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Abstract: Ben-Or and Linial, in a seminal work, introduced the full information model to study collec-
tive coin-tossing protocols. Collective coin-tossing is an elegant functionality providing uncluttered
access to the primary bottlenecks to achieve security in a specific adversarial model. Additionally, the
research outcomes for this versatile functionality has direct consequences on diverse topics in mathe-
matics and computer science. This survey summarizes the current state-of-the-art of coin-tossing
protocols in the full information model and recent advances in this field. In particular, it elabo-
rates on a new proof technique that identifies the minimum insecurity incurred by any coin-tossing
protocol and, simultaneously, constructs the coin-tossing protocol achieving that insecurity bound.
The combinatorial perspective into this new proof-technique yields new coin-tossing protocols that
are more secure than well-known existing coin-tossing protocols, leading to new isoperimetric in-
equalities over product spaces. Furthermore, this proof-technique’s algebraic reimagination resolves
several long-standing fundamental hardness-of-computation problems in cryptography. This survey
presents one representative application of each of these two perspectives.

Keywords: collective coin-tossing; full information model; optimal coin-tossing protocols; isoperi-
metric inequalities; relativized separation; black-box separation

1. Introduction

Ben-Or and Linial [1,2], in a seminal work, introduced the full information model to
study collective coin-tossing protocols. Collective coin-tossing protocols upgrade the local
independent private randomness of each of the processors into shared randomness with
which all processors agree. In this model, each processor has an unbounded computational
power and communicates over a broadcast channel. Collective coin-tossing is an elegant
functionality providing uncluttered access to the primary bottlenecks of achieving security
in a specific adversarial model. These hardness of computation results for the coin-tossing
functionality extend to other general functionalities as well. Furthermore, the research
outcomes for this functionality has direct consequences on diverse topics in mathematics
and computer science—for example, extremal graph theory [3–5], extracting randomness
from imperfect sources [6–9], cryptography [10–16], game theory [17,18], circuit representa-
tion [19–21], distributed protocols [22–24], and poisoning and evasion attacks on learning
algorithms [25–28].

This survey summarizes the current state-of-the-art of coin-tossing protocols in the
full information model and recent advances in this field, settling several long-standing
open problems. In particular, it elaborates on a new proof technique introduced in [14] to
simultaneously characterize the optimal coin-tossing protocols and prove lower bounds to
the insecurity of any coin-tossing protocol. The geometric (or combinatorial) interpretation
of this proof technique is inherently constructive; that is, the proof technique identifies the
optimal coin-tossing protocols, which have applications in new isoperimetric inequalities in
the product spaces over large alphabets [29]. This proof technique’s algebraic reimagination
lifts these hardness of computation results to more complex relativized settings via a new
data processing inequality, central to resolving some of the most fundamental problems in
computer science and cryptography [15,16,30].
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1. Geometric/combinatorial proof-technique. Section 3 models a coin-tossing protocol
as a martingale that evolves from X0 ∈ (0, 1) to Xn ∈ {0, 1} in n ∈ N discrete
time-steps. Any stopping time τ ∈ {1, 2, . . . , n, ∞} in this coin-tossing martingale
translates into adversarial attacks on the coin-tossing protocol. Khorasgani, Maji, and
Mukherjee [14] introduced an inductive approach that characterizes a lower bound on
the insecurity Cn(X0) of any such coin-tossing protocol. Furthermore, their approach
is constructive, i.e., it constructs a coin-tossing protocol such that its insecurity is, at
most, Cn(X0). Surprisingly, these secure coin-tossing protocols are more secure than
the folklore constructions widely believed to be optimal earlier.

2. Algebraized version. Section 4 presents an algebraic version of the proof technique
mentioned above, as introduced by [16,30]. This proof technique sacrifices a small
constant factor on the lower bound on insecurity. However, the algebraized proof
technique extends to more complicated information-theoretic models where parties
have access to oracles. These lower bounds to insecurity in complex relativized set-
tings translate into black-box separation results [31,32] settling several long-standing
open problems.

3. Connection to isoperimetric inequalities. Section 5 establishes a connection between
the security of optimal coin-tossing protocols in the information-theoretic model
and isoperimetric inequalities in product spaces over large alphabets. Isoperimetric
inequalities in product spaces of large alphabets are known to be not sufficiently well-
behaved. The cryptographic perspective into isoperimetric inequalities makes a case
for new “symmetrized” versions of these isoperimetric inequalities. For example, the
initial results of [29] demonstrate that these symmetrized isoperimetric inequalities
are significantly more well-behaved.

2. Preliminaries and Model
2.1. System Specification

Following Ben-Or and Linial [1,2], the survey considers the standard n-processor coin-
tossing protocols in the full information setting, i.e., the processors are computationally un-
bounded and send their messages over a common broadcast channel. The coin-tossing
protocol proceeds in rounds, where a subset of the processors broadcast their messages in
that round, and this subset of processors possibly depends on the messages broadcast in the
previous rounds. In a t-turn coin-tossing protocol, each processor sends (at most) t messages
during the entire protocol execution. When the protocol completes, all processors agree on a
common output, their collective coin. Intuitively, a collective coin-tossing protocol upgrades
the local private randomness of multiple parties into their shared randomness.

2.2. Extensions

The base system mentioned above is the information-theoretic plain model. The survey
also encompasses this base system’s extension with oracles (for example, a random oracle)
and other ideal secure computation functionalities (for example, secure function evaluation
functionalities). These extensions enable studying the complexity of secure coin-tossing
relative to various hardness of computation assumptions and the complexity of performing
other secure computations. For example, the random oracle model provides random oracle
access to the parties. That is a random {0, 1}n → {0, 1}n function, where n represents
the bit-length of the input to the random oracle. Intuitively, a random oracle answers old
queries consistently and new queries uniformly and independently at random from the set
{0, 1}n. The f -hybrid model provides parties access to the ideal f -functionality.

2.3. Adversary and Security Model

A Byzantine adversary with corruption threshold k may corrupt up to k processors
statically (i.e., the adversary decides which processors to corrupt before the protocol
execution starts), or adaptively (i.e., the adversary corrupts processors depending on the
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protocol evolution). A strong adaptive adversary [33] can observe a processor’s message
before corrupting it. The adversary controls all corrupted processors’ messages and is
rushing; that is, all honest processors in a particular round broadcast their message first,
and then the adversary determines the messages of the corrupted processors for that round.
The adversary may choose to abort the protocol execution prematurely.

The survey considers both security with abort and security with guaranteed output delivery.
Intuitively, if the adversary aborts, security with abort permits the protocol to abort without
providing any output to the honest processors. On the other hand, the significantly
stringent security notion of guaranteed output delivery insists that the honest processors
receive output even if the adversary aborts. A coin-tossing protocol is ε-insecure if the
adversary can change the honest processors’ output distribution by, at most, ε in the total
variation distance (or, equivalently, statistical distance).

2.4. Notations and Terminology

In the sequel, the common output of a coin-tossing protocol is 0 or 1. Intuitively, 1
represents heads, and 0 represents tails. The expected output of a coin-tossing protocol
represents the probability of its output being heads. A bias-X coin-tossing protocol is an
interactive protocol whose expected (common) output is X ∈ [0, 1].

