TPMs were randomly generated in eight groups of 1000, with sizes:
8 × 8, 9 × 9, two sets of 16 × 16, 27 × 27, 60 × 60, and two sets of 64 × 64.

Table 1. List of data classes. Classes are labeled such that the number of digits represents the number
of nodes of the network, and each digit in turn stands for the number of states of a node. Numbers
that are accompanied by parentheses denote that the respective network class shares its TPMs
with the one indicated in parentheses. Therefore, 33 corresponds to two-ternary-node networks;
2235 to networks of four nodes with two, two, three, and five states, respectively; and, 88(444) to
two-octal-node networks that share their TPMs with the class of three-quaternary-node networks.

Class 222 33 2222 44(2222) 44 333 2235 444 88(444) 88

#Nodes 3 2 4 2 2 3 4 3 2 2

#States (total) 8 9 16 16 16 27 60 64 64 64

Because different classes of non-binary systems may have the same total number of
states, such classes may share the same TPMs. For example, a two-quaternary-node system
with a total of 16 states (42) may have the same TPM as a four-binary-node system with
the same total number of states (24). In our data set, networks that belong to class 44(2222)
and 88(444) required no additional matrices, as they share their TPMs with another class,
denoted in parenthesis. Nonetheless, we also included comparison sets with different
TPMs for those types of networks (classes 444 and 88).

For each system in the data set, we computed its integrated information and CES
for one state chosen at random from the system’s TPM. In Figure 1, the distribution of Φ,
as well as 〈ϕ〉, the average ϕ of all causal distinctions within each CES is shown for the
different data classes. Here, 〈ϕ〉 represents a measure of the specificity (information) with
which a system’s mechanisms determine their intrinsic causes and effects. We also report
the average number of causal distinctions for each class in Table 2, which captures the size
of the CES and it corresponds to the number of irreducible mechanisms within the system.
By IIT’s composition postulate, a system’s CES may be composed of at most 2N − 1 causal
distinctions, where N is the number of system elements [16]. These causal distinctions may
be specified by “first-order” or “higher-order” mechanisms constituted of one or multiple
system elements, respectively. Taken together, the quantities that are reported in Figure 1
and Table 2 reveal complementary aspects of a system’s CES.

As expected, we found no statistical difference between the results of class 44 and
44(2222), or between 88 and 88(444) (a two-sample Kolmogorov–Smirnov test was per-
formed in order to confirm that we cannot reject the hypothesis that the distributions of
the two sample pairs are the same; 44*: p = 0.65/0.15 and 88*: p = 0.91/0.94 for Φ/〈ϕ〉,
respectively). Thus, these classes were pooled together in Figure 1 and Table 2.

As a first variable of interest in our data set, we consider the number of system
elements. In line with previous results in binary systems [24], everything else being
equal, more elements allow for higher average Φ values (compare 222 to 2222, 33 to 333,
and 44 to 444). In contrast, the average 〈ϕ〉 is lower for the systems with more elements,
possibly due to the larger number of available higher-order mechanisms. Even within the
same network, higher-order mechanisms typically have lower ϕ values than first-order
mechanisms, because they only specify information to the extent that they are irreducible
to their parts (see [14,16]). Indeed, the average number of causal distinctions is already
high for class 222 and close to maximal for all other classes in our data set of deterministic

Entropy 2021, 23, 6 5 of 20

random networks (Table 2). When comparing classes with the same number of system
elements ({222, 333, 444}, {33, 44, 88}, and {2222, 2235}), a higher number of states per
element resulted in a higher average Φ and also higher average 〈ϕ〉.

222 33 2222 44* 333 2235 444 88*
class

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

#states/element
2
3
4
mix
8

222 33 2222 44* 333 2235 444 88*
class

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

#states/element
2
3
4
mix
8

Figure 1. Integrated information across data classes. Plotted are the distributions of Integrated Information (Φ, top) and
the average integrated information across a system’s causal distinctions (〈ϕ〉, bottom) for the various classes in our data
set, ordered by the total number of system states from the lowest (leftmost) to the highest (rightmost) (see Table 1). Plots
were created with the Python package seaborn, using the violinplot function with parameters cut=0, scale=''count''.
Dashed lines indicate quartiles. The mean values are overlaid as stars. Equivalent classes {44, 44(2222)} and {88, 88(444)}
were pooled together in this figure (see text). The mean Φ increases with the number of system elements and the number
of states per element, while mean 〈ϕ〉 decreases with the number of elements, but increases with the number of states
per element.

Table 2. Number of causal distinctions per class. The maximum number of distinctions is determined
by the number of system elements (N) as 2N − 1.

Class 222 33 2222 44* 333 2235 444 88*
(max. #distinctions) (7) (3) (15) (3) (7) (15) (7) (3)

〈#distinctions〉 5.35 2.71 13.81 2.91 7. 14.95 7. 3.
% of max 76% 90% 92% 97% 100% 100% 100% 100%

Because Φ depends on the causal interactions between a system’s elements, their
composition and integration, the total number of states in the system’s state space is
not monotonically related to Φ (compare classes 2222 and 333, as well as 2235 and 444).
Nevertheless, the total number of system states determines the upper bound of the system’s
capacity for information. The TPM of a system, in particular, determines its effective
information [10,34], which corresponds to the mutual information across a system update
from time t to t + 1 while assuming a uniform distribution of system states at t. A system’s
effective information is correlated with its intrinsic information (∑ ϕ) for binary random
networks, as shown in [16].

Entropy 2021, 23, 6 6 of 20

In order to explore the role of the TPM across varying numbers of elements and states
per element, in Figure 2 we compared those pairs of classes that share their TPMs with the
equivalent pairs of classes that have different TPMs. As shown in the figure, both {2222,
44(2222)} and {444, 88(444)} are significantly correlated, while {2222, 44} and {444, 88} are
completely unrelated, as expected, since they are independent data samples. Networks
with the same underlying TPM necessarily specify the same effective information and the
same global dynamics [16]. However, their causal composition and integration depend
on the number of interacting elements and their respective number of states. For this
reason, the pairs of networks with shared TPMs can be said to have disparate composition
and integration (different numbers of elements and different connectivity), but analogous
information (TPMs). Thus, the fact that networks of class 444 only have one more element
than networks of class 88(444) may explain why their correlation is stronger than that of
{2222, 44(2222)}, which differ by two elements.

1

Figure 2. Correlation of Φ values between classes with and without shared TPMs. In this figure,
we plotted the relationship between Φ values of several pairs of classes: (A) 44(2222) vs. 2222;
(B) 44 vs. 2222; (C) 88(444) vs. 444; and, (D) 88 vs. 444. The null correlation between classes 44 vs. 2222
and 88 vs. 444 is expected, as these data samples have different TPMs and are, thus, completely
independent. Because the other two pairs share their TPMs, they have the same effective information,
but they differ in their causal composition (due to the different number of nodes) and their integration
(due to differences in how their nodes are connected). Thus, despite the shared TPM, such network
pairs will typically differ in their number of causal distinctions, the corresponding causes, effects,
and ϕ values, and their total amount of integrated information Φ.

Entropy 2021, 23, 6 7 of 20

3.2. Model of Biological Example Systems with Non-Binary Elements

In the following, we will examine the p53-Mdm2 regulatory network model by Abou-
Jaoude et al. [5,35], which is discrete, but includes a node with more than two states.
We chose this particular example, since discrete network models, as well as the binarization
of models with multi-valued elements, are common tools in the study of biological regula-
tory networks. In particular, we will compare the original model to its Boolean versions
that were obtained by means of different binarization methods [11–13].

