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Abstract: When entering the phase of big data processing and statistical inferences in experimental
physics, the efficient use of machine learning methods may require optimal data preprocessing
methods and, in particular, optimal balance between details and noise. In experimental studies of
strong-field quantum electrodynamics with intense lasers, this balance concerns data binning for
the observed distributions of particles and photons. Here we analyze the aspect of binning with
respect to different machine learning methods (Support Vector Machine (SVM), Gradient Boosting
Trees (GBT), Fully-Connected Neural Network (FCNN), Convolutional Neural Network (CNN))
using numerical simulations that mimic expected properties of upcoming experiments. We see that
binning can crucially affect the performance of SVM and GBT, and, to a less extent, FCNN and CNN.
This can be interpreted as the latter methods being able to effectively learn the optimal binning,
discarding unnecessary information. Nevertheless, given limited training sets, the results indicate
that the efficiency can be increased by optimizing the binning scale along with other hyperparameters.
We present specific measurements of accuracy that can be useful for planning of experiments in the
specified research area.

Keywords: laser physics; artificial neural networks; fully-connected neural networks

1. Introduction

In many experimental studies, the absence of clearly interpretable features in the mea-
sured data leads to the necessity of solving inverse problems for revealing the underlying
properties of explored physical systems. Nevertheless, the problem may be intractable
due to probabilistic or stochastic nature of the studied process or due to the presence of
latent parameters that are not known within a necessary accuracy. These difficulties can be
circumvented by the use of big data acquisition followed by statistical analysis carried out
with the help of machine learning (ML) [1,2]. One way of arranging this is to develop a
computational model that can reproduce the experimental data with sufficient accuracy
for any given values of the unknown latent variables and the parameters that quantify
the properties to be explored in an experiment. Using this computational model, we can
generate possible outcomes of many experiments for various values of input parameters
and train a machine learning algorithm to guess the values of these input parameters based
on the simulated outcome. Even in the case of the probabilistic nature of the simulated
process, the outcome may contain patterns that are sufficiently prominent to be learned
and used by the ML model to unambiguously determine some of the latent parameters
from the data measured in the experiment. Already this can be a crucial simplification for
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interpreting experimental results and for obtaining heuristic conclusions (see, for exam-
ple, [3]). In less certain conditions and/or for more rigorous assessments, one can use the
trained ML model as a generator that can dramatically increase the convergence rate of the
approximate Bayesian computation (ABC) [4–9]. The application of the described routine
can be useful in the experimental studies of strong-field quantum electrodynamics with the
help of high-intensity lasers [10]. In many such experiments, beams of accelerated electrons
collide with tightly focused laser pulses and the energy-angular distribution functions
of the outgoing electrons and/or photons are measured [11,12]. Although some basic
properties of certain processes can be studied via prominent features [13], the probabilistic
nature of strong field quantum electrodynamics (SFQED) processes and uncontrollable
(and unknown) variation of the interaction parameters (such as the impact parameter that
quantifies the misalignment between the laser focus and the electron beam center) lead
to the necessity of drawing statistical inferences from the data collected in a large series
of experiments. ML methods can play an important role in the automatization of data
processing for reinforcing not only experimental, but also theoretical studies [14].

In this paper, we assess the factor of binning, which is applied as a preprocessing of
the measured distribution of particles. The choice of small bins leads to an increased level
of noise, whereas the use of large bins reduces the noise at the cost of losing information
due to reduced resolution. Although one can apply more advanced strategies, such as
principle component analysis (PCA) and spectral filtering, the choice of optimal bin size
can be sufficient in some cases, whereas various ML methods can differ in terms of their
tolerance to this aspect. The consideration of a simple uniform binning strategy can be
advantageous in sophisticated conditions, whereas the use of an optimal ML model can
mitigate the effect of non-optimized binning. We analyze this aspect using a simplified
computational model, which is designed to mimic the properties of particle distribution in
the upcoming experiments with high-intensity lasers.