This survey considers r-round coin-tossing protocols. The transcript exposure filtration
reveals the messages of every round sequentially. The partial transcript of a protocol after i
rounds is (T1, . . . , Ti), i.e., the concatenation of the messages broadcast in rounds 1, . . . , i.
Conditioned on the transcript, being T1, . . . , Ti, the random variable Xi represents the
expected output of the protocol. Note that Xr ∈ {0, 1}, that is, all processors agree on the
output at the end of the protocol. Furthermore, the random variable X0 represents the
expected output of the protocol before the protocol began, that is, X0 = X for a bias-X
coin-tossing protocol. Observe that (X0, X1, . . . , Xr) is a martingale w.r.t. the transcript
exposure filtration.

2.5. Coin-Tossing Protocols as Trees

One can represent coin-tossing protocols equivalently as labeled trees. This tree
representation helps develop a combinatorial intuition for the results, and enables a succinct
and intuitive (yet, precise) presentation of the primary technical ideas. Every node in the
tree corresponds to a partial transcript (T1, . . . , Ti). For a node v in the tree, T(v) represents
its corresponding partial transcript. If a node u represents the transcript (T1, . . . , Ti−1)
and a node v represents the transcript (T1, . . . , Ti), then u is the parent of v. The root of
the tree corresponds to the empty transcript ∅, and the leaves correspond to the complete
transcripts of the protocol. The label on the edge (u, v) is the value of the random variable
Ti (that is, the message sent in round i).

The color of a node v, represented by X(v) ∈ [0, 1], is the expected output of the
protocol conditioned on the partial transcript being T(v). Therefore, leaves have color 0
or 1, and the root has color X in a bias-X coin-tossing protocol. The coin-tossing protocol
Π(v) represents the bias-X(v) coin-tossing protocol associated with subtree rooted at v.

For illustrative purposes, Figure 1 presents the tree representation of the “majority
protocol” for n = 3 processors. In round i ∈ {1, 2, . . . , n}, processor i broadcasts an
independent uniformly random bit. The collective output b ∈ {0, 1} after n bits have been
broadcast is the majority of these bits. The edge going left corresponds to the broadcast
message being 0, and the edge going right corresponds to the broadcast message being 1.
The nodes are labeled by their color.
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Figure 1. Transcript tree for the majority protocol, where n = 3.

3. Optimal Coin-Tossing Protocols: A Geometric Approach

This section introduces the original combinatorial technique of Khorasgani, Maji, and
Mukherjee [14] for characterizing the “most secure” coin-tossing protocol.

3.1. A Representative Motivating Application

Consider a distributed collective coin-tossing protocol for n processors, where a
processor i broadcasts its message in round i. At the end of the protocol, all processors
reconstruct the common output from the public transcript. When all processors are honest,
the probability of the final output being 1 is X0 and the probability of the final output being
0 is 1− X0, i.e., the final output is a bias-X0 coin. Suppose there is an adversary who can
(adaptively) choose to restart one of the processors after seeing her message (i.e., the strong
adaptive corruptions model introduced by Goldwasser, Kalai, and Park [33]); otherwise her
presence is innocuous. Our objective is to design bias-X0 coin-tossing protocols, such that
the adversary cannot significantly change the distribution of the final output.

In summary, we consider single-turn collective coin-tossing protocols where only one
processor broadcasts every round. We consider security with abortion against an adversary
that is strong [33] and adaptive. The adversary can perform a soft attack where it may
restart a processor if it does not like its message.

The Majority Protocol. Against computationally unbounded adversaries, (essentially)
the only known protocol is the well-known majority protocol [34–37] for X0 = 1/2. The
majority protocol requests one uniformly random bit from each processor and the final
output is the majority of these n bits. An adversary can alter the expected output by
1/
√

2πn (more specifically, the fractional weight of the central binomial coefficient), i.e.,
the majority protocol is 1/

√
2πn-insecure. More generally, one considers threshold protocols,

where the collective output is 1 if and only if the total number of broadcast bits is more
than a fixed threshold.

Figure 2 shows the optimal attack on the majority protocol for n = 3 that increases
the expected output of the protocol. The shaded nodes in the tree represents the partial
transcripts where the adversary intervenes and restarts the last processor that broadcast
its message. The insecurity of this protocol is ( n

bn/2c) · 2
−n = 0.1875. Figure 8, as a conse-

quence of the recent works [14,38], presents a protocol that has higher security than this
majority protocol.
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Figure 2. Transcript tree for the majority protocol, where n = 3. The shaded nodes represent the
partial transcripts where the adversary restarts the processor that broadcast the last message in
the protocol.

Towards this objective, first, the survey summarizes the new proof technique intro-
duced by Khorasgani, Maji, and Mukherjee [14] that yields a two-approximation to the
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optimal solution of the motivating problem above (Section 3.4 summarizes this proof tech-
nique). Section 3.6 includes empirical results summarizing conjectured constructions that
have higher security than the threshold protocols.

3.2. Martingale Problem Statement

Given a complete transcript, let τ ∈ {1, 2, . . . , n, ∞} represent the round where the
adversary intervenes. Observe that, by restarting the processor at τ ∈ {1, 2, . . . , n}, the
adversary changes the expected output of the protocol from Xτ to Xτ−1. Therefore, the
change in the expected output of the protocol is Xτ−1 − Xτ . The intervention strategy of an
adversary is equivalently represented as a stopping time τ : Ω→ {1, 2, . . . , n, ∞}, where Ω
is the set of all complete transcripts of the coin-tossing protocol. If the associated stopping
time for a complete transcript is ∞, then the adversary does not intervene during the
generation of that complete transcript. The increase in the expected output corresponding
to this adversarial strategy τ is equal to

E[Xτ−1 − Xτ ].

For the simplicity of presenting the primary technical ideas, it is instructive to consider a
related, albeit slightly different, score function

E[|Xτ − Xτ−1| ].

The inspiration of the approach introduced by Khorasgani, Maji, Mukherjee [14] is
best motivated using a two-player game between, namely, the martingale designer and the ad-
versary. Fix n and X0. The martingale designer presents a martingale X = (X0, X1, . . . , Xn)
(w.r.t. to the transcript exposure filtration) to the adversary and the adversary finds a
stopping time τ that maximizes the score function.

E[|Xτ − Xτ−1| ]

Intuitively, the adversary demonstrates the most severe susceptibility of the martingale
by presenting the corresponding stopping time τ as a witness. The stopping time wit-
nessing the highest susceptibility shall translate into appropriate adversarial strategies.
The martingale designer’s objective is to design martingales that have less susceptibil-
ity. Khorasgani et al. [14] introduce a geometric approach to inductively provide tight
bounds on the least susceptibility of martingales for all n ≥ 1 and X0 ∈ [0, 1], that is, the
following quantity.

Cn(X0) := inf
X

sup
τ

E[|Xτ − Xτ−1| ]

Similar to [10], this precise study of Cn(X0), for general X0 ∈ [0, 1], is motivated by natural
applications in discrete process control as illustrated by the representative
motivating problem.

