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Abstract: Coded Caching, proposed by Maddah-Ali and Niesen (MAN), has the potential to reduce
network traffic by pre-storing content in the users’ local memories when the network is underutilized
and transmitting coded multicast messages that simultaneously benefit many users at once during
peak-hour times. This paper considers the linear function retrieval version of the original coded
caching setting, where users are interested in retrieving a number of linear combinations of the
data points stored at the server, as opposed to a single file. This extends the scope of the authors’
past work that only considered the class of linear functions that operate element-wise over the files.
On observing that the existing cache-aided scalar linear function retrieval scheme does not work in
the proposed setting, this paper designs a novel coded caching scheme that outperforms uncoded
caching schemes that either use unicast transmissions or let each user recover all files in the library.

Keywords: coded caching; linear function retrieval; uncoded cache placement

1. Introduction

Content caching is an efficient technique to handle the increase of requests for massive
amounts of data and content over communication networks. By leveraging low-cost
memory components at the user sides, caching reduces peak-time traffic by prefetching
contents closer to users during off-peak time, thereby reducing the transmission delay or
equivalently increasing the bandwidth in communication systems. Traditional caching
techniques aim at prefetching popular content by predicting the user demands, thus
realizing a “local caching gain” (i.e., that scales with the amount of local memory) [1].
Maddah-Ali and Niesen (MAN) showed that it is possible to actually attain a “global
caching gain” (i.e., that scales with the global amount of memory in the network) by
using codes [2]. The idea is that, if a single transmission can serve a number of users
simultaneously, the network load can be reduced by the same factor thus speeding-up
communications significantly.

In the MAN setting, a server has a library of N files and broadcasts to K users through
an error-free shared-link. Each user has a cache of size of at most M files. The MAN
scheme consists of two phases: placement phase, where the server pushes content from the
library to the local caches without knowledge of user future demands, and delivery phase,
where each user requests one file and the server broadcasts coded packets such that each
user can correctly recover its desired file. The objective is to minimize the worst-case load
over all possible user demands, that is, the number of files that must be communicated
so that any demands can be satisfied. The MAN scheme is optimal under the constraint
of uncoded cache placement (i.e., each user directly stores a collection of segments of the
library files in its cache) when N ≥ K [3,4]. By removing the redundant transmissions in
the MAN scheme when a file is requested multiple times, Yu, Maddah-Ali, and Avestimehr
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(YMA) derived a scheme that is optimal under the constraint of uncoded cache placement
for N < K [5]. In general, the YMA scheme is order optimal to within a factor of 2 [6],
that is, coded placement can at best half the load of the YMA scheme.

On the motivation that linear and multivariate polynomial queries naturally arise
in modern engineering problems and deep learning algorithms such as matrix-vector,
matrix-matrix multiplications, in [7] the authors posed the question of what is the optimal
worst-case load when the cache-aided users are interested in retrieving a scalar linear
function of the files rather than a single file. For the class of functions considered in [7],
which are restricted to operate element-wise on the file entries, it was surprisingly shown
that the YMA load can be achieved, that is, there is no penalty in terms of load in retrieving
scalar linear functions under the constraint of uncoded cache placement. It was noted
in [7] that the proposed scalar linear function scheme can be extended to all scenarios to
which the original MAN scheme has been extended, such as for example demand-private
retrieval [8] and Device-to-Device networks [9,10]. In addition, the scalar linear function
scheme [7] can be used as a building block to provide demand-privacy and content-security
against colluding users [11,12].

In this paper, we move to a more general case of cache-aided linear function retrieval
than in [7], where users can request general linear combinations of all symbols in the library,
and not necessarily restricted to operate element-wise on the file entries. For example, each
user aims to compute some statistics of a bunch of data such as local weighted averages
(which are general linear functions) of the data; these are very common tasks in many
applications depending on the data and on the weights.

Instead, each user may want to compute some statistics of a bunch of data such
as average, or compute local weighted averages (which are general linear functions) of
the data. We think that it is a very common task in many applications depending on
the data and on the weights. So in our paper, if the Academic Editor agrees, we will
replace the application in deep neutral networks by the application in computing local
weighted averages.

Besides the novel and realistic problem formulation, our main contributions are
as follows. We first introduce a baseline scheme that either lets each user recover all the
symbols in the library or uses unicast transmissions to satisfy each user. The main challenge
to implement a coded caching strategy in this problem is that each symbol in a user’s
demand is a linear combination of all the symbols in the library. Inspired by the grouping
coded caching strategy in [13], which was used to reduce the sub-packetization level
(The sub-packetization level is the smallest file length necessary to realize an achievable
scheme.), we propose a scheme that treats the demand of each user as a matrix-vector
multiplication and uses the grouping strategy to generate multicast messages after possibly
performing invertible linear matrix operations. The proposed scheme outperforms the
baseline scheme in all parameter regimes.

1.1. Paper Organization

The rest of this paper is organized as follows. Section 2 formulates the shared-link
cache-aided general linear function retrieval problem. Section 3 provides the main result of
this paper. Section 4 provides some numerical evaluations. Section 5 concludes the paper.
Some proofs may be found in Appendices.