The p53-Mdm2 network model describes the interactions between the tumor sup-
pressor protein p53 with its main negative regulator, the ubiquitin ligase Mdm2, with the
three variables P, Mn, and Mc, which stand for proteins p53, nuclear Mdm2, and cytoplas-
mic Mdm2, respectively [35]. P takes three values {0, 1, 2}, while Mn and Mc are binary
variables. In brief, Mn down-regulates the level of active P, which, in turn, up-regulates
the level of Mc and also inhibits Mn. P is modeled as ternary, as it may act on Mn and
Mc above different threshold levels [5,35]. Figure 3A depicts the p53–Mdm2 network as
discussed in [5].

Figure 3. The p53–Mdm2 regulatory network. The arrows indicate causal dependencies, which can
be excitatory, inhibitory, or nonlinear. (A) Original version with multi-valued element. Circular
elements signify Boolean variables, while the square element is multi-valued. (B) Binarized version
using the Van Ham method [5,11]. Note that this graph is based on an incomplete TPM and
thus does not correspond to a complete causal model (see Table 3). (C) Under the Fauré-Kaji
binarization method [12], P1 and P2 become causally equivalent and act jointly on Mc. (D) The
Tonello binarization method [13] introduces additional dependencies between P1 and P2. In all cases,
the ternary node P is split into two binary nodes P1 and P2. The Φ values are provided for the
fixed point {P, Mc, Mn} = (0, 0, 1), corresponding to {P1, P2, Mc, Mn} = (0, 0, 0, 1) in the binarized
versions. While the Fauré–Kaji method largely maintains the causal structure of the original system,
the Tonello method introduces many higher-order mechanisms (see text for details).

For the case of regulatory networks, the “Van Ham” Boolean mapping [11] has been
adopted as the standard approach to the problem of transforming multi-level into binary
systems. The Van Ham method assigns one Boolean variable to each threshold for each
regulatory component in the network. This strategy uniquely preserves neighbor and
regulation dynamics under a one-to-one mapping between non-binary and binary system
states, as shown in [5]. However, the total state space of the Boolean system is typically
much larger than that of the original system with multi-valued elements. Boolean states
that do not have a counterpart in the original model with multi-valued elements are
considered to be “non-admissible” under Van Ham’s one-to-one mapping [12]. This is
problematic, as many tools and results concerning Boolean networks, including IIT’s causal
analysis, require fully specified transition probability matrices [12–14].

Table 3 lists the evolution function of the p53-Mdm2 network, as specified in [5].
(For causal analysis, we assume synchronous update dynamics identical to the evolution
function, which characterizes a system’s interaction graph. In the dynamical analysis
of regulatory networks with multi-valued elements, by contrast, it is typically assumed
that only stepwise changes of component values are possible [5]—a constraint that is not

Entropy 2021, 23, 6 8 of 20

appropriate for other types of biological models, such as neural networks (see discussion
Section 4). In addition, the focus is often put on asynchronous update dynamics that
are derived from, but not identical to, the evolution function [12,13].) In the case of
the original non-binary system, the evolution function provides the full TPM and, thus,
uniquely determines the model’s causal graph (Figure 3A). However, the binary TPM
that is inferred by the Van Ham method is incomplete, as it only specifies 12 out of the
16 possible binary states. Only a complete TPM corresponds to a proper mechanistic
causal model that specifies how the network components interact. Because the p53-Mdm2
model is deterministic, there are 2(4×4) = 65536 possible ways to populate the four missing
rows in the TPM, which may add various causal dependencies to the interaction graph
associated with the Van Ham mapping that is shown in Figure 3B.

Table 3. Evolution function of p53–Mdm2 network model. The asymptotic evolution function of the
original network model with a multi-valued element [5] determines the system’s TPM from state
t to t + 1 (left). The associated Boolean evolution functions generated according to three different
binarization methods are shown on the right. The equal sign (“=”) indicates that the state mapping
of the Van Ham binarization is maintained for that particular state.

Multi-Valued Binary
Van Ham Fauré & Kaji Tonello

t t+1 t t+1 t+1 t+1
P Mc Mn P Mc Mn P1 P2 Mc Mn P1 P2 Mc Mn P1 P2 Mc Mn P1 P2 Mc Mn
0 0 0 2 0 1 0 0 0 0 1 1 0 1 = 1 0 0 1

1 0 0 2 0 0 1 0 0 0 1 1 0 0 = =
0 1 0 0 - 1 1 0 0 1 1 0 0

2 0 0 2 1 0 1 1 0 0 1 1 1 0 = =
0 1 0 2 0 1 0 0 1 0 1 1 0 1 = 1 0 0 1

1 1 0 2 0 1 1 0 1 0 1 1 0 1 = =
0 1 1 0 - 1 1 0 1 1 1 0 1

2 1 0 2 1 1 1 1 1 0 1 1 1 1 = =
0 0 1 0 0 1 0 0 0 1 0 0 0 1 = =

1 0 1 0 0 0 1 0 0 1 0 0 0 0 = =
0 1 0 1 - 0 0 0 0 0 0 0 0

2 0 1 0 1 0 1 1 0 1 0 0 1 0 = 1 0 1 0
0 1 1 0 0 1 0 0 1 1 0 0 0 1 = =

1 1 1 0 0 1 1 0 1 1 0 0 0 1 = =
0 1 1 1 - 0 0 0 1 0 0 0 1

2 1 1 0 1 1 1 1 1 1 0 0 1 1 = 1 0 1 1

Recently, two alternative binarization methods have been devised with the problem of
non-admissible states in mind [12,13]. Fauré and Kaji [12] provide a binarization method
that is applicable to regulatory networks with asymptotic evolution functions, such as
the p53–Mdm2 model, in which every component either maintains its current activation
level, increases to its maximal value, or decreases to zero. Their method extends Van
Ham’s state mapping, such that multi-valued elements are replaced by a set of functionally
equivalent binary constituents. This maintains the local interactions between network
components, but it leads to a surjective mapping of the dynamical attractors from the
binary to the multi-valued implementation. By contrast, Tonello’s method [13] aims to
preserve feedback cycles in interaction graphs and a one-to-one mapping of attractors
under stepwise, asynchronous update dynamics. To that end, a binary system is created
based on a stepwise implementation of the non-binary update function. Using the script
that was provided in [12], we computed the binary evolution functions for the p53–Mdm2
network model using the Fauré–Kaji and Tonello mapping, which are presented in Table
3. Figure 3C,D show the causal dependencies between the network components inferred
from the respective TPMs.

We performed a full causal analysis for the attractor state {P, Mc, Mn} = (0, 0, 1),
corresponding to {P1, P2, Mc, Mn} = (0, 0, 0, 1) in the binarized versions. Like the original

Entropy 2021, 23, 6 9 of 20

model, the Fauré–Kaji binarization specifies a cause–effect structure that is composed
of only first-order mechanisms, while the additional causal dependencies in the Tonello
binarization lead to many higher-order mechanisms and, thus, a comparatively higher Φ
value. Nevertheless, the Φ value and cause–effect structure of the original system are not
identical to those of either binarization.