3.3. Prior Approaches to the General Martingale Problem

Azuma–Hoeffding inequality [39,40] states that, if |Xi − Xi−1| = o(1/
√

n), for all
i ∈ {1, . . . , n}, then, essentially, |Xn − X0| = o(1) with probability 1. That is, the final
information Xn remains close to the a priori information X0. However, in our problem
statement, we have Xn ∈ {0, 1}. In particular, this constraint implies that the final informa-
tion Xn is significantly different from the a priori information X0. So, the initial constraint
“for all i ∈ {1, . . . , n} we have |Xi − Xi−1| = o(1/

√
n)” must be violated. What is the

probability of this violation?
For X0 = 1/2, Cleve and Impagliazzo [10] proved that there exists a round i such

that |Xi − Xi−1| ≥ 1
32
√

n with probability 1/5. We emphasize that the round i is a random
variable and not a constant. However, the definition of the “big jump” and the “probability
to encounter big jumps” are both exponentially small functions of X0. So, the approach of
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Cleve and Impagliazzo is only applicable to constant X0 ∈ (0, 1). Recently, in an indepen-
dent work, Beimel et al. [41] demonstrate an identical bound for weak martingales (that have
some additional properties), which is used to model multi-party coin-tossing protocols.

For the upper-bound, on the other hand, Doob’s martingale, corresponding to the
majority protocol, is the only known martingale for X0 = 1/2 with a small maximum sus-
ceptibility. In general, to achieve arbitrary X0 ∈ [0, 1], one considers coin-tossing protocols,
where the output is 1 if the total number of heads in n uniformly random coins surpasses
an appropriate threshold.

3.4. Inductive Approach

This section presents a high-level overview of the inductive strategy to characterizing
optimal coin-tossing protocols. In the sequel, we shall assume that we are working with
discrete-time martingales (X0, X1, . . . , Xn) such that Xn ∈ {0, 1}.

Given a martingale (X0, . . . , Xn), its susceptibility is represented by the
following quantity

sup
stopping time τ

E[|Xτ − Xτ−1| ]

Intuitively, if a martingale has high susceptibility, then it has a stopping time, such that
the gap in the martingale while encountering the stopping time is large. Our objective
is to characterize the least susceptibility that a martingale (X0, . . . , Xn) can achieve. More
formally, given n and X0, characterize

Cn(X0) := inf
(X0, ..., Xn)

sup
stopping time τ

E[|Xτ − Xτ−1| ].

The approach proceeds by induction on n to exactly characterize the curve Cn(X), and our
argument naturally constructs the best martingale that achieves Cn(X0).

1. Base case. Note that the base case is C1(X) = 2X(1− X) (see Figure 3 for this argument).

2. Inductive step. Given the curve Cn−1(X), one identifies a geometric transformation T
(see Figure fig:transform-def) that defines the curve Cn(X) from the curve Cn−1(X).

Furthermore, for any n ≥ 1, there exist martingales such that its susceptibility is
exactly Cn(X0).

We shall prove the following technical result in this section.

X0

0 1

1− X0 X0

Figure 3. Base case for the inductive approach. Note C1(X0) = inf(X0,X1) supτ E[|Xτ − Xτ−1| ].
The optimal stopping time is shaded and its score is X0 · |1− X0|+(1−X0) · |0− X0| = 2X0(1−X0).

Theorem 1. Fix any X0 ∈ (0, 1) and n ∈ N. Let X = (X0, X1, . . . , Xn) be a martingale, such
that Xn ∈ {0, 1}. There exists a stopping time τ in such that

E[|Xτ − Xτ−1| ] ≥ Cn(X).

Furthermore, for all n ∈ N and X0 ∈ (0, 1), there exists a martingale X ∗ = (X0, X∗1 , . . . , X∗n)
such that X∗n ∈ {0, 1} and, for all stopping times τ, we have

E[
∣∣X∗τ − X∗τ−1

∣∣] = Cn(X0).

Base Case of n = 1

Refer to Figure 3 for the following discussion. For a martingale (X0, X1) of depth
n = 1, we have X1 ∈ {0, 1}. Thus, without loss of generality, we assume that E1 takes only
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two values. Then, it is easy to verify that the max score is always equal to 2X0(1−X0). This
score is witnessed by the stopping time τ = 1. So, we conclude that C1(X0) = 2X0(1− X0).

Inductive Step: n = 2 (For Intuition).

Suppose that the root X0 = x in the corresponding martingale tree has t children
with values x(1), x(2), . . . , x(t), and the probability of choosing the j-th child is p(j), where
j ∈ {1, . . . , t} (see Figure 4).

x

x(1)

p(1)

. . . x(j)

p(j)

MSj

. . . x(t)

p(t)

Figure 4. The inductive step of the combinatorial proof. MSj represents the max-score of the sub-tree
of depth n− 1 which is rooted at x(j). For simplicity, the subtree of x(j) is only shown here.

Given a martingale (X0, X1, X2), the adversary’s objective is to find the stopping time
τ that maximizes the score E[|Xτ − Xτ−1| ]. If the adversary chooses to stop at τ = 0,
then the score E[|Xτ − Xτ−1| ] = 0, which is not a good strategy. So, for each j, the
adversary chooses whether to stop at the child x(j), or defer the attack to a stopping time
in the sub-tree rooted at x(j). The adversary chooses the stopping time based on which of
these two strategies yield a better score. If the adversary stops the martingale at child j,
then the contribution of this decision to the score is p(j) ·

∣∣∣x(j) − x
∣∣∣. On the other hand, if

she does not stop at child j, then the contribution from the sub-tree is guaranteed to be
p(j) ·MSj ≥ p(j) · C1(x(j)). Overall, from the j-th child, an adversary obtains a score that is

at least p(j) ·max
{∣∣∣x(j) − x

∣∣∣, C1(x(j))
}

.

Let h(j) := max
{∣∣∣x(j) − x

∣∣∣, C1(x(j))
}

. We represent the points Z(j) = (x(j), h(j)) in a
two dimensional plane. Then, clearly, all these points lie on the solid curve defined by
max{|X− x|, C1(X)}—see Figure 5.

X-axis

Y-axis

•
X = (x, 0)

C1

•P1

•L

•P2

•R

•
Q

π/4 π/4

◦Z(1)

◦Z(2)
◦Z(3)

◦Z(4)

◦x
(1)

◦x(2) ◦x
(3)

◦x
(4)

⊗Q′
⊗

Q′′

Figure 5. Intuitive summary of the inductive step for n = 2.

Since (X, E) is a martingale, we have x = ∑t
j=1 p(j)x(j) and the adversary’s strategy

for finding τmax gives us λ = ∑t
j=1 p(j)h(j). This observation implies that the coordinate
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(x, λ) = ∑t
j=1 p(j) · Z(j). So, the point in the plane giving the adversary the maximum

score for a tree of depth n = 2 with bias X0 = x lies in the intersection of the convex hull
of the points Z(1), . . . , Z(t), and the line X = x. Let us consider the martingale defined
in Figure 5 as a concrete example. Here t = 4, and the points Z(1), Z(2), Z(3), Z(4) lie on
max{|X− x|, C1(X)}. The martingale designer specifies the probabilities p(1), p(2), p(3),
and p(4), such that p(1)x(1) +· · ·+ p(4)x(4) = x. These probabilities are not represented in
Figure 5. Note that the point

(
p(1)x(1) + · · ·+ p(4)x(4), p(1)h(1) + · · ·+ p(4)h(4)

)
represent-

ing the score of the adversary is the point p(1)Z(1) + · · ·+ p(4)Z(4). This point lies inside
the convex hull of the points Z(1), . . . , Z(4) and on the line X = p(1)x(1) + · · ·+ p(4)x(4) = x.
The exact location depends on p(1), . . . , p(4).

