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Abstract: At present, many Deep Neural Network (DNN) methods have been widely used for
hyperspectral image classification. Promising classification results have been obtained by utilizing
such models. However, due to the complexity and depth of the model, increasing the number
of model parameters may lead to an overfitting of the model, especially when training data are
insufficient. As the performance of the model mainly depends on sufficient data and a large network
with reasonably optimized hyperparameters, using DNNS for classification requires better hardware
conditions and sufficient training time. This paper proposes a feature fusion and multi-layered
gradient boosting decision tree model (FF-DT) for hyperspectral image classification. First, we fuse
extended morphology profiles (EMPs), linear multi-scale spatial characteristics, and nonlinear multi-
scale spatial characteristics as final features to extract both special and spectral features. Furthermore,
a multi-layered gradient boosting decision tree model is constructed for classification. We conduct
experiments based on three datasets, which in this paper are referred to as the Pavia University,
Indiana Pines, and Salinas datasets. It is shown that the proposed FF-DT achieves better performance
in classification accuracy, training conditions, and time consumption than other current classical

hyperspectral image classification methods.

Keywords: hyperspectral image; multi-layered gradient boosting decision trees (mGBDTs); feature

fusion; image classification

1. Introduction

Hyperspectral image (HSI) processing is one of the core research areas in the field
of HSI remote sensing [1-5], which is an important means of earth observation. HSIs
have many spectral bands and large amounts of data, many of which are redundant.
Designing an algorithm and obtaining efficient performance is key in this field. There are
two important points in HSI classification: proper feature representation and an efficient
classification model.

Extended shape contours are constructed by mathematical operations of structural
elements to form shapes of various sizes [6,7], and morphological attribute profiles ob-
tained through more complex morphological operations [8-10] are representative in spatial
information. In [11], a spline wavelet, which has the characteristic of spatial transla-
tion invariance, was used to extract spatial spectrum features. In order to improve the
performance, multiple extension methods of SVM applied to the HSI field have been
proposed [12]. Convolutional neural networks use local receptive fields to extract spatial
information in images and local sharing mechanisms to reduce network training parame-
ters. Convolutional neural networks are now being applied to HSI classification tasks with
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greater frequency [13-16]. In [17], the authors used a CNN in the study of depth repre-
sentation methods based on spectral features, and the classification effect was better than
the traditional SVM algorithm. In [18], the authors utilized CNN and obtained a higher
accuracy in classification capabilities by learning pixel-pair features. In [19], the authors
proposed a multi-region CNN classification method for HSIs.

However, in order to obtain better accuracy by using DNN models, much effort is
needed to adjust the parameters of deep model. Furthermore, when the data change,
the deep network also needs to adjust the network structure. Beyond that, there are
problems caused by a vanishing gradient and an exploding gradient when using DNN for
classification: overfitting and underfitting. Though a large amount of HSI data has been
obtained due to advanced HSI remote sensing technology, there are only a few labeled
HSI data. Without sufficient training data, it is difficult to obtain a satisfactory result for a
DNN model with many parameters, due to intensive computing conditions. An efficient
classification network is needed that can be applied to small devices, such as drones and
remote sensing platforms.

Additionally, in HSI classification tasks, preprocessing-based methods and hybrid
methods often use extracted features and classifiers to implement classification tasks.
Therefore, the quality of the extracted features and the selected classifier obviously affects
classification results. Feature extraction is used to transform original features into features
with actual physical meaning, such as texture features, geometric features, and edge
features in the image. Choosing appropriate features can reduce redundant information in
the data and mine the potential deep-level information of the data, which will greatly help
the subsequent classification.

Summarizing, the HSI classification problem is facing several technical challenges:

(i) How can the right features be chosen where multiple features can be fused?

(ii) For classification, how can model training be effective with a few parameters and low
computational complexity?

(iii) How can a satisfactory classification model be obtained in a short time under limited
hardware conditions?

To solve the above-mentioned problems, we strive to propose a new strategy via lever-
aging feature fusion and a multi-level gradient boosting decision tree (mGBDT) method [20].
The main contributions are outlined as follows.