1.2. Notation Convention

Calligraphic symbols denote sets, bold symbols denote vectors and matrices, and
sans-serif symbols denote system parameters. We use | · | to represent the cardinality of
a set or the length of a vector; [a : b] := {a, a + 1, . . . , b} and [n] := [1 : n]; ⊕ represents
bit-wise XOR; [a]+ := max{a, 0}; Fq represents a finite field with order q; AT and A−1

represent the transpose and the inverse of matrix A, respectively; rankq(A) represents
the rank of matrix A on field Fq; In represents the identity matrix with dimension n× n;
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(A)m×n represents the dimension of matrix A is m× n; we let (x
y) = 0 if x < 0 or y < 0 or

x < y.

2. System Model

Different from [7], here we consider the case where the users’ desired linear functions
are no longer scalar or operating element-wise across the files entries, thus we consider the
whole library as a single file.

The (K,F, L, q) shared-link cache-aided general linear function retrieval problem con-
sists of a central server with access to a library of F independent and identically distributed
(i.i.d.) symbols over a finite filed Fq, denoted by w = (w1, . . . , wF)

T ∈ (Fq)F. We often
treat w as a column vector, which should be clear from the context. The server is connected
to K cache-aided users through an error-free shared-link. The system has two phases.

• In the placement phase, the server pushes up to M symbols into the local cache of
each user, where M ∈ [0 : F], without knowing what the users will demand later. The
cached content of user k ∈ [K] is denoted by

Zk = φk(w), (1)

where φk is the placement function for user k defined as

φk : (Fq)
F → (Fq)

M, k ∈ [K]. (2)

M is referred to as the cache (or memory) size. If each user directly copies M symbols
from the library into its cache, the cache placement is said to be uncoded.

• In the delivery phase, each user wants to retrieve L linear combinations of all the
symbols in the library, where L ∈ [1 : F].
The demand of user k ∈ [K] is represented by the matrix Dk ∈ (Fq)L×F, meaning user
k aims to retrieve

yk = Dk w ∈ (Fq)
L, (3)

Let the collection of all demand matrices be D := [D1; . . . ; DK] ∈ (Fq)KL×F. We
assume that the server and all users know D which is communicated on a separate
channel, thus not impacting the downlink load next—see also Remark 4. ( Notice that
differently from the cache-aided matrix multiplication problem in [14], where the
matrix on the each side of the desired multiplication is one of the library files, in this
paper each user k ∈ [K] desires Dkw where Dk is known by all the users in the delivery
phase and w represents the vector of all symbols in the library.)
According to all the users’ demand matrix D, the server broadcasts the message

X = ψ(D, w), (4)

where ψ is the encoding function

ψ : (Fq)
KL×F × (Fq)

F → (Fq)
R, (5)

for some R ∈ [0 : F]. R is referred to as the load.

Achievability: For the (K,F, L, q) shared-link cache-aided general linear function re-
trieval problem, we say that the pair (M,R) is achievable if for any possible demand D
there exist placement functions in (2) and a delivery function in (5) such that

H(Dkw|D, Zk, X) = 0, ∀k ∈ [K]. (6)
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Optimal memory-load tradeoff: For the (K,F, L, q) shared-link cache-aided general linear
function retrieval problem, the objective is to determine the minimum worst-case downlink
load (or load for simplicity) defined as

R?(M) = min
φ1,...,φK,ψ

{R : (M,R) is achievable}. (7)

Optimal memory-load tradeoff in the limit for large file size: Since solving the problem
in (7) for any given (K,F, L, q) is challenging, in the following we shall consider the regime
where the file size F is as large as desired and we thus let the system parameters scale with
the file length as follows

M := µF, µ ∈ [0, 1], (8)

L := λF, λ ∈ [0, 1], (9)

R := ρF, ρ ∈ [0, 1]. (10)

For fixed (K, λ) we aim to characterize the minimum worst-case normalized downlink
load (or normalized load for simplicity)

ρ?(µ) = min
φ1,...,φK,ψ

{ρ : (M,R) = (µF, ρF) is achievable for some (F, q)}. (11)

Remark 1 (Relationship to [7]). The cache-aided scalar linear function retrieval problem in [7] is
a special case of the formulation here. More precisely, let F = NL (i.e., 1

N = λ), where N indicates
the number of files and λF is the file length. The demand of user k ∈ [K] is represented by the vector
yk = (yk,1, yk,2, . . . , yk,N) ∈ (Fq)N by which we mean that the user is requesting

Dk =
[
yk,1IL, yk,2IL, . . . , yk,NIL

]
∈ (Fq)

L×NL, (12)

where In is the identity matrix with dimension n× n. In the restricted setting where the demands
are as in (12) the optimal load under the constraint of uncoded cache placement is the lower convex
envelop of the points

(
M

L
,
Rscalar
L

)
=

(
N t
K

,
( K

t+1)− (K−min{K,N}
t+1 )

(Kt )

)
, t ∈ [0 : K], (13)

⇐⇒ (µ, ρscalar) =

(
t
K

, λ
( K

t+1)− (K−min{K,N}
t+1 )

(Kt )

)
, t ∈ [0 : K], (14)

where for a given value of t in (13) the subpacketization level L must be an integer multiple of (Kt ).