2. Problem Statement

The problem considered in the present paper is a simplified yet descriptive model
of a numerical experiment that is closely related to novel experiments on radiation re-
action [11,12]. In these experiments, head-on collisions of a high-intensity laser pulse
with a high energy electron beam was used to find the experimental evidence on how
the radiation reaction affects the electron dynamics. Here we analyze the employment of
machine learning techniques to the problem of identification of latent parameters in such
experiments. One known example is the impact parameter, which can vary uncontrollably
from shot to shot if the alignment is not controlled sufficiently well [11]. In case of such a
misalignment, the particles of the beam propagate aside of the pulse peak and effectively
experience weaker electromagnetic fields. If we could identify the misalignment from the
measured spectrum of electrons (or photons), we would be able to exclude unsuccessful
shots and account for the misalignment in the remaining cases, thus making possible the
further statistical analysis. To examine such a possibility, we model the effect of misalign-
ment by the variation of the laser pulse amplitude in one-dimensional interaction process.
Specifically, we aim to determine the laser pulse amplitude based on the spectra of an
initially monoenergetic electron beam after interaction with this pulse in the presence of a
quantum radiation reaction.

The schematic description of the numerical experiment is as follows. An ultra-intense
laser pulse propagates through a counter-propagating monoenergetic electron bunch, see
Figure 1a. In the strong-field region, the effects of SFQED lead to a notable probability
for an electron to emit one or several photons, and these events cause the corresponding
loss of its kinetic energy. The process of photon emission is probabilistic, and in a single
act of emission the electron may emit a photon, carrying away an arbitrary part of its
kinetic energy. After the interaction, the energy distribution (spectrum) of electrons in
the bunch has a finite width with a shift to lower energies with respect to the initial
energy, see Figure 1b. To quantify electron spectra in a form suitable for a machine learning
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task, the full energy range from zero up to the initial energy is split into a number of
bins, and the number of electrons in each bin is calculated. The resulting histogram
representing the energetic spectrum of electrons is used as an input vector for the machine
learning regression task, see Figure 1c. The problem of obtaining the pulse amplitude is
solved by means of different machine learning techniques including fully connected and
convolutional neural networks.

Figure 1. Schematic of numerical experiment. (a) Head-on collision of an ultra-intense laser pulse with an electron bunch.
(b) Electron spectrum modification and binning to produce a resulting spectrum histogram. (c) A histogram serves as an
input for different ML methods used to determine dimensionless amplitude of the laser pulse a0.

The interaction of the laser pulse with the electron bunch can be modeled by the
following system of equations. The dynamics of electromagnetic field is governed by the
Maxwell equations:

∂
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where
→
r ,
→
p ,
→
v are the position, momentum, and velocity of the particle, m, e are its mass

and charge, respectively,
→
F L is the Lorentz force due to electromagnetic field acting on

the particle. The term
→
F RR provides the semiclassical description of the radiation reaction

by instantaneous changes of momentum (the recoil due to photon emission) that occur
probabilistically with the rate computed within SFQED (see, for example, [15]).

The scheme of the numerical experiment is close to the one used in Ref. [16]. Initially,
the electrons in the bunch have the energy ε0 = mc2γ0, where γ0 = 1000 is the relativistic
Lorentz-factor. The number of electrons in the bunch is varied in the experiments from
25 to 100,000. As the number of electrons in the bunch is sufficiently small, we neglect all
types of their influence on the laser beam, such as the refraction and the depletion of the
electromagnetic fields of the pulse. We also neglect the direct electron–electron interactions
inside the bunch. With these simplifications we can consider the interaction between each
electron and the laser pulse independently.
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For simplicity, the one-dimensional problem is studied and the laser field is set as a
short laser pulse propagating in the x direction:

Ey = −Bz = a0Erel sin2
(
π

x + ct
λ

)
sin
(

2π
x + ct

λ

)
, (3)

where λ = 1 µm is the laser wavelength, and a0 is the dimensionless amplitude in rela-
tivistic units Erel =

2πmc2

λe . The pulse is evolved according to Equation (3) over the total
simulation time T = L/c with the number of time steps equal to 100. The dimension-
less amplitude a0 is varied from 10 to 1000. This covers a wide range of intensities from
1020 W/cm2, where radiation losses are weak and radiative friction can be treated classi-
cally, up to 1024 W/cm2, where radiative friction becomes essentially probabilistic. In the
latter case, the electrons can lose a major part of their energy, and a significant spectrum
broadening is observed.