Point Q′ is the point with minimum height. Observe that the height of the point Q′ is
at least the height of the point Q. So, in any martingale, the adversary shall find a stopping
time that scores more than (the height of) the point Q.

On the other hand, the martingale designer’s objective is to reduce the score that an
adversary can achieve. So, the martingale designer chooses t = 2, and the two points
Z(1) = P1 and Z(2) = P2 to construct the optimum martingale. We apply this method
for each x ∈ [0, 1] to find the corresponding point Q; that is, the locus of the point Q, for
x ∈ [0, 1], which yields the curve C2(X = x).

Observe that the height of the point Q is the harmonic-mean of the heights of the points
P1 and P2. This observation follows from elementary geometric facts. Let h1 represent
the height of the point P1, and h2 represent the height of the point P2. Observe that the
distance of x− xS(x) = h1 (because the line `1 has slope π − π/4). Similarly, the distance
of xL(x) − x = h2 (because the line `2 has slope π/4). So, using properties of similar
triangles, the height of Q turns out to be

h1 +
h1

h1 + h2
· (h2 − h1) =

2h1h2

h1 + h2
.

This property inspires the definition of the geometric transformation T, see
Figure 6. Applying T on the curve C1(X) yields the curve C2(X). All bias-X (n = 2)
processor coin-tossing protocols are Cn(X)-insecure. Furthermore, there exists a coin-
tossing protocol that achieves this insecurity bound.

General Inductive Step: n ≥ 2

Note that a similar approach works for general n = d ≥ 2. Fix X0 and n = d ≥ 2. We
assume that the adversary can compute Cd−1(X1), for any X1 ∈ [0, 1].

Suppose the root in the corresponding martingale tree has t children with values
x(1), x(2), . . . , x(t), and the probability of choosing the j-th child is p(j) (see Figure 4). Let
(X(j), E(j)) represent the martingale associated with the sub-tree rooted at x(j).

For any j ∈ {1, . . . , t}, the adversary can choose to stop at the child j. This decision
will contribute

∣∣∣x(j) − x
∣∣∣ to the score with weight p(j). On the other hand, if she defers the

attack to the subtree rooted at x(j), she will get at least a contribution of (at least) Cn−1(x(j)),
with weight p(j). Therefore, the adversary can obtain the following contribution to
her score

p(j) max
{∣∣∣x(j) − x

∣∣∣, Cd−1(x(j))
}

Similar to the case of n = 2, we define the points Z(1), . . . , Z(t). For n > 2, however, there
is one difference from the n = 2 case. The point Z(j) need not lie on the solid curve, but
it can lie on or above it, i.e., they lie in the gray area of Figure 7. This phenomenon is
attributable to a suboptimal martingale designer, producing martingales with suboptimal
scores, i.e., strictly above the solid curve. For n = 1, it happens to be the case that there is
(effectively) only one martingale that the martingale designer can design (the optimal tree).
The adversary obtains a score that is at least the height of the point Q′, which is at least the
height of Q. On the other hand, the martingale designer can choose t = 2, and Z(1) = P1



Entropy 2021, 23, 44 9 of 23

and Z(2) = P2 to define the optimum martingale. Again, the locus of point Q is defined by
the curve T(Cd−1).

Given. A curve C defined by the zeroes ⊆ R2 of equation Y = f (X), where X ∈ [0, 1].
Definition of the Transform. The transform of C, represented by T(C), is the curve
defined by the zeroes of equation Y = g(X), where, for x ∈ [0, 1], the value of g(x) is
defined below.

1. Let xS(x) ∈ [0, 1] be a solution of the equation X + f (X) = x.

2. Let xL(x) ∈ [0, 1] be a solution of the equation X− f (X) = x.

3. Then g(x) := H.M.(y(1), y(2)), where y(1) = f (xS(x)), y(2) = f (xL(x)), and

H.M.(y(1), y(2)) represents the harmonic mean of y(1) and y(2), i.e., 2y(1)y(2)

y(1)+y(2)
.

X-axis

Y-axis

C
(x, 0)

`1

`2

•P1

•P2

•
Q

π/4 π/4
xS(x) xL(x)

Figure 6. Definition of transform of a curve C, represented by T(C). The locus of the point Q (in the
right figure) defines the curve T(C).

X-axis

Y-axis

•
X = (x, 0)

Cd

•P1

•L

•P2

•R

•
Q

π/4 π/4

◦Z(1)

◦Z(2)

◦Z(3)
◦Z(4)

◦Z(5)
◦Z(6)

◦Z(7)

⊗
Q′

Figure 7. Intuitive summary of the inductive argument. Our objective is to pick the set of points
{Z(1), Z(2) . . . } in the gray region to minimize the length of the intercept XQ′ of their (lower) convex
hull on the line X = x. Clearly, the unique optimal solution corresponds to including both P1 and P2

in the set.

Conclusion

So, by induction, we have proved that Cn(X) = Tn−1(C1(X)). Additionally, note that,
during induction, in the optimum martingale, we always have

∣∣∣x(0) − x
∣∣∣ = Cn−1(x(0)) and∣∣∣x(1) − x

∣∣∣ = Cn−1(x(1)). Intuitively, the decision to stop at x(j) or continue to the subtree

rooted at x(j) has identical consequence. So, by induction, all stopping times in the optimum
martingale have score Cn(x).
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A close-form characterization of Cn(X) using elementary functions seems challenging.
Khorasgani et al. [14] proved the following upper and lower bounds.

min
{

2√
n + 3

·
√

X(1− X), 2X, 2− 2X
}
≥ Cn(X) ≥

√
2

n− 1/2
· X(1− X).

3.5. Related Work: Multiple Corruptions

Another line of research characterizes the minimum number of corruptions t that suffices
to change the expected output of the coin-tossing protocol by a constant. The presentation
below, for simplicity, ignores polylogarithmic factors in the asymptotic notation. The authors
in [42] proved that a Byzantine adversary can adaptively corrupt t = Õ

(√
n
)

processors in
any n-processor single-turn protocol, where every processor broadcasts one-bit messages, to
change the expected output of the protocol by a constant. Subsequently, [33,43] generalized
this result to the case where the processors broadcast arbitrary-length messages. Recently,
in a breakthrough result, Haitner and Karidi-Heller [44] extended this result to multi-turn
coin-tossing protocols, i.e., a processor may send messages in multiple rounds. Essentially,
these results imply that the majority protocol (more generally, the threshold protocols) are
qualitatively optimal. However, the characterization of the most secure coin-tossing protocols
remains open.