Remark 2 (A minrank solution). For the (K,F, L, q) shared-link cache-aided general linear
function retrieval problem, the best linear scheme, inspired by [15,16], is a follows. Linear placement:
user k ∈ [K] caches Zk = Pkw ∈ (Fq)M for some Pk ∈ (Fq)M×F. Linear delivery: the server
sends, in the worst case, a number of symbols given by

Rminrank = min
P1,...,PK

max
D1,...,DK

min
T1,...,TK

rank


D1 + T1P1
D2 + T2P2

...
DK + TKPK

, (15)

where Tk ∈ (Fq)L×M, k ∈ [K].
Solving the minrank problem in (15) is hard [15,16], thus in the following we shall design a

scheme with lower complexity.
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Remark 3 (A baseline scheme). For the (K,F, L, q) shared-link cache-aided general linear func-
tion retrieval problem, the load

Rbaseline = min{KL,F−M}
⇐⇒ ρbaseline = min{Kλ, 1− µ}, (16)

can be achieved by an uncoded caching strategy as follows.

• In order to achieve the load KL, we transmit one by one the elements of yk, k ∈ [K], in (3). The
main limitation of this unicast transmission scheme is the lack of multicast gain.

• In order to achieve F −M we let each user recover all the symbols in the library. In the
placement phase, each user caches the first M symbols in the library. In the delivery phase,
the server transmits all the remaining F−M symbols. The main limitation of this scheme is
that, if L < F−M, the users do not need to recover all the symbols in the library in order to
retrieve their desired function.

The main contribution of this paper is to find schemes that, despite the lack of structure on the
demand matrices in general, achieve a smaller load than (16).

Remark 4 (Uplink and downlink loads). Besides downlink load, uplink load is also considered
in the distributed matrix-matrix multiplication problem [17–19]. In this work, the communication
cost of uploading the demand matrix to the server is not a focus, i.e, we assume that each user
communicates the whole demand matrix to the server and all other users on a separate channel
that is not the bottleneck in the system. This assumption can be also justified as follows. Let D(k)
denotes the set of possible demand matrices of user k ∈ [K], referred to as demand range, that is,
user k chooses one matrix in D(k) as its demand. We assume that D(k) is known by the server
and all users. The communication cost to let the server and the other users know the realization
of the demand matrix is negligible compared to the number of transmissions from the server if
∑k∈[K] logq(|D(k)|)� F.

3. Main Result

Based on Remark 3, the main challenge is to design a coded caching strategy that (i)
lets each user directly recover the desired linear combinations, instead of recovering all
the library symbols, and (ii) attains coded caching gain, as opposed to serving the users
one-by-one with unicast transmissions. The main contribution of this paper is the following
theorem, which is proved in Appendix A.

Theorem 1. For the (K, λ) shared-link cache-aided general linear function retrieval problem,
we have:

• if µ = α
g−1

g + (1− α) g
g+1 where g ∈ [K− 1] and α ∈ [0, 1], the following normalized load

is achievable

ρach :=


⌈
K
g

⌉
λ, if α

g ≥
⌈
K
g

⌉
λ

min{ρ1, ρ2} if α
g ≤

⌈
K
g

⌉
λ

, (17)

ρ1 :=
α

g
+ min

{⌈
K

g + 1

⌉
λ,

(1− α)

g + 1

}
, (18)

ρ2 :=
⌈
K

g

⌉
min

{
α

g
, λ

}
+ min

{⌈
K

g + 1

⌉[
λ− α

g

]+
,
(1− α)

g + 1

}
; (19)

• if µ = αK−1
K + (1− α) where α ∈ [0, 1], the following normalized load is achievable

ρach = ρ3 = min
{ α

K
, λ
}

. (20)
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Next, we provide the intuition behind the proposed scheme in Theorem 1, which is
based on three ingredients:

1. We start by the achievable scheme for (20) with α = 1. We aim to design the cache
placement such that each user caches a fraction K−1

K of the file and the uncached
part of file by this user is known by the remaining K − 1 users. With this cache
placement, the delivery consists of a single multicast message with multicasting gain
K. More precisely, the construction of the proposed scheme is as follows.
ecalling that, in Remark 1 with t = K− 1, each user misses a fraction 1/K of each
file and that missing fraction is known by the remaining K− 1 users; with t + 1 = K,
the delivery consists of a single multicast message with multicasting gain K that is the
sum of each user’s missing fraction of the demanded file. In our context, this idea
becomes the following scheme.
Assume K divides F. We use here a Matlab-like notation for submatrices. The library
is partitioned into K equal length subfiles as follows

Ik :=
[
(k− 1)

F

K
+ 1 : k

F

K

]
, k ∈ [K], (21)

wk := w(Ik) ∈ (Fq)
F
K , k ∈ [K], (22)

w = (w1, . . . , wK); (23)

user k ∈ [K] caches Zk = (wj : j ∈ [K] \ {k}); the server delivers the multicast
message

X =

{
∑k∈[K] Dk; :,Ik

wk ∈ (Fq)L, if F
K > L

∑k∈[K] wk ∈ (Fq)
F
K , if F

K ≤ L
, (24)

where Dk; :,Ik
represents the sub-matrix of Dk including the columns with indices in

Ik. In X, each user k ∈ [K] knows all but the requested vector{
Dk; :,Ik

wk, if F
K > L;

wk, if F
K ≤ L,

,

such that user k can recover either of them. Thus an achieved normalized memory-
load tradeoff is

(µ, ρ) =

(
1− 1

K
, min

{
1
K

, λ

})
. (25)

2. We then introduce the achievable scheme for (17) with α ∈ {0, 1}. Assume now

the K users are portioned into g groups of
⌈
K
g

⌉
users each, where g ∈ [K− 1]. Let

the users in the same group share the same cache content and recover all the linear
combinations demanded by the users in the group. Then the normalized memory-
load tradeoff is as in (25) but with K replaced by with g and L replaced by

⌈
K
g

⌉
L.