The described problem is modeled using the Hi-Chi open-source framework [17]. The
photon emission and electron recoil are accounted for in the following way. On each time
step for each electron, we generate a uniformly distributed value δ = }ω

mc2γ
, which is the

ratio of photon energy to the full energy of the original particle ε = mc2γ, and then we
sample the new photon with probability density P(δ):
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where } is the reduced Planck constant, ∆t is the time step, F(x) and G(x) are the first and

second synchrotron functions, zq = 2
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is a dimensionless parameter characterizing the transverse acceleration of the particle in

the field. For electrons, this parameter can be calculated as χ = γ
He f f

Es
, where Es =

m2c3

e}
is the Schwinger field and He f f is the effective field that acts on the particle. The gener-
ated photon is assumed to have the same direction of propagation as the parent particle.
An electron’s momentum and energy are updated accordingly. We consider laser field
intensities achievable on existing laser facilities. We neglect the effect of Breit–Wheeler
pair production. We also assume that the electron bunch duration is sufficiently short so
that we can neglect the interactions of emitted photons with the electron bunch after they
have been emitted. After all electrons have interacted with the laser pulse, we retrieve
the electron energy distribution for the given amplitude a0. Since the process of photon
emission is probabilistic and for a small number of electrons the energy distribution can be
noisy, we collected several realizations for each a0.

In the next stage, we divided the whole energy range from 0 to mc2γ0 into a number
of bins. For each realization, we counted the number of electrons in each bin, denoted as
ni for the i-th bin in Figure 1b,c. We generated a dataset consisting of a vector of ni as a
feature vector and a0 as a label, and trained ML models using Support Vector Machine
(SVM), Gradient Boosting Trees (GBT), Fully-Connected Neural Network (FCNN), and
Convolutional Neural Network (CNN) on generated data to solve the regression problem
of estimating a0 based on the histogram of electrons’ energy spectra. The aim of this paper
is to examine the role of the binning strategy, so the accuracy of numerical methods was
investigated with respect to the combination of the number of bins and the number of
electrons per bin. After dimensionality reduction by means of the principal component
analysis method and fine-tuning, we found the most relevant model and analyzed its
results.
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3. Methods
3.1. Hi-Chi Project Overview

The project High-Intensity Collisions and Interactions (Hi-Chi) is an open-source
collection of Python-controlled tools for performing simulations and data analysis in the
research area of strong-field particle and plasma physics. The project is intended to offer
an environment for testing, benchmarking, and aggregative use of individual components,
ranging from basic routines to supercomputer codes. The components are being developed
in C++ and optimized for state-of-the-art high-performance CPUs. In this way, the project
combines the flexibility of Python and the efficiency of resource-intensive computations at
the C++ level, achieving high performance using either desktops or supercomputers.

A high-level architecture of the project is depicted in Figure 2. The project’s architec-
ture is designed as an independent set of primitives and modules that can interact with
each other. Currently, there are two types of modules: (I) Working with an electromagnetic
field and (II) interacting with ensembles of particles. Modules of the first type include
finite-difference time-domain (FDTD) [18] and spectral (PSTD, PSATD) field solvers [19–22],
several implementations of boundary conditions (periodic, PML, field generator), trans-
formations of electromagnetic field (rotation, shift, scaling, etc.). Modules of the second
type include several particle motion equations solvers (e.g., the Boris method), a number
of particle resampling methods (various particles thinning and merging techniques [23]),
and a module taking into account quantum electrodynamic effects (the QED module) [15].
Each module interacts with relevant primitives. Thus, the field solvers are associated with
collocated and staggered grids capable of performing field interpolation at any point of a
computational domain. For this purpose, the CIC and TSC form factors are currently sup-
ported. The particle pushers work with ensembles of particles which are stored employing
the Structure of Arrays (SoA) or Array of Structures (AoS) patterns. All C++ classes and
objects are exported from C++ to Python by means of the pybind11 software [17].