For asymptotic evolution functions, there exists a causal mapping between the Fauré–
Kaji binarization and the original system: the non-binary model can be reconstructed
by coarse-graining the binary system obtained with the Fauré-Kaji method as described
in [10,29]. In the p53-Mdm2 example, this can be achieved by grouping P1 and P2 into
the macro element P with the following state mapping: {P1, P2} = (0, 0) → P = 0,
{P1, P2} = {(1, 0), (0, 1)} → P = 1, and {P1, P2} = (1, 1) → P = 2. This is not possible
with the Tonello method, as P1 and P2 have different causal roles within the network.

In order to assess the relationship between the Φ values of systems with multi-valued
elements and their Boolean equivalents numerically, we generated three classes of 100
random asymptotic evolution functions (32, 43, and 332; labels indicate the number of
elements and states per element, as described in Table 1). In each case, we evaluated
and compared the first state in the system’s TPM. Correlations were consistently stronger
between the original system and its Fauré–Kaji Boolean implementation than between the
original system and its binarization according to the Tonello method, for which only one
condition (32) was significantly correlated (p < 0.05, Table 4).

Table 4. Pearson correlation coefficients: Φ original system vs. binarizations.

Class 32 43 332

Fauré-Kaji r 0.56 0.35 0.29
method p-value ≈0 <0.001 <0.005

Tonello r 0.24 0.18 0.15
method p-value 0.015 0.08 0.14

While we found a correlation between the Φ values of the original non-binary system
and its Fauré–Kaji binarization in all tested samples, the variability is quite large and
non-binary systems with Φ = 0 may map onto Boolean systems with Φ > 0 and vice versa.
In order to explore the cause–effect structure and integrated information of a system with
multi-valued elements, a causal analysis that is applicable to the actual non-binary system
is, thus, essential.

4. Discussion

In this article, we have introduced an extension of IIT’s PyPhi toolbox for causal
analysis [31] to discrete dynamical systems that are constituted of multi-valued elements.
The ability to analyze the causal structure of non-binary systems opens the door to exploring
complex networks more representative of those often found in nature. For example,
biological regulatory networks are often modeled using multi-valued variables in order
to capture dynamics that depend on more than a single activation threshold [4], and the
interaction between neurons in a neural network may depend on more than two activity
states [7–10]. Multi-valued causal networks are also commonly investigated in the field of
cellular automata [36,37] and multi-valued or fuzzy logic [38,39].

Systems with multi-valued elements may also arise from the coarse-graining of binary
networks within the quantitative framework of IIT [10,29] and more generally [40]. Thus,
being able to asses the cause–effect structure and integrated information of non-binary
networks is relevant for identifying emergent levels of description at which a system’s
intrinsic cause–effect power (Φ) reaches a maximum [29].

While our extension of PyPhi to multi-valued elements enables us to move beyond
the numerical causal analysis of binary systems, it still comes with the same performance
limitations as the original binary implementation [31]: the algorithm is exponential in

Entropy 2021, 23, 6 10 of 20

the number of system elements, which limits the feasible system size to ∼10–12 elements.
Moreover, at the moment, the non-binary PyPhi implementation is less efficient than the
original implementation (for 100 3-element binary systems: ∼ 32 s vs. ∼ 72 s while using
the non-binary code on a MacBook Pro with a 2.4 GHz Quad-Core Intel i5). Note, however,
that larger state spaces can be computed for systems with multi-valued elements, as the
limiting parameter is the number of elements, rather than the number of states. As before,
the analysis can be applied to deterministic and probabilistic systems, but it is limited to
Markovian systems that satisfy conditional independence between elements given the past
state of the system [14,31].

Everything else being equal, having more states per element increases the size of the
state space and, thus, the information capacity of a system [14,29]. As we demonstrated in
a numerical analysis of random networks constituted of binary and multi-valued elements
in different arrangements, Φ increases with the size of a system’s state space for this type of
network; however, not in a strictly monotonic manner (Figure 1). Given the same number
of elements, having more states per element, on average, led to higher Φ across all of
the tested conditions. In future work, we plan to investigate how the number of states
per element affects a system’s integrated information under different types of network
topologies, e.g., modular or grid-like architectures.

While beneficial, it is important to note that having more states per element does not
always increase a system’s amount of integrated information. In general, models of biolog-
ical processes with multi-valued elements are called for in case a system’s functionality
requires interactions between its constituents that depend on multiple activation levels [4].
Discretizing, or “fine-graining” a system’s activity levels may lead to a decrease in the
system’s intrinsic cause–effect power if the additional states are not, or only marginally,
relevant in causal terms (Figure 4, see caption for details). This is relevant, for example,
if the TPM is experimentally assessed and the system under study can be sampled at
various frequencies and levels of accuracy.

Figure 4. Decreased integrated information in fine-grained system of three interacting neurons.
Each neuron fires if it receives excitatory inputs from at least one of the other two neurons and is
not currently in a refractory period after firing during the last update (self-loops are thus inhibitory,
denoted by round arrow-heads). At each firing, there is a 20% chance that a neuron will emit two
action potentials instead of just one (see Ternary Logic). The system’s dynamics are evaluated in
10 ms time bins (top, spike raster plot). Assuming that every neuron has three states (firing 0, 1,
or 2 action potentials in one time window) leads to lower values of integrated information when
compared to a binary analysis that only distinguishes two states: firing (1) or not (0) when evaluated
for the specific state (1, 1, 0) and also, on average, across all possible states.

Entropy 2021, 23, 6 11 of 20

In addition to the information that is specified by the TPM, a system’s integrated
information Φ also depends on its composition, which is limited by the number of elements
in the system, and their integration (how much information is lost under a partition of the
system). Non-binary systems allow us to dissociate the TPM from other network properties,
such as the number of elements and their connectivity. For certain sizes of the state space,
the same global system dynamics (determined by the system’s TPM) can be implemented
with more elements and fewer states per element, or vice versa. While correlated (Figure 2),
the intrinsic integrated information (Φ) of such system pairs will typically differ, as the
systems are distinct in their composition and integration. How the system elements interact
with each other determines the cause–effect structure of the system. Thus, systems with
multi-valued elements provide another example that shows that implementation matters
for a system’s Φ value (see also [14,16,41]).

As a concrete example for a non-binary biological model, we have applied IIT’s causal
analysis to the simple p53–Mdm2 regulatory network and its Boolean translations under
different proposed methods for binarization [12,13]. So far, discrete regulatory networks
with multi-valued elements have mainly been studied for their dynamical behavior. In that
context, binarization methods for facilitating dynamical analysis have been developed with
the goal to maintain the asymptotic and, in most cases, asynchronous update dynamics of
the system [11–13].

IIT provides a framework for studying the mechanistic cause-effect structure and
integrated information of discrete dynamical systems, including regulatory networks,
which may reveal additional insights about the role of a system’s components and their
interactions within the system [22]. Since the evolution function of a system, rather than
its asymptotic update dynamics, describes the functionality of the system’s constituents,
the evolution function serves as the TPM that is required for IIT’s causal analysis. However,
the standard method used for binarization of regulatory networks, Van Ham’s one-to-one
state mapping [11] does not provide a unique TPM for the binarized system.