Therefore, we get that the following normalized memory-load points are achievable

(µ, ρ) =

(
1− 1

g
, min

{
1
g

, λ

⌈
K

g

⌉))
, g ∈ [K]. (26)

3. The rest of the proof of Theorem 1 consists of a method to ‘interpolate’ among
the points in (26), as explained in Appendix A. Unlike cache-aided scalar linear
function retrieval in [7], the difficulty in the considered problem is that connecting two
normalized memory-load points by a line segment is generally impossible. The main
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reason is that if we partition w as w = [w′; w′′] and use a different cache placement
strategy on each part, each demanded function Dkw is in the form

Dkw = D′kw′ + D′′k w′′; (27)

thus it cannot be divided into two separate parts, where the first part only contains the
linear combinations of w′ and the second part only contains the linear combinations
of w′′. An example to highlight this limitation and our approach to overcome it is
provided at the end of this section.

Remark 5 (Comparison to the baseline scheme). We show here that the proposed scheme in
Theorem 1 outperforms the baseline scheme in (3).

• Case µ = α
g−1

g + (1− α) g
g+1 where g ∈ [K] and α ∈ [0, 1]: From (17) and (19), it can be

seen that

ρach ≤
⌈
K

g

⌉
λ ≤ Kλ. (28)

From (17) and (18), it can be seen that

ρach ≤
α

g
+

1− α

g + 1
= 1− µ. (29)

Hence, from (28) and (29), we can prove ρach ≤ ρbaseline in this case.
• Case µ = αK−1

K + (1− α) where α ∈ [0, 1]: Since in this case α
K = 1− µ, from (20) we can

prove ρach ≤ ρbaseline in this case.

Remark 6 (Connection to Remark 1). For the proposed scheme achieving (25), the cache place-
ment is the same as the cache-aided scalar linear function retrieval scheme in Remark 1 with
t = K− 1.

ecalling that, in Remark 1 with t = K− 1, each user misses a fraction 1/K of each file and that
missing fraction is known by the remaining K− 1 users; with t + 1 = K, the delivery consists of a
single multicast message with multicasting gain K that is the sum of each user’s missing fraction of
the demanded file. In our context, this idea becomes the following scheme.

Notice that, for the considered cache-aided general linear function retrieval problem where
µ = t

K and t ∈ [K], we could use the cache-aided scalar linear function retrieval scheme in Remark 1
to deliver ( K

t+1) pieces of the requested vectors. The scheme would achieve

(µ, ρ) =

(
t
K

, λ

(
K

t + 1

))
, t ∈ [K], (30)

which reduces to (25) for t = K− 1. By the grouping argument we would achieve

(µ, ρ′) =

(
t
g

, λ

⌈
K

g

⌉(
g

t + 1

))
, t ∈ [g], g ∈ [K]. (31)

Let then fix one g ∈ [K] and one t ∈ [g− 2], and analyse the achieved normalized load in (31).
We will show that

ρ′ = λ

⌈
K

g

⌉(
g

t + 1

)
≥ ρbaseline. (32)
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as follows. It can be seen that

λ

⌈
K

g

⌉(
g

t + 1

)
≥ Kλ

( g
t+1)

g
(33)

≥ Kλ (34)

≥ ρbaseline, (35)

where (34) follows since t ∈ [g− 2] and thus ( g
t+1) ≥ g. This shows that, with the exception for

the normalized memory-load points with t = g− 1, the scheme in (31) is inferior to the baseline
scheme in (16), and will thus not be pursued in the rest of the paper.

We finish this section with an example to illustrate the main ideas of the proposed scheme.

Example 1. We consider a system with K = 6 users, cache fraction µ = 47
72 , and demand

fraction λ = 1
12 . It can be seen that

µ =
47
72

= α
g− 1

g
+ (1− α)

g
g + 1

∣∣∣∣
α= 1

12 , g=2
. (36)

Placement Phase. It can be seen that the memory size is between µ1 = g−1
g = 1

2 and

µ2 = g
g+1 = 2

3 . We partition w into two parts as w = [w1; w2] where w1 ∈ (Fq)F/12 and

w2 ∈ (Fq)11F/12. Furthermore,

• w1 is partitioned into two equal-length subfiles, w1 = [w1
{1}; w1

{2}], each of which has
F
24 symbols. We divide the 6 users into 2 groups where G1

1 = {1, 3, 5} and G1
2 = {2, 4, 6}.

We let users in G1
1 cache w1

{1} and let users in G1
2 cache w1

{2}.

• w2 is partitioned into three equal-length subfiles, w2 = [w2
{1,2}; w2

{1,3}; w2
{2,3}], each

of which has 11F
36 symbols. We divide the 6 users into 3 groups, where G2

1 = {1, 4},
G2

2 = {2, 5}, and G2
3 = {3, 6}. We let users in G2

1 cache w2
{1,2} and w2

{1,3}, let users in

G2
2 cache w2

{1,2}, w2
{2,3}, and let users in G2

3 cache w2
{1,3} and w2

{2,3}.