Figure 2. The interaction scheme of the High-Intensity Collisions and Interactions (Hi-Chi) modules.

The Hi-Chi implementation is based on the experience of the development of the
high-performance plasma simulation PICADOR code [24,25] and currently employs shared-
memory parallelism using the OpenMP technology. Main computational kernels are opti-
mized for state-of-the-art CPUs including vectorization and parallelization of performance-
critical computational loops, cache optimizations, and NUMA (Non-Uniform Memory
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Access) [26] optimizations. The code is under ongoing modifications and improvement.
One of the main directions of further development is the creation of a distributed version
of the code that allows you to utilize a supercomputer through the use of MPI technology.
Note that the interaction of Python and C++ in a distributed mode is not straightforward.
However, Python and C++ modules can interact, saving and loading states in the file
system. For this purpose, the user-defined configuration can be saved in the file system
and a chosen number of MPI processes will be launched. Then, each process can download
the configuration from the file system, perform calculations, and save the final results.
The results can be further read and processed by a Python-based control program. The
distributed version of the code is under development. The code is publicly available (see
Supplementary Materials section for the details).

3.2. Data Generation

We collected data as follows. Firstly, we performed numerical simulations with the
peak amplitude a0 in the range [10; 1000] and with N = 100, 000 electrons up to time
T = L/c, integrating the electron motion equations and taking into account the QED
effects. The resulting data array, hereinafter referred to as DATA, contained N energies
for each a0. It was used to randomly sample the resulting values with their subsequent
aggregation into Nb bins. After sampling, all values were normalized to the range [0; 1] to
improve the performance of training machine learning models.

Secondly, we used the DATA array to train several machine learning models and
test how their accuracies depend on the number of electrons involved in the numerical
simulations. In this regard, we fixed different values of the number of bins Nb and the
average number of electrons per bin Ne and randomly selected Nb × Ne electrons from the
DATA array. The values Nb and Ne varied in the range [5; 2000], while the total number
of electrons varied in the range [25; 20, 000]. All samples were taken without repetitions.
When forming the training dataset, the specified procedure was performed three times,
while at the stage of creating the validation and test samples it was done only once.

3.3. Machine Learning Techniques

We evaluated and compared several state-of-the-art supervised machine learning
algorithms to solve the regression problem for the estimation of a0 based on the histogram
of electron spectra.

Support vector regression machine [27] (evolution of support vector machine (SVM) [28]
for classification problems) is a powerful algorithm that can balance tolerance to the errors,
both through setting an acceptable error margin and through tuning the cost of falling
outside this acceptable error margin. One of the main SVM advantages is the use of kernels
for learning linear predictors in high dimensional feature spaces that allows us to handle
high-dimensional problems effectively.

Gradient boosting trees (GBT) [29] is an ensemble of decision trees [30] where every
new tree is built using the data from previously learnt trees. At each iteration of GBT,
a new tree is fitted to the generalized residuals with respect to a loss function. The GBT
algorithm can deal with both classification and a regression problem, works with mixed
type data, effectively processes missing data, and is invariant to monotonic transformations
of the input variables. All these factors make GBT one of the most accurate and universal
supervised machine learning algorithms.

Neural networks and their applications have been widely developed recently due to
explosive growth of computational capabilities and accumulation of a large amount of data
necessary for effective training of these models. According to Cybenko theorem [31], a feed-
forward neural network with one hidden layer can approximate any continuous function
of many variables with any given precision. In recent studies, in particular [32], it has been
proven that any Lebesgue integrable function of many variables can be approximated by
a fully connected neural network with ReLU activations. In this work, we also consider
convolutional neural networks [33] that consider local special data dependencies.
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4. Experimental Results
4.1. Methodology