The two subsequently proposed binarization methods that address this issue [12,13]
both have particular advantages and domains of applicability (for example, systems with
asymptotic [12] or stepwise [13] evolution functions). While these binarization methods
were motivated by dynamical rather than causal concerns, we have found that one of them,
the Fauré and Kaji method [12], produces a causally “fine-grained” Boolean implementation
of the original system for systems with asymptotic evolution functions according to the
rules for mapping micro into macro levels of description, as listed in [10]. This is possible if
only the average activity of the binary elements that replace a multi-valued element matters
for the evolution function of the binarized system. Moreover, based on [29], we conjecture
that, for any arbitrary evolution function, a Boolean implementation can be constructed
which can be coarse-grained into the original system, if we allow for indeterminism in the
binarized evolution function. A ternary element with states {0, 1, 2}, for example, could
then be mapped onto two binary elements, such that both (0, 1) and (1, 0) equivalently
correspond to state (1) of the ternary node. A transition of the ternary node into state (1)
would then correspond to a transition of the two binary nodes into (0, 1) or (1, 0) with
equal probability.

While some binarization methods might preserve some aspects of the original cause-
effect structure better than others, binarization cannot, in general, provide the same insights
as a full characterization of the original non-binary system. Thus, having the tools available
to study the causal structure of discrete dynamical systems with multi-valued elements
should facilitate the understanding of systems in which the interactions between system
elements cannot be characterized in a Boolean manner.

5. Methods

The main purpose of this paper is to introduce an extension to PyPhi, a Python
package for computing integrated information in discrete dynamical systems with finite
state space [31], which allows the evaluation of systems with multi-valued elements. In the

Entropy 2021, 23, 6 12 of 20

following, we highlight differences to the original binary implementation and describe the
computation of a system’s CES and its value of integrated information (Φ) in Python-like
pseudocode. The extended PyPhi package can be found at https://github.com/wmayner/
pyphi/tree/nonbinary. For a mathematical description of the IIT formalism, we refer
to [14,15]. Moreover, the original PyPhi publication [31] is accompanied by supplementary
material that provides a step-by-step explanation of the IIT formalism. Figure 5 shows a
schematic depiction of the formalism.

t
t

• Find the partition with the minimum Φpartition (the MIP)
• This is the Φ value of the candidate system

For each candidate system (a subset of elements) in the dynamical system:

Compute the cause-effect structure (CES) specified by the candidate system

For each candidate mechanism (a subset of elements) in the candidate system:

• Find purview and specific cause state
with the maximum 𝜑!"#$%&'(

• 𝜑 = min(𝜑!"#$%&'(, 𝜑%))%!*
&'()

For each purview (subset of elements) in the
candidate system:

Compute the maximally-irreducible cause

For each purview (subset of elements) in the
candidate system:

• Find partition with the minimum 𝜑 value
(minimum information partition, MIP)

• This is the 𝜑!"# value for this purview

• Find purview and specific effect state
with the maximum 𝜑!"#$%&'(

Compute the maximally-irreducible effect

• Find partition with the minimum 𝜑 value
(minimum information partition, MIP)

• This is the 𝜑!"# value for this purview

Compute the major complex of a dynamical system

• Find the candidate system with maximal Φ
• This is the major complex

Compute the causal distinction specified by the candidate mechanism

• The set of all causal distinctions with 𝜑 > 0 comprises the CES

Compute the partitioned cause repertoire

Probability distribution over purview states at t – 1,
conditioned on mechanism state at t,
using the partitioned TPM

For each partition of mechanism/purview:

• 𝜑partition = D(repertoire || repertoirepartitioned)

• Compute TPM of the partitioned system

For each partition of the candidate system:

For each causal distinction in the CES:
• Compute the 𝜑 value in the partitioned system

• Φpartition = D(CES || CESpartitioned)

• Compute the TPM of the partitioned system

Compute the partitioned effect repertoire

Probability distribution over purview states at t + 1,
conditioned on mechanism state at t,
using the partitioned TPM

For each partition of mechanism/purview:

• 𝜑partition = D(repertoire || repertoirepartitioned)

• Compute TPM of the partitioned system

Compute the cause repertoire
Probability distribution over purview states at t – 1,
conditioned on mechanism state at t

Compute the effect repertoire
Probability distribution over purview states at t + 1,
conditioned on mechanism state at t

Figure 5. Schematic illustration of the IIT formalism.

https://github.com/wmayner/pyphi/tree/nonbinary
https://github.com/wmayner/pyphi/tree/nonbinary

Entropy 2021, 23, 6 13 of 20

5.1. Non-Binary Implementation

Here, we give an overview of the changes we made to PyPhi in order to implement the
calculation for elements with arbitrary numbers of states. First, we discuss some constraints
on the form of the TPM for a system of only binary elements that were exploited in the
earlier implementation to optimize PyPhi for the binary case (see also [31]); then, we de-
scribe how these constraints were relaxed in the generalization of the TPM representation
to non-binary systems.

The typical representation of state transition probabilities in a discrete dynamical
system with n elements is a square matrix P, such that

S

∑
j

Pi,j = 1,

where Pi,j is the probability of the transition from state i to state j and S is the number of
system states s. This matrix has size S× S = (S1S2 · · · Sn)× (S1S2 · · · Sn), where Si is the
number of states of element i.

In a physical system, causes must precede their effects. Thus, in IIT, it is assumed
that the causal model under analysis is sufficiently detailed that there is no instantaneous
causation. This assumption is equivalent to the formal requirement that the state si,t of an
element i at time t is conditionally independent from the current state of all other elements,
given the state of its inputs (“parents”) at t− 1.

Because si,t only depends on the state of its parents at t− 1, the joint distribution over
the states of several elements conditioned on the previous state of their parents can be
recovered by multiplication of the conditional state probabilities of individual elements
(the Markov property). Thus:

Pr(st | st−1) = Pr(s1,t | parents(s1)t−1)Pr(s2,t | parents(s2)t−1) · · ·Pr(sn,t | parents(sn)t−1). (1)

If the elements of the system each have the same number of states M, then the condi-
tional independence assumption of Equation (1) permits a more compact representation
of the TPM, termed “state-by-node” form. This is a tensor P with shape S × n × M,
where Ph,i,j = Pr(si,t = j | st−1 = h). In the binary case M = 2, the conditional
distributions Pr(si,t = j | st−1 = h) have only M − 1 = 1 degrees of freedom, so
that the TPM can be represented even more simply as a matrix of size S × n, where
Ph,i = Pr(si,t = 1 | st−1 = h). In the binary implementation of PyPhi, this state-by-node
form is used as the canonical TPM representation, because it is memory-efficient and allows
for the multiplication of distributions to be implemented trivially by taking advantage
of NumPy’s broadcasting semantics [31]. However, if elements have varying numbers
of states, then the TPM cannot be represented as such a tensor. Thus, for the present
work, we represented the TPM using the more typical “state-by-state” form, as an S× S
matrix. This required modifying the Network class and implementing new routines for
marginalization, which we describe briefly below. For those interested in the details of
these changes, the source code is publicly available in the ’nonbinary’ branch of the PyPhi
repository (https://github.com/wmayner/pyphi/tree/nonbinary).

We modified the Network class (which represents the dynamical system under analy-
sis) in order to store the number of possible states for each element in the
num_states_per_node attribute. This information has to be provided by the user and
and it is necessary to keep track of which rows and columns in the TPM correspond to
which system states, as the system state is determined by the states of the individual system
elements (Equation (1)).