Each user caches F
24 + 2×11F

36 = 47F
72 symbols, thus satisfying the memory size con-

straint.
Delivery Phase. With some permutation on the rows of w, the demand of user 1 can be

expressed as

D1 w =D1,{1} w1
{1} + D1,{1,2} w2

{1,2} + D1,{1,3} w2
{1,3} + D1,{2} w1

{2} + D1,{2,3} w2
{2,3}. (37)

User 1 can recover D1,{1}w1
{1}+D1,{1,2}w2

{1,2}+D1,{1,3}w2
{1,3} from its cache, and sim-

ilarly for the other users. Thus in the delivery phase, the users need to recover

B1 := D1,{2} w1
{2} + D1,{2,3} w2

{2,3}, (38)

B2 := D2,{1} w1
{1} + D2,{1,3} w2

{1,3}, (39)

B3 := D3,{2} w1
{2} + D3,{1,2} w2

{1,2}, (40)

B4 := D4,{1} w1
{1} + D4,{2,3} w2

{2,3}, (41)

B5 := D5,{2} w1
{2} + D5,{1,3} w2

{1,3}, (42)

B6 := D6,{1} w1
{1} + D6,{1,2} w2

{1,2}. (43)

If we treat each sum in (38)–(43) as a block and use the MAN strategy to delivery
these blocks, we would transmit B1 + B2, B3 + B4, B5 + B6 for a total of F

4 symbols. Hence,
the scheme achieves the same normalized load as the proposed scheme in (26) with µ1 = 1

2 ;
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in other words, a portion of the memory of size µ− µ1 = 47
72 −

1
2 = 11

72 would be wasted.
We next propose two novel schemes to let each user recover its desired sum in (38)–(43)
while leveraging the whole memory.

The solution that achieves ρ1 in (18). Focus on the demanded sum of user 1 in (38). The
key idea is to let user 1 recover D1,{2}w1

{2} and D1,{2,3}w2
{2,3} separately. In particular,

• For the first term in B1 in (38), since the dimension of D1,{2} is F
12 ×

F
24 and the sub-

demand matrix D1,{2} is known by each user, we let user 1 directly recover w1
{2},

which contains F
24 symbols, and then compute D1,{2}w1

{2}. Similarly, we let users 3, 5

recover w1
{2}, and users 2, 4, 6 recover w1

{1}. Thus in the delivery phase, the server
transmits

w1
{1} + w1

{2}, (44)

for a total of F
24 symbols, where users 1, 3, 5 know w1

{1} and users 2, 4, 6 know w1
{2}.

• For the second term in B1 in (38), since the dimension of D1,{2,3} is F
12 ×

11F
36 and the

sub-demand matrix D1,{2,3} is known by each user, user 1 needs to recover all symbols
in D1,{2,3}w2

{2,3}. We denote C2
1,{2,3,5,6} := D1,{2,3}w2

{2,3} since it is known by users
2, 3, 5, 6. Hence, in order to let each user recover the first term in its desired sum,
the server transmits

C2
1,{2,3,5,6} + C2

2,{1,3,4,6} + C2
3,{1,2,4,5}, (45)

C2
4,{2,3,5,6} + C2

5,{1,3,4,6} + C2
6,{1,2,4,5}, (46)

for a total of F
6 symbols.

Hence, in the delivery phase the server transmits F
24 + F

6 = 5F
24 symbols, and the

normalized load is ρ1 = 5
24 , which coincides with (18).

The solution that achieves ρ2 in (19). The idea is to partition each user’s demand into two
parts after having removed its cached content, where the partition is the result of a clever
invertible linear transformation; we then have two steps, one for each of the two parts.

We first focus on the demand of user 1 in (38), i.e.,

B1 = D1,{2}w
1
{2} + D1,{2,3}w

2
{2,3} =

[
D1,{2} D1,{2,3}

] [ w1
{2}

w2
{2,3}

]
. (47)

The main strategy here is to take a linear transformations of (47) as follows

B′1 = (T1) F
12×

F
12

[ (
D1,{2}

)
F
12×

F
24

(
D1,{2,3}

)
F
12×

11F
36

] 
(

w1
{2}

)
F
24×1(

w2
{2,3}

)
11F
36 ×1

, (48)

where T1 is full-rank and the bottom F
12 −

F
24 = F

24 symbols in B′1 are linear combinations
of w2

{2,3} only (i.e., these linear combinations do not contain any term in w1
{2}). This is

possible because B1 contains F
12 linear combinations of all symbols in [w1

{2}; w2
{2,3}], while

w1
{2} contains F

24 symbols. Hence, we can re-express B′1 as

B′1 =


(

B′1,{2,6}

)
F
24×1(

B′1,{2,3,5,6}

)
F
24×1

, (49)



Entropy 2021, 23, 25 10 of 16

where B′1,{2,6} contains F
24 linear combinations of the symbols in w1

{2} and w2
{2,3}, which

are both known by users 2 and 6, while B′1,{2,3,5,6} contains F
24 linear combinations of the

symbols in w2
{2,3} which are known by users in {2, 3, 5, 6}. It will be clarified later that

the server transmits B′1,{2,6} with coded caching gain equal to g = 2 (i.e., the multicast
message satisfies two users simultaneously), and B′1,{2,3,5,6} with coded caching gain equal
to g + 1 = 3.

Following the same line or reasoning, we can express the demands of the other users as

B′2 = [B′2,{1,3}; B′2,{1,3,4,6}]; (50)

B′3 = [B′3,{2,4}; B′3,{1,2,4,5}]; (51)

B′4 = [B′4,{3,5}; B′4,{2,3,5,6}]; (52)

B′5 = [B′5,{4,6}; B′5,{1,3,4,6}]; (53)

B′6 = [B′6,{1,5}; B′6,{1,2,4,5}]. (54)

The transmission contains two steps.