A prominent model in distribution computing considers the following adversarial
model for coin-tossing protocols. A strong adversary can adaptively corrupt (up to)
t processors and the messages of all corrupted processors are erased. Aspnes [22,23]
uses an inductive approach to characterize the robustness of such coin-tossing protocols.
This approach also uses a geometric approach to perform induction on t, the number of
corruptions that the adversary makes, to account for (a) the maximum increase in the
expected output of the coin-tossing protocol and (b) the maximum decrease in the expected
output of the coin-tossing protocols. [22,23] proves that t = O

(√
n
)

suffices to change
the expected output of an n-processor coin-tossing protocol by a constant. However,
this inductive approach is non-constructive because the recursion does not characterize
the evolution of the martingale corresponding to the most secure coin-tossing protocol.

3.6. Experimental Results

The presentation above considers the case where the stopping time representing an
adversarial strategy is τ : Ω → {1, 2, . . . , n} (where Ω represents the set of all complete
transcripts), and the score of a stopping time is E[|Xτ − Xτ−1| ]. Khorasgani, Maji, Mehta,
Mukherjee, and Wang [14,38] study a related recursion. In this recursion, the stopping
time is τ : Ω → {1, 2, . . . , n, ∞}. However, the stopping times are restricted as follows.
Given a partial transcript u, if the adversary has the following choices: (1) Do not abort
for any child of u; (2) Abort at all children v, such that X(v) (i.e., the expected output
conditioned on v) is at least a particular threshold; (3) Abort at all children v such that
X(v) is at most a particular threshold. The optimal score for such restricted stopping times
is represented by An(X). The authors in [38] construct an algorithm with running time
poly(n, 1/δ) for computing An := Tn−1(A1), where A1(X) = X(1−X) with (at most) nδ er-
ror. We highlight that the geometric transformation T(·) is identical to the one presented in
Section 3.4. However, the base cases are different; A1(X) = X(1 − X), but
C1(X) = 2X(1− X). Now, consider the optimal protocol corresponding to this recur-
sion. For example, Figure 8 shows the martingale corresponding to X0 = 1/2 and n = 3.
The optimal attack that increases the expected output is represented by the shaded nodes.
Restarting the last processor broadcasting the message resulting in a shaded partial tran-
script increases the output by 0.1362, which is significantly less than 0.1865, the insecurity
of the majority protocol from Figure 2.
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0.1744
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0.6816

0.4357
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0.8256
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Figure 8. Transcript tree for the optimal protocol corresponding to the recursion A1(X) := X(1− X)

and An = Tn−1(A1), where n = 3. The shaded partial transcripts represents the attack that increases
the expected output by 0.1362, which is also the maximum insecurity of this coin-tossing protocol.

Experimentally, we implement our protocol and show that the insecurity of our
protocol is observably smaller than the insecurity of threshold protocols. As a representative
example, Figure 9 plots the insecurity of our new protocol, for n = 101 processors and
X ∈ [0, 1/2] with accuracy parameter δ = 10−6. This demonstrates the insecurity of bias-X
coin-tossing protocols, where X ∈ (1/2, 1], is identical to the insecurity of bias-(1− X)
coin-tossing protocols. So, it suffices to consider bias-X protocols, where X ∈ [0, 1/2].

0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

·10−2

Figure 9. The X-axis represents the bias of the coin-tossing protocols and the Y-axis represents the
insecurity of the protocols. For n = 101, the blue marks denote the insecurity of bias-X coin-tossing
protocols that are implementable using a threshold protocol. The black curve represents the insecurity
of our new protocols. A coin-tossing protocol with lower insecurity is more desirable.

Figure 9 also plots the insecurity of all bias-X coin-tossing protocols that can be
implemented using a threshold protocol. Note that the insecurity of our protocol is less than
the insecurity of threshold protocol. This reduction in insecurity is prominent, especially
when X ∈ (0, 1/2) is simultaneously far from 0 and 1/2.

Finally, our experiments uncover an exciting phenomenon. As Figure 10 indicates,
our experimental results show that the insecurity of our protocols for X = 1/2 tends towards
the insecurity of the majority protocol, as n tends to infinity. This experiment lends support
to the conjecture that the majority protocol is the optimal secure coin-tossing protocol as
n→ ∞. However, for every finite n and X ∈ (0, 1/2), there are more secure protocols than
the threshold protocols.
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0.25

0.3

0.35

0.4 Y = 1/
√

2π

Figure 10. For n ∈ {1, 3, . . . , 1001}, the blue squares show the plot of
√

n-times the insecurity of
the majority coin-tossing protocol. The red dashed line shows the limit of the insecurity of majority
protocol using Stirling’s approximation, when n→ ∞. The black dots show the plot of

√
n-times the

security of our new optimal protocols. The graph uses log scale on the X-axis.

4. Hardness of Computation Relative to Oracles

This section considers two-processor one-message-per-round coin-tossing protocols
with guaranteed output delivery. The first processor, say, Alice sends messages in rounds
{1, 3, . . . }, and the second processor (Bob) sends messages in rounds {2, 4, . . . }. This coin-
tossing protocol has n-rounds, and Alice has dn/2e turns and Bob has bn/2c turns. A
Byzantine adversarial processor may abort prematurely during the protocol execution;
however, the honest processor still has to output a coin. This coin-tossing protocol is the
well-known fair coin-tossing protocol [45]. A fair coin-tossing protocol is ε-unfair if it is
ε-insecure.

4.1. Summary of Relevant Work
4.1.1. Impagliazzo’s Worlds

Among the several potential approaches to summarize the state-of-the-art in this
field, the author prefers positioning the results in Impagliazzo’s multiverse [46] (refer to
Table 1). The sequel considers three of the five Impagliazzo’s multiverses, which are most
relevant to the discussion. In Pessiland, every efficient function is efficiently invertible, i.e.,
one-way functions do not exist [47]. One-way functions exist in Minicrypt and allow for
private-key cryptographic primitives, such as pseudorandom generators [48–50], pseudo-
random functions [51,52], pseudorandom permutations [53], statistically binding commit-
ment [54], statistically hiding commitment [55,56], zero-knowledge proofs [57], and digital
signatures [58,59]. However, public-key cryptography, as with public-key encryption,
key-agreement, and general secure computation, are not possible in Minicrypt [31,60–62].
The secure constructions of these primitives lie in Cryptomania. One should imagine Cryp-
tomania as a conglomeration of infinitely many hardness of computation assumptions that
are not securely attainable based solely on the existence of one-way functions. Intuitively,
Minicrypt enables fast cryptography, while Cryptomania supports more sophisticated, yet
comparatively slower, cryptography.
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Table 1. State-of-the-art constructions and hardness of computation results in fair coin-tossing. The ex-
pression “ f 6→ OT” represents the fact that there is no secure protocol for oblivious transfer [63,64]
in the f -hybrid model against honest-but-curious adversaries.