The experimental part of the paper is as follows. Firstly, we run some preliminary
experiments to determine the appropriate hyperparameter values for each of the machine
learning methods used (SVM, GBT, CNN, FCNN). Having temporarily fixed these parame-
ters, we empirically investigate how the accuracy of solving the problem depends on the
number of bins and electrons involved in the numerical simulation. We consider from 5 to
2000 bins and from 5 to 2000 electrons per bin. For each point in the {Nb; Ne} parameter
space, we train ML models. Stopping the training of neural networks is carried out based
on the error in the validation dataset, and the accuracy is estimated using the test dataset.
Realizing that the chosen “generic” hyperparameter values may not be optimal, we selec-
tively examine some configurations {Nb; Ne} by manually adjusting the hyperparameters.
Indeed, experiments show that accuracy can be improved by fine-tuning, but we did not
find any dramatic changes.

The main idea behind the series of experiments described above is to gain an intuition
as to how accurately specific machine learning methods can solve a given problem, to
understand which of them are most promising for further tuning, and also to establish how
stable the results are when the number of electrons and bins decreases. Based on these
experiments, we choose the most promising configurations {Nb; Ne} and investigate them
in more detail, adjusting the parameters to improve the results.

Finally, we examine the feasibility of feature selection and dimensionality reduction
techniques. The feature selection does not lead to an improvement in the results, while the
dimensionality reduction employing the principal component method makes it possible to
reduce the number of features and simplify the architecture of the artificial neural networks,
with relevant accuracy.

4.2. Results and Discussion
4.2.1. How Accuracy of ML Models Depends on the Number of Bins and the Number of
Electrons per Bin?

Firstly, we performed massive experiments to establish how the accuracy of reconstruc-
tion of the peak amplitude of a laser pulse depends on the parameters {Nb; Ne}. Given
that a full consideration of all relevant combinations of hyperparameters for four machine
learning methods for each pair {Nb; Ne} would require huge computational resources,
we performed preliminary experiments for some pairs, and then fixed the parameters as
follows. We employed the XGBRegressor method from the XGBoost library [34] and the
SVR method from the scikit-learn library [35] as the implementation of the GBT and SVM
methods, respectively. In the GBT method, we used 110 trees of depth 5, the learning rate
was set to 6 × 10−2 [36]. In the SVM method, we used the radial basis function (RBF)
kernel, the epsilon was equal to 1 × 10−3 [37]. The default values were used for the rest of
the parameters.

The parameters of neural networks in the CNN and FCNN methods were selected by
optimizing the error on the validation set taking into account the dimension of the input
vector. We employed the following architectures and considered them in the specified
ranges of hyperparameters (the selected optimal parameters are detailed in Section 4.2.2):
FCNN with 3–5 hidden layers, CNN with 1–6 convolution layers with a kernel of size
3 at the beginning, and 2–4 fully connected hidden layers at the end. The numbers of
neurons in the fully-connected layers were taken from the range 4–200. We used the Adam
optimizer from the Keras framework [38] with default parameters and the ReLU activation
function. The numbers of neurons in each layer were selected based on the dimension of
the input data. For different pairs {Nb; Ne} the architectures and parameters of the neural
networks could be slightly different in order to improve the accuracy. Further, for the most
promising combinations {Nb; Ne} we fine-tuned the hyperparameters for all the methods
used. The best found configurations are given in Section 4.2.2.
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Figure 3 shows how four ML methods reconstruct the peak amplitude of a laser pulse
depending on the number of bins Nb and the number of electrons Ne, while Nb ∈ [5; 2000],
Nb ∈ [5; 2000], and the total number of electrons Nb × Ne varies in the range [25; 20,000].
The results show, as expected, that an increase in the number of electrons usually leads to a
decrease in the error. We can also compare the methods and conclude how the parameters
{Nb; Ne} should be chosen.

Figure 3. Heat maps demonstrate how the accuracy of the Support Vector Machine (SVM), Gradient Boosting Trees (GBT),
Fully-Connected Neural Network (FCNN), Convolutional Neural Network (CNN) methods in reconstructing the peak
amplitude of a laser pulse depends on the number of bins and the number of electrons per bin. Accuracy is given as a
percentage of the mean relative error. Blue squares correspond to a large error, yellow squares to a small error.