The system’s state-by-state TPM is stored in a Pandas DataFrame, with the rows and
columns indexed using a hierarchical MultiIndex. In each index, there is one level per
element and the level values correspond to the the element’s states. This allows for indexing

https://github.com/wmayner/pyphi/tree/nonbinary

Entropy 2021, 23, 6 14 of 20

into the TPM using state tuples, as in the original implementation (multidimensional state-
by-node format).

In order to evaluate a system’s causal distinctions, the IIT algorithm computes cause
and effect repertoires for each candidate mechanism (subset of elements) within the system
over their possible purviews (again, all subsets of elements) (Figure 5). Cause and effect
repertoires are probability distributions over purview states derived from the TPM. To com-
pute the cause or effect repertoire of a mechanism over a purview, nodes not included in
the mechanism and purview are marginalized out of the TPM (summing over rows or
columns, depending on the case), and the resulting distribution is then conditioned on the
state of the mechanism.

Using a Pandas DataFrame allows for the marginalization to be implemented easily
with the groupby() method, e.g.,:

tpm.groupby(purview, axis='rows').sum()

where purview is a list of node labels (i.e., names in the row MultiIndex).
With these modifications, systems of multi-valued elements can be evaluated with PyPhi.

5.2. Settings

Because the IIT formalism is currently undergoing several updates (IIT 4.0, forth-
coming), some of the changes to IIT 3.0 [14] that have already been included in other
publications are also adopted here. In particular, partitions at the mechanism level are
defined as in [15,16]; probability distributions are compared using a newly defined “intrin-
sic difference” measure [42], and Φ is evaluated based on the absolute sum of ϕ lost from
the CES under the system’s minimum information partition (see e.g., [16,43]). To this end,
the following PyPhi configuration was used for all computations:

PARTITION_TYPE = 'TRI'
MEASURE = 'AID'
USE_SMALL_PHI_DIFFERENCE_FOR_CES_DISTANCE = True
ASSUME_CUTS_CANNOT_CREATE_NEW_CONCEPTS = True

‘AID’ stands for “absolute intrinsic difference” and implements the intrinsic difference
(ID) measure that was introduced in [42]. However, here we evaluate the maximum over the
absolute difference between the unpartitioned and partitioned repertoire (see Barbosa et al.,
forthcoming). In addition to the ϕ value, the ID also identifies the specific state within the
cause and effect repertoire for which the measure is maximal, which corresponds to the
specific cause and effect of the mechanism in its current state.

Throughout this study, the above configuration settings apply for both the original
PyPhi as well as the non-binary extension. However, note that all of the choices of PyPhi
settings relevant for the computation of the CES and Φ are also available for the evaluation
of non-binary systems, with the exception of the earth-mover’s distance at the mecha-
nism and system level (MEASURE = 'EMD') (see https://pyphi.readthedocs.io/en/latest/
configuration.html for the current list of options).

Finally, the IIT formalism also provides the tools for evaluating “relations” between
causal distinctions [32]. These will be included in a future PyPhi release and they have not
been evaluated for the present study.

5.3. Overview of the Algorithm in Pseudocode

The commented Python-like Pseudocode below Algorithm 1 describes the algorithm
to identify the major complex (the set of elements with maximal integrated information (Φ))
and all relevant functions to compute the cause-effect structure of a set of system elements
in the extended non-binary version of PyPhi. The full source code is publicly available in
the ’nonbinary’ branch of the PyPhi repository (https://github.com/wmayner/pyphi/
tree/nonbinary).

https://pyphi.readthedocs.io/en/latest/configuration.html
https://pyphi.readthedocs.io/en/latest/configuration.html
https://github.com/wmayner/pyphi/tree/nonbinary
https://github.com/wmayner/pyphi/tree/nonbinary

Entropy 2021, 23, 6 15 of 20

Algorithm 1 Python-like Pseudocode describing the functions used in the extended non-
binary PyPhi.

Entropy 2021, 23, 6 15 of 20

Algorithm 1 Python-like Pseudocode describing the functions used in the extended non-
binary PyPhi.

1 import pandas as pd
2

3 class Network:
4 """Represents a discrete dynamical system."""

5

6 def __init__(tpm, num_states_per_node):

7 # The TPM must be in state-by-state format, so a list of all possible

8 # states will be used as the row and column index

9 all_states = """

10 all possible states of the system, in little-endian order

11 (first node's state varies the fastest)

12 """

13 # Using a Pandas DataFrame allows us to use the `groupby` operation for

14 # a simple implementation of marginalization

15 index = pd.MultiIndex.from_arrays(all_states, names=node_labels)

16 columns = pd.MultiIndex.from_arrays(all_states, names=node_labels)

17 self.tpm = pd.DataFrame(tpm, index=index, columns=columns)

18 self.nodes = "list of node objects, representing each element of the system"

19

20

21 def major_complex(network, state):

22 """Return the subset of the network whose cause-effect structure

23 maximizes integrated information."""

24 phi_max = -inf

25 candidate_system_max = None
26 mip_max = None
27 for candidate_system in power_set(network.nodes):

28 # The TPM of the candidate system is derived by conditioning the full

29 # system's TPM on the background conditions, i.e. the state of the

30 # elements that are not included in the candidate system

31 background_elements = set(network.nodes) - set(candidate_system.nodes)

32 candidate_system.tpm = condition_on_background_elements(

33 network.tpm, background_elements, state

34)

35 # Then we compute the cause-effect structure using the resulting TPM

36 cause_effect_structure, phi, mip = \

37 compute_system_minimum_information_partition(candidate_system)

38 if phi > phi_max:

39 # The major complex is the candidate system which maximizes

40 # integrated information

41 cause_effect_structure_max = cause_effect_structure

42 phi_max = phi

43 mip_max = mip

44 candidate_system_max = candidate_system

45 return (candidate_system_max, cause_effect_structure_max, phi_max, mip_max)

46

47

48 def compute_system_minimum_information_partition(candidate_system):

49 """Find the minimum information partition, and corresponding phi value,

50 of a candidate system."""

51 ces = compute_cause_effect_structure(candidate_system)

52 phi_min = inf

53 mip = None
54 for system_partition in all_system_partitions(candidate_system):

55 # Integrated information is the change in the cause-effect structure

56 # brought about by the system partition

57 phi = evaluate_system_partition(ces, system_partition, candidate_system)

58 if phi < phi_min:

59 # The final phi value is that associated with the minimum information

60 # partition (the partition that minimizes phi)

61 phi_min = phi

62 mip = system_partition

63 return (ces, phi_min, mip)

64

65

66 def compute_cause_effect_structure(candidate_system):

Entropy 2021, 23, 6 16 of 20
Entropy 2021, 23, 6 16 of 20

67 """Unfold the cause-effect structure of a candidate system."""

68 distinctions = [

69 compute_distinction(mechanism, candidate_system)

70 for mechanism in power_set(candidate_system)

71]

72 return distinctions

73

74

75 def compute_distinction(mechanism, candidate_system):

76 """Compute the distinction specified by a mechanism in a candidate system."""