• In the first step, we let each user k ∈ [6] recover the first term of its demand B′k. In this
step, the server transmits

B′1,{2,6} + B′2,{1,3}, (55)

B′3,{2,4} + B′4,{3,5}, (56)

B′5,{4,6} + B′6,{1,5}, (57)

which contains F
8 symbols.

• In the second step, we let each user k ∈ [6] recover the second term of its demand B′k.
In this step, the server transmits

B′1,{2,3,5,6} + B′2,{1,3,4,6} + B′3,{1,2,4,5}, (58)

B′4,{2,3,5,6} + B′5,{1,3,4,6} + B′6,{1,2,4,5}, (59)

for a total of F
12 symbols. From the received multicast messages and its cache content,

each user k ∈ [K] can recover B′k, and then compute Bk from T−1
k B′k.

The normalized load is ρ2 = 1
8 + 1

12 = 5
24 , which conincides with (19).

In conclusion, the normalized load of the proposed scheme is ρach = min{ρ1, ρ2} = 5
24 ,

while the baseline scheme in (16) achieves the normalized load equals 25
72 .

4. Numerical Evaluations

We provide here some numerical evaluations on the performance of the proposed
scheme in (17). In Figure 1a we consider the case (K, λ) = (6, 1/15) and in Figure 1b
the case (K, λ) = (6, 1/10). In Figure 2a we consider the case (K, λ) = (10, 1/50) and in
Figure 2b the case (K, λ) = (10, 1/10). From the figures, we observe that:

• In both settings our proposed scheme in Theorem 1 outperforms the baseline scheme,
as proved in Remark 5.

• Fix K and µ. When λ grows, the gap between the proposed scheme and the baseline
scheme reduces. When λ = 1

K , the proposed scheme and the baseline scheme have
the same load; this is because at the corner points of the proposed scheme in (26) we
achieve the load 1− µ which is the same as the baseline scheme.

• In addition, we also plot the cache-aided scalar linear function retrieval scheme in (14),
which only works for the case where the demand matrices are with the form in (12).
This comparison shows that, if the demand matrices are structured, we can design
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caching schemes that leverage the special structure of the demands to achieve a load
that is no larger than the load for the worst-case demands. Moreover, the more the
structure the more the gain compared to in (17).
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Figure 1. The shared-link cache-aided general linear function retrieval problem K = 6. (a) λ = 1
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Figure 2. The shared-link cache-aided general linear function retrieval problem K = 10. (a) λ = 1

50 , (b) λ = 1
10 .

5. Conclusions

In this paper, we formulated the cache-aided general linear function retrieval problem,
where each user requests some linear combinations of all the symbols in the library. The for-
mulated problem generalizes the cache-aided scalar linear function retrieval problem. We
proposed a novel scheme that strictly improves on an uncoded caching baseline scheme.
Further directions include designing improved coded caching schemes for arbitrary users’
demand ranges (the setting considered here), as well as for given specific users’ demand
ranges. In addition, the derivation of a converse bound is also part of on-going work.

Author Contributions: Conceptualization, K.W., H.S., M.J., D.T., and G.C.; methodology, K.W., H.S.,
M.J., D.T., and G.C.; writing—original draft preparation, K.W.; writing—review and editing, K.W.,
H.S., M.J., D.T., and G.C.; funding acquisition, H.S., M.J., D.T., and G.C. All authors have read and
agreed to the published version of the manuscript.



Entropy 2021, 23, 25 12 of 16

Funding: The work of K. Wan and G. Caire was partially funded by the European Research Council
under the ERC Advanced Grant N. 789190, CARENET. The work of H. Sun was supported in part by
NSF Award 2007108. The work of M. Ji was supported in part by NSF Awards 1817154 and 1824558.
The work of D. Tuninetti was supported in part by NSF Award 1910309.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Theorem 1

By a grouping strategy, we can achieve the normalized memory-load points in (26). In
the following, inspired by Example 1, we introduce a general interpolation method among
the points in (26).

We let Mod(b, a) represent the modulo operation on b with integer divisor a and we
let Mod(b, a) ∈ {1, . . . , a} (i.e., we let Mod(b, a) = a if a divides b).

Appendix A.1. g ∈ [K− 1] and α
g ≥

⌈
K
g

⌉
λ

We first consider the case where g ∈ [K− 1] and α
g ≥

⌈
K
g

⌉
λ. Recall that µ = α

g−1
g +

(1− α) g
g+1 > g−1

g . In this case, we directly use the caching scheme in (26) for the memory

size g−1
g with achieved normalized load

min
{⌈

K

g

⌉
λ,

1
g

}
=

⌈
K

g

⌉
λ, (A1)

which coincides with (17).

Appendix A.2. g ∈ [K− 1] and α
g ≤

⌈
K
g

⌉
λ

We then focus on the case where g ∈ [K− 1] and α
g ≤

⌈
K
g

⌉
λ.

Placement Phase. The placement is done by the memory-sharing between the proposed
placements in (26) for M1 = g−1

g and M2 = g
g+1 . We divide w into two parts, w = [w1; w2]

where the dimension of w1 is αF× 1 and the dimension w2 is (1− α)F× 1.
For the first part, we further partition w1 into g non-overlapping and equal-length

subfiles, w1 = [w1
T : T ⊆ [g], |T | = g− 1], where the dimension of each subfile w1

T is
αF
g × 1. Each user k ∈ [K] caches w1

T where T ⊆ [g], |T | = g− 1, and Mod(k, g) ∈ T .