The FCNN demonstrates perfect stability in terms of accuracy when a reasonable
configuration is chosen, even with the fixed network architecture and parameters. The
CNN shows good accuracy, but the results seem less stable. We observe that for a small
number of electrons and a large number of bins, the accuracy varies over a wide range,
even with a small change in the parameters. The SVM and GBT methods are inferior in
accuracy to neural networks, but still show reasonable results.

Next, we fix the relevant number of electrons in a numerical experiment, equal to
10,000, and analyze how the error changes when the number of bins increases (Figure 4). It
turned out that for the GBT method and FCNN, the optimal number of bins is equal to 20.
For the SVM method, it is equal to 10, but the accuracy for 10 bins only slightly exceeds
the accuracy for 20 bins. Thus, the considered methods work best with approximately the
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same small number of bins. For the CNN, 100 bins are optimal. Based on these results, we
fine-tuned the models. The results obtained in this case, as well as the optimal parameter
configurations, are described below.

Figure 4. The dependence of the mean relative percentage error for the four considered machine
learning methods (SVM, GBT, FCNN, CNN) on the number of bins used to build the histogram. The
number of electrons in the experiment is equal to 10,000.

4.2.2. Optimal Configuration of the Parameters

This section describes the hyperparameters of the models in their best configurations.
Firstly, empirically optimal parameters for GBT and SVM methods are considered. We tune
the parameters of cross-validated XGBRegressor method from the XGBoost library [34]
and the SVR method from the scikit-learn library [35] as the implementation of the GBT
and SVM methods, respectively. We found that the GBT method performed best when
using 110 trees with maximum tree depth equal to 6 and a learning rate of 0.1, without
regularization [36]. The SVM method showed the best results when using the radial basis
function (RBF) kernel, the L2 regularization with parameter 30, and the epsilon equal to
3 × 10−4 [37]. The default values were used for other parameters.

Secondly, we customize the architecture and parameters of artificial neural networks.
We employ a fully-connected model with 5 hidden layers. The first hidden layer contains
100 neurons with the ReLU activation function, followed by a layer with 75 neurons and
the sigmoid activation function. The last three hidden layers use the ReLU activation
function and contain 64, 16, and 4 neurons, respectively. The model was trained for
1420 epochs, with the Adam optimizer [39] with the learning rate of 1 × 10−3. By analogy
with FCNN, various options for combining layers with different numbers of neurons were
considered for CNN. We employ two convolutional layers containing 1 and 3 convolutions,
respectively, followed by a pooling layer with the size of 2. Further, the same combination
of layers was used with the difference that the number of kernels was set equal to 3 and 9,
respectively. For all convolutional layers, the convolution size is 3, with the ReLU activation
function. Further, 4 fully connected layers are used, containing 96, 64, 16, and 4 neurons
with the following activation functions: Sigmoid, sigmoid, ReLU, and ReLU, respectively.
The model was trained for 1520 epochs. We used the Adam optimizer with the learning
rate of 3 × 10−4.

Then, we employ the PCA method from the scikit-learn library [40]. We found that
the first 5 principal components explain 98 percent of the variance in the original data.
After that, we customize a fully connected neural network with 5 hidden layers. The first
3 layers contain 10 neurons, followed by 2 layers with 8 and 4 neurons, respectively. The
ReLU activation functions are used. The neural network was trained for 2800 epochs. We
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used the Adam optimizer with a learning rate of 6 × 10−4. All models were trained in
batches of 32 objects. For training, the mean absolute error was used. The Adam optimizer
used the default parameters from the Keras framework [38], except for the learning rate
parameter, the values of which are given above.