¢ We extract extended morphology profiles, linear multi-scale spatial characteristics,
and nonlinear multi-scale spatial characteristics as final features. The original data of
the HSI is a three-dimensional image, and the spatial dependence complementary to
the spectral information behavior is naturally another information source. The intro-
duction of spatial information improves the possibility of pixel-by-pixel classification.

e We utilize a decision tree-based model, namely, mGBDT, which has fewer parameters
and is easier to train. Compared with deep learning model, the proposed model is
easy for theoretical analysis and practical training, and only requires simple hardware
conditions to perform model training.

In this paper, feature fusion and a mGDBT model (FF-DT) for HSI classification is
proposed. In Section 2, we briefly introduce works relevant to the proposed method.
In Section 3, the structure of our method is presented. In Section 4, the experiment design
is detailed. Section 5 shows the results. Finally, a summary of the paper is given.

2. Related Work
2.1. Principal Component Analysis
In [21], principal component analysis of a data matrix was proposed to extract the

dominant patterns in a matrix in terms of a complementary set of score and loading plots,
alleviating computing pressure and accelerating computing speed.
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In [22], a folded PCA (F-PCA), in which both global and local structures were taken
into account, preserved all useful properties of PCA. The work simplified the analysis of
the high dimensional nature of a hyperspectral image.

With the improvement of sensor technology, the dimensions of hyperspectral images
are generally in the tens to hundreds of dimensions. The amount of data is large and
redundant. If it is trained, it takes a long time and requires good hardware. Thus, our pur-
pose is to reduce the dimensionality of n-dimensional data to k-dimensional data, that is,
to find a k-dimensional plane to represent this dataset. In order to increase the training rate,
a certain amount of data needs to be reduced. In this paper, we use principal component
analysis (PCA) to reduce the spectral dimension of the hyperspectral image.

2.2. Extended Morphological Features

In [23], a semisupervised classification algorithm for hyperspectral remote sensing
images based on spectral and spatial information was proposed. The spatial information
was extracted by building extended morphological profiles (EMPs) based on principle
components of the hyperspectral image.

In [24], morphological profiles were used to fuse spectral and spatial information to
produce improved classification results. Opening and closing morphological transforms
were used in order to isolate bright (opening) and dark (closing) structures in images,
where bright/dark means brighter/darker than the surrounding features in the images.

The morphological feature is a nonlinear method. The basic operations included are
opening operation, corrosion, expansion, and closing operation. Given a set A, the struc-
tural element B corrodes A, and the output result is the set of the origin position of B when
B is scanned by A and B.

AOB={z]|(B;CA)} (1)

The expansion is to use the structural element B to scan from the beginning to touch the set
A to find the set of the origin of B, so at least one element of A and B overlaps[25].

A@B:{z\[ﬁ)mA]7&®} 2)

The opening and closing operations are defined by the sequence of corrosion and expansion.
Corrosion before expansion is an opening operation, which can eliminate smaller bright
spots and retain the characteristics of a larger bright area [26]. Expansion after corrosion is
a closing operation, which can bridge narrower discontinuities and remove smaller dark
spots in the image.

MPO(D) = [of (1), -+, @ (D), 1+, 1" (1)] )

where 7 is the number of open and closed operations, I is the image to be processed, ¢, (I)
is the closing operation, and v, (I) is the opening operation. Because hyperspectral images
have a large number of spectral dimensions, in order to utilize these spectral dimensions,
extended morphological feature extraction methods are used first by reducing the spectral
dimension of the hyperspectral image, then by extracting m principal components, and then
extracting the morphological features of each component [27].

EMP{ () = [Mpl(”) (I), - MP,(,,")(I)] )

3. Methodologies

Because the traditional method does not combine spatial information of hyperspectral
imagery, we propose a hyperspectral image classification method based on feature fusion
and an mGBDT. The method first uses PCA to reduce the original hyperspectral data,
and then extracts its extensible morphological features (EMP), linear multi-scale features,
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and nonlinear multi-scale features from the reduced-dimensional data. The fusion of these
three features is used as the input of the deep forest classifier. The experimental results
prove that the hyperspectral classification method based on feature fusion and deep forest
is efficient and has excellent performance, even on small samples.