77 maximally_irreducible_cause, phi_cause = \

78 compute_maximally_irreducible_cause_or_effect(

79 mechanism, candidate_system, "cause"

80)

81 maximally_irreducible_effect, phi_effect = \

82 compute_maximally_irreducible_cause_or_effect(

83 mechanism, candidate_system, "effect"

84)

85 small_phi = min(phi_cause, phi_effect)

86 return (small_phi, maximally_irreducible_cause, maximally_irreducible_effect)

87

88

89 def compute_maximally_irreducible_cause_or_effect(

90 mechanism, candidate_system, cause_or_effect

91):

92 phi_max = -inf

93 purview_max = None
94 repertoire_max = None
95 partitioned_repertoire_max = None
96 mip_max = None
97 for purview in power_set(candidate_system):

98 small_phi, mip, repertoire, partitioned_repertoire = \

99 compute_mechanism_minimum_information_partition(

100 mechanism, purview, candidate_system, cause_or_effect

101)

102 if small_phi > phi_max:

103 phi_max = small_phi

104 purview_max = purview

105 repertoire_max = repertoire

106 partitioned_repertoire_max = partitioned_repertoire

107 mip_max = mip

108 return ((purview_max, mip_max, repertoire_max, partitioned_repertoire_max), phi_max)

109

110

111 def compute_mechanism_minimum_information_partition(

112 mechanism, purview, candidate_system, cause_or_effect

113):

114 """Find the minimum information partition of a mechanism and purview."""

115 phi_min = inf

116 mip = None
117 partitioned_repertoire_min = None
118 repertoire = compute_repertoire(

119 mechanism, purview, candidate_system, cause_or_effect

120)

121 for mechanism_purview_partition in all_mechanism_purview_partitions(

122 mechanism, purview, candidate_system

123):

124 phi, partitioned_repertoire = evaluate_mechanism_purview_partition(

125 mechanism, purview, repertoire, mechanism_purview_partition, candidate_system,

126)

127 if phi < phi_min:

128 # The final phi value is that associated with the minimum information

129 # partition (the partition that minimizes phi)

130 phi_min = phi

131 partitioned_repertoire_min = partitioned_repertoire

132 mip = mechanism_purview_partition

133 return (phi_min, mip, repertoire, partitioned_repertoire_min)

134

135

136 def evaluate_mechanism_purview_partition(

137 mechanism, purview, repertoire, mechanism_purview_partition, candidate_system

Entropy 2021, 23, 6 17 of 20
Entropy 2021, 23, 6 17 of 20

138):

139 """Return the small phi value associated with a partition of a mechanism

140 and purview."""

141 partitioned_system = apply_partition(candidate_system, mechanism_purview_partition)

142 partitioned_repertoire = compute_repertoire(

143 mechanism, purview, partitioned_system, cause_or_effect

144)

145 phi = repertoire_distance(repertoire, partitioned_repertoire)

146 return (phi, partitioned_repertoire)

147

148

149 def compute_repertoire(mechanism, purview, candidate_system, cause_or_effect):

150 """Return the cause or effect repertoire of a mechanism over a purview."""

151 # We multiply the conditional distributions for each mechanism element to

152 # obtain the full conditional distribution.

153 # This avoids having to explicitly consider "virtual elements"; i.e., it

154 # ensures that any dependencies between the elements at the later timestep

155 # that are due to common input are destroyed.

156 if cause_or_effect == "cause":

157 single_element_repertoires = [

158 single_mechanism_element_cause_repertoire(

159 mechanism_element, purview, candidate_system

160)

161 for mechanism_element in mechanism

162]

163 elif cause_or_effect == "effect":

164 single_element_repertoires = [

165 single_purview_element_effect_repertoire(

166 mechanism, purview_element, candidate_system

167)

168 for purview_element in purview

169]

170 # Distributions over different nodes are multiplied using the tensor

171 # product to obtain the joint distribution

172 return tensor_product(single_node_repertoires)

173

174

175 def single_mechanism_element_cause_repertoire(mechanism_element, purview, candidate_system):

176 """Return the cause repertoire of a single mechanism element over a purview."""

177 # Marginalization:

178 # Sum over non-purview elements (rows)

179 tpm = candidate_system.tpm.groupby(purview, axis="rows").sum()

180 # Sum over non-mechanism elements (columns)

181 tpm = tpm.groupby(mechanism_element, axis="columns").sum()

182 # Conditioning:

183 # Take columns corresponding to mechanism state

184 # For the cause repertoire, the mechanism state corresponds to TPM columns

185 repertoire = tpm.loc[:, candidate_system.state[mechanism_element]]

186 # Normalization:

187 # Since we've taken a column of the TPM (which does not necessarily sum to

188 # 1, unlike the rows) we must renormalize so that the repertoire is a

189 # probability distribution

190 repertoire = repertoire / repertoire.sum()

191 return repertoire

192

193

194 def single_purview_element_effect_repertoire(mechanism, purview_element, candidate_system):

195 """Return the effect repertoire of a mechanism over over a single purview element."""

196 # Marginalization:

197 # Sum over non-mechanism elements (rows)

198 tpm = candidate_system.tpm.groupby(mechanism, axis="rows").sum()

199 # Sum over non-purview elements (columns)

200 tpm = tpm.groupby(purview_element, axis="columns").sum()

201 # Conditioning:

202 # Take columns corresponding to mechanism state

203 # For the effect repertoire, the mechanism state corresponds to TPM rows

204 repertoire = tpm.loc[candidate_system.state[purview_element], :]

205 return repertoire

206

207

208 def evaluate_system_partition(ces, system_partition, candidate_system):

Entropy 2021, 23, 6 18 of 20
Entropy 2021, 23, 6 18 of 20

209 """Evaluate the effect of a system partition on a cause-effect structure."""

210 partitioned_system = apply_partition(candidate_system, system_partition)

211 # Find how the partition affects each distinction in the cause-effect structure

212 partitioned_ces = []

213 for distinction in ces:

214 mic = distinction.maximally_irreducible_cause

215 mie = distinction.maximally_irreducible_effect

216 # Compute the effect of the system partition on the maximally irreducible cause

217 new_cause_repertoire = compute_repertoire(

218 mic.mechanism, mic.purview, partitioned_system, "cause"

219)

220 new_phi_cause, new_partitioned_cause_repertoire = \

221 evaluate_mechanism_purview_partition(

222 mic.mechanism, mic.purview, mic.mip, partitioned_system

223)

224 new_mic = (

225 (mic.purview, mic.mip, new_cause_repertoire, new_partitioned_cause_repertoire),

226 new_phi_cause

227)

228 # Compute the effect of the system partition on the maximally irreducible effect

229 new_effect_repertoire = compute_repertoire(

230 mie.mechanism, mie.purview, partitioned_system, "effect"

231)

232 new_phi_effect, new_partitioned_repertoire = \

233 evaluate_mechanism_purview_partition(

234 mie.mechanism, mie.purview, mie.mip, partitioned_system

235)

236 new_mie = (

237 (mie.purview, mie.mip, new_effect_repertoire, new_partitioned_effect_repertoire),

238 new_phi_effect

239)

240 # Find the new small phi in the partitioned system

241 new_small_phi = min(new_phi_cause, new_phi_effect)

242 new_distinction = (new_small_phi, new_mic, new_mie)

243 partitioned_ces.append(new_distinction)

244 # The integrated information associated with this system partition is the

245 # distance between the unpartitioned and partitioned cause-effect structures

246 return ces_distance(ces, partitioned_ces)

Author Contributions: Conceptualization, J.D.G. and L.A.; methodology, J.D.G. and L.A.; software,
J.D.G., W.G.P.M., and M.B.-A.; validation, W.G.P.M. and L.A.; formal analysis, J.D.G. and L.A.;
writing–original draft preparation, J.D.G., W.M, and L.A; writing–review and editing, L.A. and
G.T.; supervision, L.A.; funding acquisition, L.A. and G.T. All authors have read and agreed to the
published version of the manuscript.