Secure Construction Adversarial Attack

Pessiland

In General: Ω(1)-unfair [65,66]

Fail-stop
Adversary: Ω

(
1/
√

n
)
-unfair [10,14]

Minicrypt One-way
Functions: O

(
1/
√

n
)
-unfair [34–37]

One-way Functions:
Ω
(
1/
√

n
)
-unfair [16]

Cryptomania

Public-key Encryption: Public-key Encryption:
Ω
(
1/
√

n
)
-unfair [30]

PKE + f -hybrid, f 6→ OT: PKE + f -hybrid, f 6→ OT:
Ω
(
1/
√

n
)
-unfair [30]

Oblivious Transfer: O(1/n)-unfair [67] Oblivious Transfer:
Ω(1/n)-unfair [37]

4.1.2. Relevant Results

In the information-theoretic setting, in any protocol, one of the processors can always
force an output with certainty (using attacks in two-player zero-sum games, or games
against nature [68]). However, one can emulate this attack relying on a significantly weaker
assumption. For instance, if one-way functions do not exist [47] then Berman, Haitner,
Omri, and Tentes [65,66] rely on rejection sampling techniques to construct a Byzantine
adversary that forces an output with (near) certainty. (Intuitively, the assumption that
“one-way functions do not exist” is slightly weaker than the assumption that “NP ⊆ BPP,”
because the latter implies the former. However, these two assumptions are extremely
similar in nature as well. The former assumption, roughly states that every efficient
function is efficiently invertible on an average. The latter assumption, on the other hand,
states that every efficient function is efficiently invertible for every element in the range.
For example, the constant-unfairness of any coin-tossing protocol, based on the assumption
that NP ⊆ BPP, is implied by [69].) That is, in summary, if one-way functions do not
exist, then every coin-tossing protocol is Ω(1)-unfair. If one restricts to attacks where
parties are honest-but-curious but may abort during the protocol execution, referred to as
fail-stop adversaries, then, if one-way functions do not exist, every coin-tossing protocol is
Ω
(
1/
√

n
)
-unfair [10,14].

On the other hand, if one-way functions exist, then (using commitments and zero-
knowledge proofs) there are protocols that are O

(
1/
√

n
)
-insecure [34–37], that is, the

adversary can change the honest processor’s output distribution by at most O
(
1/
√

n
)

(in the statistical distance). In a ground-breaking result, Moran, Naor, and Segev [67]
presented the first fair coin-tossing protocol that is only O(1/n)-unfair based on the
existence of (unfair) secure protocols for oblivious transfer functionality. Cleve [37] proved
that Ω(1/n)-unfairness is unavoidable; hence, the protocol by Moran, Naor, and Segev
is “optimal.”

Recent Advances. A recent work [16] proves that any fair coin-tossing protocol using
one-way functions in a black-box manner is Ω

(
1/
√

n
)
-unfair, settling this long-standing

open problem and proving the qualitative optimality of the protocol by [34–37]. Black-box
separation is a prominent technique introduced by Impagliazzo and Rudich [31], and
further nuances in its definition were highlighted in [32,70]. Suppose one “black-box sepa-
rates the cryptographic primitive Q from another cryptographic primitive P.” Then, one
interprets this result as indicating that the primitive P is unlikely to facilitate the secure
construction of Q using black-box constructions. Most constructions in theoretical com-
puter science and cryptography are black-box in nature. That is, they rely only on the
input–output behavior of the primitive P, and are oblivious to, for instance, the particular
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implementation of the primitive P. The security reduction in cryptographic black-box
constructions also uses the adversary in a black-box manner. There are, however, some
highly non-trivial nonblack-box constructions in theoretical computer science, for exam-
ple, [57,71–77]. However, an infeasibility of black-box constructions to realize Q from P
indicates the necessity of new nonblack-box constructions, which, historically, have been
significantly infrequent. Prior to this result, this black-box separation was known only for
restricted families of constructions [11,12,78,79].

Subsequently, using similar techniques, ref. [30] further strengthens this separation
beyond Minicrypt by proving that any fair coin-tossing protocol using a public-key encryp-
tion algorithm (which is even stronger than one-way functions) in a black-box manner is
also Ω

(
1/
√

n
)
-unfair. In fact, ref. [30] proves a stronger result. Let f be a secure function

evaluation functionality, such that (two-choose-one single-bit) oblivious transfer [63,64]
can be securely implemented in the f -hybrid model (i.e., a system where parties have
access to an idealized implementation of the f -functionality). In this f -hybrid model,
one can emulate the optimal fair coin-tossing protocol of Moran, Naor, and Segev [67],
which is O(1/n)-unfair. However, consider f , such that oblivious transfer is impossible
in the f -hybrid model (all such functions were characterized by [80]). In the f -hybrid
model, ref. [30] proves that any fair coin-tossing protocol using a public-key encryption
protocol in a black-box manner is Ω

(
1/
√

n
)
-unfair. These results prove that the set of

all secure function evaluation functionalities have the following dichotomy. Given any
secure function evaluation f , either there exists an optimal fair coin-tossing protocol in
the f -hybrid model, or any coin-tossing protocol (even using public-key encryption in a
black-box manner) in the f -hybrid model is Ω

(
1/
√

n
)
-unfair.

4.2. Augmented Protocols
Discussion

Let Π be a coin-tossing protocol in the information-theoretic plain model. Assume
that T is the partial transcript of the protocol. Suppose VA is the random variable denoting
the private view of Alice, and VB is the random variable denoting the private view of Bob.
Then, the following Markov chain is an essential property of protocols in the information-
theoretic plain model.

VA ↔ T ↔ VB.

That is, conditioned on the partial transcript T, the joint distribution of Alice–Bob pri-
vate views (VA, VB|T) is a product of the marginal distributions of their views, that is
(VA|T)× (VB|T). However, when parties have access to an oracle, then this property need
not hold.

Augmented Protocols

In the random oracle model, it is not necessary that the joint distribution of Alice–Bob
private views (VA, VB|T) is a product of the marginal distributions of their views. Their
views may be correlated via the random oracle and this correlation is not eliminated by
public transcript. For example, if the private queries to the random oracle by Alice and Bob
are disjointed, then the joint distribution of their private views is a product distribution.
However, if they have common private queries then, conditioned on the public transcript,
their views may be correlated. For example, suppose Alice and Bob privately query at
0. In this case, conditioned on the public transcript, the answer to the query has n-bits of
entropy. The views of Alice and Bob are perfectly correlated, i.e., the mutual information
of their private views is n.

There are standard techniques to circumvent this bottleneck. There exists a public
querying algorithm (one that depends only on the public transcript of the protocol) and
performs additional queries to the random oracle and can reduce this correlation. In
particular, for any ε ∈ (0, 1), there are public algorithms [31,62,81] that perform poly(n/ε)
additional queries to the random oracle, such that, (with high probability) conditioned on
these additional query–answer pairs, the joint distribution of Alice–Bob views is ε-close
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(in the statistical distance) to the product of its marginal distributions. We emphasize that
the parameter ε may depend on the input-length n of the random oracle and the round
complexity r of the protocol.

Consequently, any protocol in the random oracle model can be converted into an aug-
mented protocol where the party sending the next message in the protocol adds the query–
answer pairs of the public querying algorithm mentioned above. This compilation preserves
the round complexity of the protocol while ensuring that the crucial Markov chain property
holds. Therefore, for the rest of this section, we shall assume that the coin-tossing protocol in
the random oracle model is an augmented protocol.

4.3. Technical Proof

Recall that, in augmented coin-tossing protocols, the joint distribution of Alice–Bob
views is ε close to the product of their marginal distribution with high probability. For the
simplicity of presentation, we shall assume that VA ↔ T ↔ VB for augmented coin-tossing
protocols in the random oracle model. The simplified analysis captures all the primary
innovations of the new proof strategy of Maji and Wang [16,30]. The actual analysis only
introduces a poly(ε) slack in the simplified analysis presented below.