4.2.3. Final Comparison

The results of a comparative analysis of models created by machine learning methods
for the optimal configurations of parameters are shown in Table 1. It turned out that in most
cases, fine-tuning of the hyperparameters of the methods led to some increase in accuracy.
At the same time, the achieved gain is not dramatic, which indicates that it is enough to
choose the reasonable values of the parameters. Experiments have shown that artificial
neural networks solve the problem of reconstructing the peak amplitude of a laser pulse
with sufficiently higher accuracy. The SVM method loses out to deep learning methods by
about a factor of two in terms of the average absolute and average relative error. The GBT
method shows accuracy close to that of neural networks. However, unlike artificial neural
networks, the GBT and SVM methods, with a small number of objects, can yield an error
of 5–10%, which can be critical for practical use. The PCA method allowed us to reduce
the size of the network and decrease the run time while maintaining a reasonable accuracy
of the amplitude reconstruction. We applied this method to data for a fully connected
neural network and selected 5 principal components, on which another fully connected
neural network was trained. New features are not correlated, which also improves the
neural network training procedure. The new data explains 98 percent of the variance in the
original data.

Table 1. Accuracy of the fine-tuned machine learning methods for solving the peak amplitude
reconstruction problem with 10,000 electrons for one feature vector.

Measure SVM GBT FCNN CNN PCA+FCNN

Mean absolute error 4.050 2.453 1.784 1.827 2.000
Mean relative percentage error 1.062 0.661 0.512 0.496 0.709

Coefficient of determination 0.99930 0.99967 0.99993 0.99992 0.99991

Figure 5 shows the correlation between exact and predicted values for a fully connected
neural network. The points are almost perfectly fitted by the linear function y = x, shown
in red, which corresponds to the close to 1 value of the coefficient of determination. The
rest of the methods show similar results (Table 1).

Figure 5. Correlation of the exact and predicted values when using the FCNN model. Points
correspond to pairs of exact and predicted values. The red line is the linear function y = x.
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Lastly, we run a t-test to compare ML models in their optimal configurations in terms
of accuracy. To do this, we combined training and test samples for the fine-tuned ML
models. Next, we randomly divided the obtained data into new training and test samples
10 times and calculated the accuracy of the models. The results are presented below
(Figure 6). The ML models were further sorted by accuracy and compared by the paired
t-test (the most accurate model was compared with the second one, the second model
with the third one, and so on). As a null hypothesis, it was assumed that the methods are
indistinguishable in accuracy. The p-value was equal to 0.05. The t-test results showed that
FCNN, CNN methods work better on this problem than GBT, and SVM shows the worst
result.

Figure 6. Distribution of mean relative percentage errors for 4 ML methods: SVM, GBT, FCNN, CNN.

5. Conclusions

In this work, we considered the effect of binning strategy on the accuracy of several
ML models applied to a test problem that models the needs of the upcoming experiments
on the SFQED effects. We varied the size of bins used for the construction of the input
vector from the energy spectra that can presumably be measured with high resolution. The
limit of small bins (i.e., large input vectors) corresponds to a high level of noise, whereas
the use of large bins (i.e., small input vectors) implies the loss of information. The results
indicate that SVM and GBT are more sensitive to the choice of the bin size than FCNN
and CNN, but all the considered ML models can be configured to achieve a reasonably
good accuracy in our tests. The studies carried out do not guarantee the success of solving
more complex problems. However, they show the prospects for continuing work in this
direction. In the future, we plan to consider problems closer to state-of-the-art physical
experiments based on the experience gained.

One of the potential directions for further development is the use of new approaches
to dimensionality reduction, in particular, non-linear PCA options based on principal mani-
folds [41]. We also plan to pay special attention to the issues of reliability and explainability
of the results obtained using artificial neural networks. We believe that these questions are
extremely important for planning future experiments. In the model problem considered in
this paper, we see that FCNN shows good accuracy with an appropriate binning strategy
in a wide range of parameters. However, the question of whether this effect will persist in
more complex problems remains open.
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Supplementary Materials: The Hi-Chi project is available online at https://github.com/hi-chi/
pyHiChi. The data and scripts required to reproduce the numerical results may be downloaded from
https://github.com/hi-chi/Machine-Learning (the relevant examples are located in the “Amplitude
Reconstruction” folder).
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