Funding: This project was made possible through the support of a grant from Templeton World
Charity Foundation, Inc. (#TWCF0196). The opinions expressed in this publication are those of
the authors and do not necessarily reflect the views of Templeton World Charity Foundation, Inc.
In addition, this work was supported by the Tiny Blue Dot Foundation (UW 133AAG3451).

Data Availability Statement: All relevant information to reproduce the data analysis presented
in this study is contained within the article. The Pyphi software package is freely available at
https://github.com/wmayner/pyphi/tree/nonbinary.

Acknowledgments: L.A. would like to thank Adrien Fauré for his explanations regarding binariza-
tion methods applied to models of regulatory networks.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Thomas, R.; D’Ari, R. Biological Feedback; CRC press: Boca Raton, FL, USA, 1990.
2. Abou-Jaoudé, W.; Traynard, P.; Monteiro, P.T.; Saez-Rodriguez, J.; Helikar, T.; Thieffry, D.; Chaouiya, C. Logical Modeling and

Dynamical Analysis of Cellular Networks. Front. Genet. 2016, 7, 94, [CrossRef] [PubMed]

Author Contributions: Conceptualization, J.D.G. and L.A.; methodology, J.D.G. and L.A.; software,
J.D.G., W.G.P.M., and M.B.-A.; validation, W.G.P.M. and L.A.; formal analysis, J.D.G. and L.A.;
writing–original draft preparation, J.D.G., W.M, and L.A; writing–review and editing, L.A. and
G.T.; supervision, L.A.; funding acquisition, L.A. and G.T. All authors have read and agreed to the
published version of the manuscript.

Funding: This project was made possible through the support of a grant from Templeton World
Charity Foundation, Inc. (#TWCF0196). The opinions expressed in this publication are those of
the authors and do not necessarily reflect the views of Templeton World Charity Foundation, Inc.
In addition, this work was supported by the Tiny Blue Dot Foundation (UW 133AAG3451).

Data Availability Statement: All relevant information to reproduce the data analysis presented
in this study is contained within the article. The Pyphi software package is freely available at
https://github.com/wmayner/pyphi/tree/nonbinary.

Acknowledgments: L.A. would like to thank Adrien Fauré for his explanations regarding binariza-
tion methods applied to models of regulatory networks.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Thomas, R.; D’Ari, R. Biological Feedback; CRC Press: Boca Raton, FL, USA, 1990.
2. Abou-Jaoudé, W.; Traynard, P.; Monteiro, P.T.; Saez-Rodriguez, J.; Helikar, T.; Thieffry, D.; Chaouiya, C. Logical Modeling and

Dynamical Analysis of Cellular Networks. Front. Genet. 2016, 7, 94. [CrossRef] [PubMed]
3. Thomas, R. Boolean formalization of genetic control circuits. J. Theor. Biol. 1973, 42, 563–585. [CrossRef]
4. Thomas, R. Regulatory networks seen as asynchronous automata: A logical description. J. Theor. Biol. 1991, 153, 1–23. [CrossRef]
5. Didier, G.; Remy, E.; Chaouiya, C. Mapping multivalued onto Boolean dynamics. J. Theor. Biol. 2011, 270, 177–184. [CrossRef]

https://github.com/wmayner/pyphi/tree/nonbinary
https://github.com/wmayner/pyphi/tree/nonbinary
http://dx.doi.org/10.3389/fgene.2016.00094
http://www.ncbi.nlm.nih.gov/pubmed/27303434
http://dx.doi.org/10.1016/0022-5193(73)90247-6
http://dx.doi.org/10.1016/S0022-5193(05)80350-9
http://dx.doi.org/10.1016/j.jtbi.2010.09.017

Entropy 2021, 23, 6 19 of 20

6. Dayan, P.; Abbott, L.F. Theoretical Neuroscience—Computational and Mathematical Modeling of Neural Systems; MIT Press: Cambridge,
MA, USA, 2000; pp. 1689–1699. [CrossRef]

7. Hindmarsh, J.L.; Rose, R.M. A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc.
London. Ser. Contain. Pap. Biol. Character. R. Soc. 1984, 221, 87–102.

8. Aizenberg, I.N.; Naum, N.; Aizenberg, J.V. Multiple-Valued Threshold Logic and Multi-Valued Neurons. In Multi-Valued and
Universal Binary Neurons; Springer: Berlin/Heidelberg, Germany, 2000; pp. 25–80.

9. Prados, D.; Kak, S. Non-binary neural networks. In Advances in Computing and Control; Springer: Berlin/Heidelberg, Germany,
2006; pp. 97–104. [CrossRef]

10. Hoel, E.P.; Albantakis, L.; Tononi, G. Quantifying causal emergence shows that macro can beat micro. Proc. Nalt. Acad. Sci. USA
2013, 110, 19790–19795. [CrossRef]

11. Van Ham, P. How to Deal with Variables with More Than Two Levels; Springer: Berlin/Heidelberg, Germany, 1979; pp. 326–343.
[CrossRef]

12. Fauré, A.; Kaji, S. A circuit-preserving mapping from multilevel to Boolean dynamics. J. Theor. Biol. 2018, 440, 71–79. [CrossRef]
13. Tonello, E. On the conversion of multivalued to Boolean dynamics. Discret. Appl. Math. 2019, 259, 193–204. [CrossRef]
14. Oizumi, M.; Albantakis, L.; Tononi, G. From the Phenomenology to the Mechanisms of Consciousness: Integrated Information

Theory 3.0. PLoS Comput. Biol. 2014, 10, e1003588. [CrossRef]
15. Albantakis, L.; Marshall, W.; Hoel, E.; Tononi, G. What caused what? A quantitative account of actual causation using dynamical

causal networks. Entropy 2019, 21, 459. [CrossRef]
16. Albantakis, L.; Tononi, G. Causal Composition: Structural Differences among Dynamically Equivalent Systems. Entropy 2019,

21, 989. [CrossRef]
17. Tononi, G. An information integration theory of consciousness. BMC Neurosci. 2004, 5, 42. [CrossRef] [PubMed]
18. Tononi, G. Integrated information theory. Scholarpedia 2015, 10, 4164. [CrossRef]
19. Tononi, G.; Boly, M.; Massimini, M.; Koch, C. Integrated information theory: from consciousness to its physical substrate.

Nat. Rev. Neurosci. 2016, 17, 450–461. [CrossRef] [PubMed]
20. Albantakis, L. Integrated information theory. In Beyond Neural Correlates of Consciousness; Overgaard, M., Mogensen, J., Kirkeby-

Hinrup, A., Eds.; Routledge: Oxford, UK, 2020; pp. 87–103. [CrossRef]
21. Albantakis, L. A Tale of Two Animats: What Does It Take to Have Goals? Springer: Berlin/Heidelberg, Germany, 2018; pp. 5–15.

[CrossRef]
22. Marshall, W.; Kim, H.; Walker, S.I.; Tononi, G.; Albantakis, L. How causal analysis can reveal autonomy in models of biological

systems. Philos. Trans. Ser. Math. Phys. Eng. Sci. 2017, 375, 20160358. [CrossRef] [PubMed]
23. Marshall, W.; Gomez-Ramirez, J.; Tononi, G. Integrated Information and State Differentiation. Front. Psychol. 2016, 7, 926.