For the second part of each file, we further partition w2 into g + 1 non-overlapping
and equal-length subfiles, w2 = [w2

T : T ⊆ [G + 1], |T | = g], where the dimension of

each subfile w2
T is (1−α)F

g+1 × 1. Each user k ∈ [K] caches w2
T where T ⊆ [g + 1], |T | = G,

and Mod(k, g + 1) ∈ T .
In total, each user caches

(g− 1)
αF

g
+

g(1− α)F

g + 1
= µF (A2)

symbols, satisfying the memory size constraint.
Delivery Phase. For each T1 ∈ [g] where |T1| = g− 1, we define Dk,T1 as the sub-matrix

of Dk which contains the columns corresponding to the symbols in w1
T1

. In addition,
for each T2 ∈ [g + 1] where |T2| = g, we define Dk,T2 as the sub-matrix of Dk which
contains the columns corresponding to the symbols in w2

T2
.
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We can express the demand of user k ∈ [K] as

Dk w = ∑
T1∈[g]:|T1|=g−1

Dk,T1 w1
T1

+ ∑
T2∈[g+1]:|T2|=g

Dk,T2w2
T2

(A3)

= ∑
T1∈[g]:|T1|=g−1,

Mod(k,g)∈T1

Dk,T1w1
T1

+ ∑
T2∈[g+1]:|T2|=g,
Mod(k,g+1)∈T2

Dk,T2w2
T2

+ Dk,[g]\{Mod(k,g)} w1
[g]\{Mod(k,g)} + Dk,[g+1]\{Mod(k,g+1)} w2

[g+1]\{Mod(k,g+1)}. (A4)

It can be seen that user k knows all the terms in (A4) except

Bk := Dk,[g]\{Mod(k,g)} w1
[g]\{Mod(k,g)} + Dk,[g+1]\{Mod(k,g+1)} w2

[g+1]\{Mod(k,g+1)}. (A5)

Hence, in the delivery phase user k should recover Bk. We then propose two solutions
for this objective.

The solution that achieves ρ1 in (18). We let user k recover

Bk,1 := Dk,[g]\{Mod(k,g)} w1
[g]\{Mod(k,g)}, (A6)

Bk,2 := Dk,[g+1]\{Mod(k,g+1)} w2
[g+1]\{Mod(k,g+1)}. (A7)

For the first term Bk,1, the dimension of Dk,[g]\{Mod(k,g)} is λF× αF
g and Dk,[g]\{Mod(k,g)}

is known by each user. Recall that in this case we have αF
g ≤ λF. Hence, we let user k

directly recover w1
[g]\{Mod(k,g)}. Thus in the delivery phase, we let the server transmit

∑
i∈[g]

w1
[g]\{i}, (A8)

with αF
g symbols. It can be seen that each user k ∈ [K] desires w1

[g]\{Mod(k,g)} and caches all

the other terms in (A8), such that user k can recover w1
[g]\{Mod(k,g)}.

For the second term Bk,2, the dimension of Dk,[g+1]\{Mod(k,g+1)} is λF× (1−α)F
g+1 . Notice

that Bk,2 only contains linear combinations of the second parts of files in the library. For the
second part of each file, the users in

G2
i = {k ∈ [K] : Mod(k, g + 1) = i}

cache the same content, where i ∈ [g + 1]. Thus we can use the proposed delivery scheme
in (26). More precisely, for each i ∈ [g + 1], we generate a virtual user vi with the demand

D′i w2
[g+1]\{i} =


DG2

i (1),[g+1]\{i}
DG2

i (2),[g+1]\{i}
...

DG2
i (|G

2
i |),[g+1]\{i}

 w2
[g+1]\{i}. (A9)

Notice that the dimension of D′i is |G2
i |λF×

(1−α)F
g+1 . So virtual user vi only needs to

recover at most min
{⌈

K
g+1

⌉
λ, 1−α

g+1

}
F symbols in (A9). We denote the set of these symbols

by P′i,[g+1]\{i}, which is known by all the other virtual users. We then let the server transmit

∑
i∈[g+1]

P′i,[g+1]\{i}, (A10)

with min
{⌈

K
g+1

⌉
λ, 1−α

g+1

}
F symbols, such that each virtual user can recover its demand.
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In total, the server transmits

αF

g
+ min

{⌈
K

g + 1

⌉
λ,

1− α

g + 1

}
F = ρ1F (A11)

symbols, which coincides with (18).
The solution that achieves ρ2 in (19). Recall that the demanded sum of user k is

Bk = Dk,[g]\{Mod(k,g)} w1
[g]\{Mod(k,g)} + Dk,[g+1]\{Mod(k,g+1)} w2

[g+1]\{Mod(k,g+1)} (A12)

=
[

Dk,[g]\{Mod(k,g)} Dk,[g+1]\{Mod(k,g+1)}
] [ w1

[g]\{Mod(k,g)}
w2

[g+1]\{Mod(k,g+1)}

]
. (A13)