Main Result and Inductive Hypothesis

Our objective is to prove the following result.

Theorem 2. There exists a universal constant C > 0, such that any two-party r-message bias-X
fair coin-tossing protocol in the random oracle model is at least C√

r · X(1− X)-unfair.

This result, proved in [16], implies that any coin-tossing protocol using one-way
functions in a (fully) black-box manner is Ω

(
1/
√

r
)
-unfair. [30] extends this result to

demonstrate a separation from public-key encryption even in an f -hybrid model, where f
is a secure function evaluation functionality, such that secure oblivious transfer does not
exist in the f -hybrid model.

Towards proving this theorem, the survey shall summarize the proof of the following
technical result. Consider a stopping time τ : Ω → {1, 2, . . . , n, ∞}. Let Xτ represent
the expected color conditioned on the partial transcript (T1, . . . , Tτ). Similarly, Aτ rep-
resents the expected Alice defense conditioned on the fact that Bob aborts at the partial
transcript (T1, . . . , Tτ). Analogously, Bτ represents the expectation of the Bob defense coin
conditioned on the fact that Alice aborts at the partial transcript (T1, . . . , Tτ).

Theorem 3. There exists a universal constant C > 0, such that for any two-party r-message
bias-X, the fair coin-tossing protocol in the random oracle model the following bound holds.

sup
stopping time τ

E[|Xτ − Aτ |+ |Xτ − Bτ | ] ≥
4C√

n
· X(1− X).

Given Theorem 3 it is easy to prove Theorem 2 using an averaging argument. The
stopping time τ, witnessing the attack inTheorem 3, accounts for four different attacks:
Alice/Bob increasing/decreasing the expected output of the coin-tossing protocol. So, one
of these four attacks changes the expected output of the coin-tossing protocol by at least

C√
n · X(1− X).

Potential Function

Our analysis shall use the following potential function.

Φ(x, a, b) := x(1− x) + (x− a)2 + (x− b)2.
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Looking ahead, the variable x shall represent the expected output conditioned on the
partial transcript being T. Furthermore, a shall represent the expected Alice defense coin
(i.e., Alice output if Bob aborts) conditioned on the partial transcript being T. Similarly, b
shall represent the expected Bob defense coin conditioned on the partial transcript being
T. Intuitively, in hindsight, the term x(1− x) in the potential represents the quality of the
fail-stop attack, owing to the entropy in the output. For example, if the expected output
x is already close to 0 or 1, it is possible that one cannot significantly change the output
of the protocol. However, if the expected output x is far from both 0 and 1, then we shall
show that a large attack is possible. Furthermore, the term (x− a)2, intuitively, captures
the quality of the attack on honest Alice if she defends improperly. For example, if Bob
aborts, then the output distribution of Alice changes by |x− a|. Similarly, the term (x− b)2

captures the quality of the attack on honest Bob if his expected defense is far from the
expected output.

We remark that the function Φ(·, ·, ·) is not convex, in general. However, Jensen’s
inequality holds when one considers the evolution of augmented coin-tossing protocols.

Convexity of the Potential Function in Augmented Protocols

Given a partial transcript T of an augmented protocol, conditioned on this partial
transcript T, let (1) X represent the expected output of the protocol; (2) A be the expected
Alice defense coin; (3) B be the expected Bob defense coin. Consider one step in the
evolution of the protocol. Let T′ be the random variable representing the transcript that
extends the transcript T by one step in the protocol evolution. We represent this randomized
evolution as T′ ` T. Let X′, A′, B′ represent the expected output, Alice defense, and Bob
defense, respectively, conditioned on the partial transcript T′.

Observe that the following identities, referred to as the martingale properties, hold.

ET′`T [X
′] = X

ET′`T [A
′] = A, and

ET′`T [B
′] = B.

The augmented protocol has the property that the joint distribution of the views of
Alice and Bob is close to the product of its marginal distributions. In the sequel, for the
simplicity of presentation, we shall assume that the joint distribution of the Alice and Bob
views is identical to the product of its marginal distributions. This simplifying assumption
essentially preserves the qualitative nature of our results. The actual analysis incurs a small
slack in the lower bound that is linear in the “closeness parameter.” Using our simplifying
assumption, we have the following identity in augmented fair coin-tossing protocols.

ET′`T [A
′ · B′] = ET′`T [A

′] · ET′`T [B
′].

Now, we can state and prove a Jensen’s inequality for our potential function that holds
only in augmented fair coin-tossing protocols.

Proposition 1 (Jensen’s Inequality for Augmented Protocols). The following inequality holds
in any augmented fair coin-tossing protocol.

ET′`T [Φ(X′, A′, B′)] ≥ Φ(X, A, B).
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Proof. Consider the following manipulation.

ET′`T [Φ(X′, A′, B′)] = ET′`T [X
′(1− X′) + (X′ − A′)2 + (X′ − B′)2] (expanding)

= ET′`T [X
′ + (X′ − A′ − B′)2 − 2A′B′] (rearranging)

= ET′`T [X
′] + ET′`T [(X′ − A′ − B′)2]− 2ET′`T [A

′B′]
(linearity of expectation)

= X + ET′`T [(X′ − A′ − B′)2]− 2ET′`T [A
′B′] (martingale property)

≥ X + ET′`T [(X′ − A′ − B′)]2 − 2ET′`T [A
′B′]

(Jensen’s inequality on the function Z2)

= X + (X− A− B)2 − 2ET′`T [A
′B′] (martingale property)

= X + (X− A− B)2 − 2ET′`T [A
′] · ET′`T [B

′]

(augmented protocol property)

= X + (X− A− B)2 − 2AB (martingale property)

= Φ(X, A, B). (rearranging)

This observation completes the proof of the claim.

A Technical Lemma

For our proof, we shall need a technical lemma.

Lemma 1 (Technical Lemma: Quality of Choice). There exists a universal positive constant C,
such that the following identity holds.

max
{∣∣X′ − A′

∣∣+ ∣∣X′ − B′
∣∣, 4C√

n− 1
· X′(1− X′)

}
≥ 4C√

n
·Φ(X′, A′, B′).

The interested reader may refer to [15] for a proof of this technical result. For
A′ = B′ = X, this result is an algebraization of the geometric transformation in Figure 6
while introducing some slack in the constants.

Putting things together: The Inductive Argument

Proof of Theorem 3. We present the proof of the inductive step of the result. Let T = ∅,
the empty transcript, and T′ be the first message of the augmented coin-tossing protocol.
Below, we use Π′ to represent the coin-tossing protocol Π conditioned on the partial
transcript, which is T′.

opt(Π) = EΠ′`Π[max
{∣∣X′ − A′]

∣∣+ ∣∣X′ − B′
∣∣, opt(Π′)}

(definition of the optimal adversarial strategy)

≥ EΠ′`Π[max
{∣∣X′ − A′]

∣∣+ ∣∣X′ − B′
∣∣, 4C√

n− 1
· X′(1− X′)

}
(inductive hypothesis)

≥ EΠ′`Π[
4C]√

n
·Φ(X′, A′, B′) (technical lemma)

≥ 4C√
n
·Φ(X, A, B) (Jensen’s inequality for our potential function)

=
4C√

n
·
(

X(1− X) + (X− A)2 + (X− B)2
)

(definition of the potential function)

≥ 4C√
n
· X(1− X) (non-negativity of (X− A)2 and (X− B)2)
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This derivation concludes the proof of our main technical result.