3.1. Linear Multi-Scale Spatial Characteristics

The scale space aims to obtain images at different scales. In [28], the linear and
nonlinear multiscale spatial characteristics are used in the proposed algorithm. In [29],
mathematical forms are extracted to prove that the Gaussian kernel is the only transforma-
tion kernel that realizes scale transformation in different ways. The Gaussian filter is an
optimal filter for establishing a linear scale space. For a 2D image I(x, y), the image filtered
by a Gaussian filter can be represented as follows,

L(x,y,8) = G(x,y,6) = I(x,y) ©)

where * represents the convolution operator. (x,y) represents the position of the pixels in
the image, and G(x, y, §) represents a Gaussian function whose formula can be expressed as

1 (o=’ +(w-n/2)®
G(x,y,0) = 37252¢ 2 (6)
where (x¢, o) is the coordinate of the center point. ¢ is a scale parameter, which is a contin-
uous transformation value that determines the degree of smoothness of the transformed
image. The larger ¢ is, the better the smoothness becomes, and the overall structure of
the image can be captured. The smaller ¢ is, the weaker the smoothness becomes, and the
details of the image can be retained. The algorithm here is based on Gaussian-scale space.
Therefore, when scale transformation is performed, an operator is added so that the edge in-
formation can be preserved while extracting spatial features. The new scale transformation
formula is

L.(x,y,8) = eV (G(x,y,d) * 1(x, 1)) @)

where Vx; represents the Sobel operator, which can be expressed as

Vxi = 1y (VX 4 (VX0 + (77X + (ViX;)® ®)

where VhXi, V?X;, V'X;, and VlXi denote the first-order horizontal, vertical, and two
diagonal gradients of a pixel, respectively.

3.2. Nonlinear Multi-Scale Spatial Features

In order to obtain translation invariance, a non-subsampled contourlet (NSCT) is
considered as a nonlinear multiscale spatial feature. Compared with two-dimensional dis-
crete wavelet transform, contour wave transform is better at representing two-dimensional
signals and can significantly improve the performance of image denoising, image texture
features, and shape features extraction. Through the pyramid directional filter bank (pdfb),
the image is decomposed into directional sub-bands of different scales by a contourlet.
Pdfb consists of two parts: a Laplacian pyramid (LP) and a directional filter bank.

Figure 1 shows the decomposition steps of NSCT. The basis of a NSCT is a non-
subsampled pyramid (NSP) and non-subsampled directional filter banks (NSDFBs). There
are two main steps in a NSCT: First, the input image is decomposed into high-pass and low-
pass parts by an NSP tower, and second the high-frequency sub-band is then decomposed
into multiple directional sub-bands by an NSDFB.
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Figure 1. Illustration of the non-subsampled contourlet (NSCT).

3.3. mGBDT

In this paper, after data processing and feature extraction of the hyperspectral images,
the extracted features are used as input to the mGBDT model to train it. The mGBDT
model uses the GBDT tree structure as the basic module, the network structure is simple,
and the number of participants is small, so the training is convenient. For the adjustment
of parameters, for different data, the deep network needs to adjust the network structure.
The mGBDT model, with the same parameter settings, can meet the training needs of
different data. The design of the model is ideal for theoretical analysis and practical
training. Only simple hardware conditions are required to train the model. In order
to improve classification accuracy, users must adjust a deep model. As the model is a
multi-layered tree structure, backpropagation cannot be used during training to modify the
parameters, like traditional deep neural networks. We know that, in a multilayer network,
there is a forward propagation, F, between layers, i.e.,

F'(0;-1) = O; )

The parameters of forward propagation are optimized to minimize the loss of the output of
the last layer and groundtruth. Generally, it is effective to use backpropagation directly in
different deep neural network models, but for multi-layer networks with a tree structure,
it is necessary to define a parameter iteration mechanism. The mGBDT uses a pseudo-label
idea to iterate through the parameters layer by layer. For the forward propagation of each
layer, we set a reverse mapping,

G (F1(01)) ~ Opa, (10)
compute the loss and G,
G' = argmin Ey[||G;(F;(Oi—1 +¢) — (Oi—1 +¢))[l], (11)

and introduce some noise to increase model robustness. The purpose of the iterative update
of F and G is to obtain the error between the ideal output and the actual output of the
current layer. First, it is necessary to obtain the ideal output of each layer. This seems to
be difficult, but a pseudo-label can be set to approximate the real output. The top-level
pseudo-labels can be calculated using ground truth, i.e.,

aL(OM,y)

Zl =0M -9 30
M

(12)



Entropy 2021, 23, 20

6 of 15

Inverse mapping is used to update Z from back to front, and F can then be updated toward
the residual:

oL (Fir (Owm1), Zly)

OF 1 (Om — 1) (13)