We can take a linear transformations on Bk as follows

B′k = Tk

[
Dk,[g]\{Mod(k,g)} Dk,[g+1]\{Mod(k,g+1)}

] [ w1
[g]\{Mod(k,g)}

w2
[g+1]\{Mod(k,g+1)}

]
, (A14)

where Tk is full-rank with dimension λF× λF, and the bottom
[
λ− α

g

]+
F symbols in

B′k are some linear combinations of w2
[g+1]\{Mod(k,g+1)} (i.e., these linear combinations do

not contain any term in w1
[g]\{Mod(k,g)}). This is possible because Bk contains λF linear

combinations of all symbols in [w1
[g]\{Mod(k,g)}; w2

[g+1]\{Mod(k,g+1)}], while w1
[g]\{Mod(k,g)}

contains αF
g symbols. Hence, we can re-express B′k as

B′k =


(

B′k,1

)
min

{
αF
g ,λF

}
×1(

B′k,2

)[
λ− α

g

]+
F×1

. (A15)

The delivery phase is divided into two steps. In the first step, we first let each user
k ∈ [K] recover B′k,1. Notice that B′k,1 is the set of some linear combinations of the symbols
in w1

[g]\{Mod(k,g)}w
2
[g+1]\{Mod(k,g+1)}. w1

[g]\{Mod(k,g)} is known by any user j1 ∈ [K] where

Mod(j1, g) 6= k; w2
[g+1]\{Mod(k,g+1)} is known by any user j2 ∈ [K] where Mod(j2, g+ 1) 6= k.

Assume that k = akg+Mod(k, g), where ak =
⌈

k
g

⌉
− 1 and Mod(k, g) ∈ [g]. In Appendix B,

we prove the following lemma.

Lemma A1. Each user k1 = akg + j where j ∈ [g] \ {Mod(k, g)} and k1 ∈ [K], caches both
w1

[g]\{Mod(k,g)} and w2
[g+1]\{Mod(k,g+1)}.

For each i ∈
[⌈

K
g

⌉]
, we let the server transmit

∑
j∈[g]:(i−1)g+j≤K

B′(i−1)g+j,1. (A16)

From Lemma A1, each user (i− 1)g + j knows all except B′(i−1)g+j,1 such that it can

recover B′(i−1)g+j,1. In this step, the server transmits
⌈
K
g

⌉
min

{
α
g , λ
}
F symbols.

In the second step, we then let each user k ∈ [K] recover B′k,2, which contains linear
combinations of w2

[g+1]\{Mod(k,g+1)}. We can use the same delivery scheme as we used to
delivery the second term in the first solution (i.e., Bk,2 in (A7) which contains λF linear
combinations of w2

[g+1]\{Mod(k,g+1)}). Here we do not repeat the scheme. Notice that B′k,2
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contains
[
λ− α

g

]+
F linear combinations of w2

[g+1]\{Mod(k,g+1)}. Hence, in this step the

server transmits min
{⌈

K
g+1

⌉[
λ− α

g

]+
, 1−α

g+1

}
F symbols.

After recovering B′k, each user k ∈ [K] reconstructs

Bk = T−1
k B′k,

and then recovers its demand.
In total, the achieved normalized load is⌈

K

g

⌉
min

{
α

g
, λ

}
+ min

{⌈
K

g + 1

⌉[
λ− α

g

]+
,

1− α

g + 1

}
= ρ2,

coinciding with (19).

Appendix A.3. Proof of (20)

Finally, we focus on the case µ = αK−1
K + (1 − α) where α ∈ (0, 1). In this case,

the proposed scheme is a direct extension from the proposed scheme in (25). More precisely,

• we directly use the caching scheme in (25) for the memory size K−1
K with the achieved

normalized load equal to λ.
• In this case, the number of symbols which are not cached by user is αF

K . Hence, we
can let each user directly recover the uncached symbols with the achieved normalized
load equal to α

K .

This concludes the proof.

Appendix B. Proof of Lemma A1

Recall that k = akg + Mod(k, g), where ak =
⌈

k
g

⌉
− 1 and Mod(k, g) ∈ [g]. We focus

on one user k1 = akg + j where j ∈ [g] \ {Mod(k, g)}. Since j = Mod(k1, g) 6= Mod(k, g), it
can be easily seen that w1

[g]\{Mod(k,g)} is cached by user j. In the rest of this proof, we show

that user j also caches w2
[g+1]\{Mod(k,g+1)}; or equivalently, Mod(k1, g + 1) 6= Mod(k, g + 1).

We prove it by contradiction. Assume that Mod(k1, g + 1) = Mod(k, g + 1) = j′.
Hence, we can re-express k as k = a′k(g + 1) + j′ and re-express k1 as k1 = a′k1

(g + 1) + j′,

where a′k =
⌈

k
g+1

⌉
− 1 and a′k1

= a′k =
⌈

k1
g+1

⌉
− 1.

Since k = akg + Mod(k, g) = a′k(g + 1) + j′, we have

akg = a′k(g + 1) + j′ −Mod(k, g). (A17)

In addition, we have

k1 = akg + j = a′k1
(g + 1) + j′ (A18)

By taking (A17) into (A18), we have

akg + j = a′k1
(g + 1) + j′ (A19)

(A17)⇐⇒ a′k(g + 1) + j′ −Mod(k, g) + j = a′k1
(g + 1) + j′ (A20)

⇐⇒ (a′k − a′k1
)(g + 1) = Mod(k, g)− j. (A21)

Since Mod(k, g) ∈ [g] and j ∈ [g], it can be seen that (A21) holds if and only if
a′k − a′k1

= 0, which leads to k = k1 and contradicts with Mod(k, g) 6= Mod(k1, g). Hence,
we proved that Mod(k1, g + 1) 6= Mod(k, g + 1) and proved Lemma A1.
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