[CrossRef] [PubMed]
24. Albantakis, L.; Tononi, G. The Intrinsic Cause-Effect Power of Discrete Dynamical Systems—From Elementary Cellular Automata

to Adapting Animats. Entropy 2015, 17, 5472–5502. [CrossRef]
25. Aguilera, M. Scaling Behaviour and Critical Phase Transitions in Integrated Information Theory. Entropy 2019, 21, 1198.

[CrossRef]
26. Popiel, N.J.; Khajehabdollahi, S.; Abeyasinghe, P.M.; Riganello, F.; Nichols, E.S.; Owen, A.M.; Soddu, A. The Emergence of

Integrated Information, Complexity, and ‘Consciousness’ at Criticality. Entropy 2020, 22, 339. [CrossRef]
27. Albantakis, L.; Hintze, A.; Koch, C.; Adami, C.; Tononi, G. Evolution of Integrated Causal Structures in Animats Exposed to

Environments of Increasing Complexity. PLoS Comput. Biol. 2014, 10, e1003966. [CrossRef]
28. Oizumi, M.; Amari, S.i.; Yanagawa, T.; Fujii, N.; Tsuchiya, N. Measuring Integrated Information from the Decoding Perspective.

PLoS Comput. Biol. 2016, 12, e1004654. [CrossRef] [PubMed]
29. Hoel, E.P.; Albantakis, L.; Marshall, W.; Tononi, G. Can the macro beat the micro? Integrated information across spatiotemporal

scales. Neurosci. Conscious. 2016, 2016. [CrossRef] [PubMed]
30. Marshall, W.; Albantakis, L.; Tononi, G. Black-boxing and cause-effect power. PLoS Comput. Biol. 2018, 14, e1006114. [CrossRef]
31. Mayner, W.G.; Marshall, W.; Albantakis, L.; Findlay, G.; Marchman, R.; Tononi, G. PyPhi: A toolbox for integrated information

theory. PLoS Comput. Biol. 2018, 14, e1006343. [CrossRef] [PubMed]
32. Haun, A.; Tononi, G. Why Does Space Feel the Way it Does? Towards a Principled Account of Spatial Experience. Entropy 2019,

21, 1160. [CrossRef]
33. Nilsen, A.S.; Juel, B.E.; Marshall, W.; Storm, J.F. Evaluating Approximations and Heuristic Measures of Integrated Information.

Entropy 2019, 21, 525. [CrossRef]
34. Tononi, G.; Sporns, O. Measuring information integration. BMC Neurosci. 2003, 4, 1–20. [CrossRef]
35. Abou-Jaoudé, W.; Ouattara, D.A.; Kaufman, M. From structure to dynamics: Frequency tuning in the p53–Mdm2 network: I.

Logical approach. J. Theor. Biol. 2009, 258, 561–577. [CrossRef]
36. Langton, C. Studying artificial life with cellular automata. Phys. Nonlinear Phenom. 1986, 22, 120–149. [CrossRef]
37. Ermentrout, G.B.; Edelstein-Keshet, L. Cellular automata approaches to biological modeling. J. Theor. Biol. 1993, 160, 97–133.

[CrossRef]
38. Gottwald, S. Many-Valued Logic And Fuzzy Set Theory; Springer: Berlin/Heidelberg, Germany, 1999; pp. 5–89. [CrossRef]
39. Cintula, P.; Hájek, P.; Noguera, C. Handbook of Mathematical Fuzzy Logic (in 2 Volumes); College Publications: London, UK, 2011.

http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1007/bfb0043260
http://dx.doi.org/10.1073/pnas.1314922110
http://dx.doi.org/10.1007/978-3-642-49321-8_15
http://dx.doi.org/10.1016/j.jtbi.2017.12.013
http://dx.doi.org/10.1016/J.DAM.2018.10.045
http://dx.doi.org/10.1371/journal.pcbi.1003588
http://dx.doi.org/10.3390/e21050459
http://dx.doi.org/10.3390/e21100989
http://dx.doi.org/10.1186/1471-2202-5-42
http://www.ncbi.nlm.nih.gov/pubmed/15522121
http://dx.doi.org/10.4249/scholarpedia.4164
http://dx.doi.org/10.1038/nrn.2016.44
http://www.ncbi.nlm.nih.gov/pubmed/27225071
http://dx.doi.org/10.4324/9781315205267-6
http://dx.doi.org/10.1007/978-3-319-75726-1_2
http://dx.doi.org/10.1098/rsta.2016.0358
http://www.ncbi.nlm.nih.gov/pubmed/29133455
http://dx.doi.org/10.3389/fpsyg.2016.00926
http://www.ncbi.nlm.nih.gov/pubmed/27445896
http://dx.doi.org/10.3390/e17085472
http://dx.doi.org/10.3390/e21121198
http://dx.doi.org/10.3390/e22030339
http://dx.doi.org/10.1371/journal.pcbi.1003966
http://dx.doi.org/10.1371/journal.pcbi.1004654
http://www.ncbi.nlm.nih.gov/pubmed/26796119
http://dx.doi.org/10.1093/nc/niw012
http://www.ncbi.nlm.nih.gov/pubmed/30788150
http://dx.doi.org/10.1371/journal.pcbi.1006114
http://dx.doi.org/10.1371/journal.pcbi.1006343
http://www.ncbi.nlm.nih.gov/pubmed/30048445
http://dx.doi.org/10.3390/e21121160
http://dx.doi.org/10.3390/e21050525
http://dx.doi.org/10.1186/1471-2202-4-31
http://dx.doi.org/10.1016/j.jtbi.2009.02.005
http://dx.doi.org/10.1016/0167-2789(86)90237-X
http://dx.doi.org/10.1006/jtbi.1993.1007
http://dx.doi.org/10.1007/978-1-4615-5079-2_2

Entropy 2021, 23, 6 20 of 20

40. Israeli, N.; Goldenfeld, N. Coarse-graining of cellular automata, emergence, and the predictability of complex systems. Phys. Rev. E
2006, 73, 026203. [CrossRef] [PubMed]

41. Hanson, J.R.; Walker, S.I. Integrated Information Theory and Isomorphic Feed-Forward Philosophical Zombies. Entropy 2019,
21, 1073. [CrossRef]

42. Barbosa, L.S.; Marshall, W.; Streipert, S.; Albantakis, L.; Tononi, G. A measure for intrinsic information. Sci. Rep. 2020, 10, 18803.
[CrossRef]

43. Krohn, S.; Ostwald, D. Computing integrated information. Neurosci. Conscious. 2017, 2017. [CrossRef] [PubMed]

http://dx.doi.org/10.1103/PhysRevE.73.026203
http://www.ncbi.nlm.nih.gov/pubmed/16605425
http://dx.doi.org/10.3390/e21111073
http://dx.doi.org/10.1038/s41598-020-75943-4
http://dx.doi.org/10.1093/nc/nix017
http://www.ncbi.nlm.nih.gov/pubmed/30042849

	Introduction
	Theory and Pyphi Implementation
	Results
	Comparison of Random Systems with Varying Numbers of Elements and States
	Model of Biological Example Systems with Non-Binary Elements

	Discussion
	Methods
	Non-Binary Implementation
	Settings
	Overview of the Algorithm in Pseudocode

	References