5. Isoperimetric Inequalities

This section considers n-processors one-turn one-round coin-tossing protocols. The
strong [33] Byzantine adversary can see all messages of the processors and then decide
to corrupt k processors of its choice. Let ε+(π) represent the maximum insecurity caused
by a Byzantine adversary who increases the expected output of the protocol. Similarly,
ε−(π) represents the maximum insecurity caused by a Byzantine adversary decreasing the
expected output.

The connection to isoperimetric inequalities [3–5,82] (via the expansion of fixed density
subset of product spaces) establishes the relevance to topics in theoretical computer science,
such as expander graphs, complexity theory, and error-correcting codes. Every coin-tossing
protocol is equivalent to a unique subset S of an n-dimension product space Σn, where
the size of the alphabet set σ := |Σ| depends on the randomness complexity of the coin-
tossing protocol. In the full information model, without the loss of generality, one can
assume that all interactive protocols are stateless, and processors use a fresh block of
private randomness to generate the next message at any point during the evolution of the
coin-tossing protocol [83–85]. Furthermore, each processor can directly broadcast its local
private randomness as her message because the final output is a deterministic function of
the public transcript. Elements of this product space represent the complete transcript of
the coin-tossing protocol, the i-th coordinate of an element corresponds to the message sent
by processor i, and the subset S contains all elements of the product space on which the
coin-tossing protocol outputs 1. One considers the uniform distribution over Σn to sample
the elements.

The discussion in the sequel extends to the arbitrary corruption threshold k. However,
for the simplicity of the presentation, we consider the specific case of k = 1. Let ∂S+

k be the
set of elements in S (the complement of S) that are at a Hamming distance k = 1 from the
set S. Consequently, a Byzantine adversary can change an element from the set ∂S+

k ⊆ S
into some element of S by editing (at most) k = 1 coordinates. Note that, if the Byzantine
adversary can see all the messages and then performs the edits, then it can increase the
expected output by exactly ε+ =

∣∣∂S+
k

∣∣/σn.
Analogously, one defines the set ∂S−k ⊆ S that contains all elements at a Hamming

distance k = 1 from the set S. So, a Byzantine adversary who sees all the messages before
editing can reduce the expected output by ε− =

∣∣∂S−k
∣∣/σn.

Traditional isoperimetric inequalities over product spaces consider either the edge or
vertex perimeter of the set S. The vertex perimeter of a set is most relevant to our current
discussion. In this extremal graph-theoretic terminology, the (width-k) vertex perimeter of
the set S, represented by ∂V,kS is the set of all elements in S that are at a Hamming distance
of at most k from some element in S. Therefore, the perimeter ∂V,kS is identical to the set
∂S+

k . Similarly, the vertex perimeter of the set S (which is ∂V,kS) is identical to the set ∂S−k .
Extremal graph theory studies the vertex perimeter of a dense set S; the density of

the set S is X if this set corresponds to a bias-X coin-tossing protocol. The density of the
set S, therefore, is (1− X). The objective of extremal graph theory is to characterize the
optimal set S of a fixed density that minimizes its vertex perimeter. That is, equivalently,
the objective is to design a coin-tossing protocol (identified by S) that minimizes ε+. Note
that minimizing ε+ does not automatically entail the simultaneous minimization of ε− for
general Σ.

For small alphabet-size, for example, when σ = 2, the choice of S that minimizes its
perimeter is explicitly known (namely, the set of appropriate density that greedily includes
the smallest elements in the simplistic ordering). For this value of σ, it happens to be the case
that the complementary set of S simultaneously minimizes ε−. For large alphabets, however,
there are explicit counterexamples. Consider the large alphabet set Σ = {0, 1, . . . , σ− 1},
for a suitable choice of σ. Each party broadcast a random element from the set. The AND
protocol checks if all messages are non-zero. This protocol realizes (ε+, ε−) = ( 1−X

n , X). The
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complementary protocol realizes (ε+, ε−) = (1− X, X
n ). Therefore, there are coin-tossing

protocols achieving (ε+, ε−) = ( 1−X
n , X) and (ε+, ε−) = (1− X, X

n )), demonstrating that
minimizing the perimeter of S does not automatically minimize the perimeter of S.

The new cryptographic objective is to minimize ε = max{ε+, ε−}, i.e., simultaneously
minimize the maximum of the vertex perimeters of S and S. One may choose the proxy
objective of minimizing the sum of the perimeters of S and S, that is, the quantity ε+ + ε−.
This proxy objective is a two-approximation of the new cryptographic objective.

In particular, this observation motivates studying new isoperimetric inequalities
in extremal graph theory that are inspired by natural practical applications. Instead of
minimizing the vertex perimeter of a set S of fixed density, one considers the new objective
of minimizing the symmetric perimeter defined under various norms.

∂symV,k,`(S) :=
(∣∣∂V,kS

∣∣` + ∣∣∂V,kS
∣∣`)1/`

.

The ` = ∞ case corresponds to our new cryptographic objective, and the ` = 1 corresponds
to the case above. The proposed research provides evidence that such symmetric perimeters
may be more well-behaved in general. For instance, when k = 1 and ` = 1, Khorasgani,
Maji, and Wang [29] demonstrate that the density of the symmetric perimeter is 1/

√
n for

any dense set S, even in product spaces over large alphabets.

6. Conclusions

There are several fascinating open problems in coin-tossing protocols pertaining to
the topics covered in this survey. This section highlights two such problems below.

Consider a coin-tossing protocol where processors have multiple turns. In a t-turn
coin-tossing protocol, every processor sends messages in t rounds. Consequently, once the
adversary corrupts a particular processor, it can adversarially set all its future messages. In
this setting, what is the optimal bias-X coin-tossing protocol? For two processors, we know
that one of the processors can force an output 0/1 with certainty (based on games against
nature [68]). For a larger number of processors, characterizing the optimal coin-tossing
protocols remains open.

For the relativized separation results, [30] proved that if oblivious transfer is impossi-
ble in the f -hybrid model, then any r-round coin-tossing protocol in the f -hybrid model is
(roughly) C√

r -unfair. Fix one such function f that does not allow for the oblivious transfer
for the discussion below. Now, consider the hardness of computation assumption that
“there exists a secure protocol for f .” Observe that this hardness of computation assump-
tion is as powerful as the f -hybrid model. However, it may implicitly provide additional
restrictions on the computation power of the parties and the adversaries. Consider the
following analogy from complexity theory to highlight this subtle difference. In the first
scenario, consider efficient algorithms with access to the NP-oracle. In the second scenario,
consider the assumption that NP = P. The second scenario is at least as powerful as the
first scenario. However, the second scenario has several additional implicit consequences.
In particular, the entire PH collapses, and we have P = PH. Consequently, is it possible
that, through the hardness of computation assumption “there exists a secure protocol for f ,”
which is stronger than the f -hybrid model and enables coin-tossing with lower unfairness?
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