3.4. Hsi Classification Based on Feature Fusion and mGBDT

The selection of features is a key step in the hyperspectral classification task. This paper
uses three features: EMP, linear multiscale features, and nonlinear multiscale features.
EMP effectively extracts the morphological features of each layer of the hyperspectral
image and retains the geometric information of the image well. Gaussian filtering and
Sobel operators are used for linear multi-scale spatial features to sufficiently suppress
image noise while retaining image edge features. Nonlinear multi-scale features use the
NSCT feature, which has good multi-directionality and multi-scale properties, and have
translation invariance, which can effectively extract the contour features of the image.
The combination of linear and nonlinear features is effective. The edge and contour
information of the image is preserved. The combination of the three features guarantees
the adequacy, efficiency, and accuracy of the proposed features and provides favorable
input features for subsequent classification models.

In this paper, the proposed FF-DT is based on feature fusion and mGBDT. Figure 2
shows the architecture of the proposed method. Let I € R W**C represent a hyperspectral
image, and let X" € R™C, n € [1, N] represent an HSI pixel. First, because the hyperspectral
image has a high spectral dimension, we use the PCA method to reduce the redundancy,
retaining the first principal components to contain most of the information I, € R W*H*C,
The spectral-spatial features of the input data are then extracted by EMP, linear multi-
scale spatial characteristics, and nonlinear multi-scale spatial characteristics. At last, each
pixel from the hyperspectral images is transformed into a one-dimensional feature vector,
[ € R WxH*C,

On the basis of feature fusion, we introduce a multi-level gradient boosted decision
tree (mGBDT). The mGBDT is a model based on a decision tree whose overall amount of
parameters is small. Compared with many current deep models with wider and deeper
network parameters, network parameter training is easier and faster, and it can obtain
better results in a shorter time when the CPU and other hardware conditions are poor.
In addition, in order to fully train a deep model with a large number of parameters,
a sufficient amount of training data is required to improve model performance. However,
the mGBDT can obtain better results with a small number of training samples. In this paper,
we define the framework: input-11-12-output, which is simple but useful. More detailed
parameter analysis will be discussed in the experiment section.

EMPs | X .
Pixel (B-Dimension)

30

Training
Linear MSSC 2
e Meatuze 0,=X . oy Lo, w Gy 0, >y .
fusiol 5 LA N7 q (. predict
- s —_— Y ==
- i 1 1
N B30 b P -
- w

mGBDT

Figure 2. The overall framework of the proposed model.

4. Experiment Designs
4.1. Datasets

In the experimental part, we use multiple datasets to verify the validity of the model.
The images in the Pavia University dataset cover the city of Pavia in Italy. This dataset
was captured by a reflective optics system imaging spectrometer (ROSIS) over the city.
Each image is 610 * 340 pixels. The number of spectral bands is 103, with a spectral coverage
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ranging from 0.43 to 0.86 um and a spatial resolution of 1.3 m per pixel. There are nine
different classes: asphalt, meadows, gravel, trees, painted metal sheets, bare soil, bitumen,
self-blocking bricks, and shadows. Different colors denote different types.

The Indian Pines dataset depicts Indian pine forests in Indiana, Northwestern United
States. They were captured by an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor over Northwestern Indiana and contain 220 spectral bands with a spectral coverage
ranging from 0.4 to 2.5 um. When there were 20 spectral bands that could not be reflected
by water, they were removed. The remaining 200 spectral bands were chosen as the
experimental objects, which include 16 classes.

The images in the Salinas dataset were captured by an AVIRIS sensor over the city
of Salinas Valley in the state of California, USA. These images contain 224 bands with
16 classes, including vegetables, vineyard fields, and bare soil.

4.2. Parameter Analysis

The proposed method is based on extended morphological features and an mGBDT.
First, at the data level, data preprocessing is required. For the redundant spectral dimen-
sions of the original input data, PCA was used to extract principal components and reduce
the data dimensions. The first five principal components in the spectral dimension were
retained because they contain more than 99 percent of the information. EMP was then
used to extract the morphological features of the hyperspectral data, with four openings
and closings (range from 2 to 8, with a step size of 2). Each pixel was a 1-d vector with
90 dimensional features, and the model was trained and predicted using the mGBDT.

Furthermore, the maximum depth of each tree used by the forward network and
inverse mapping in the model was 7, the learning rate was 0.2, one-hot coding training and
prediction data was used, and the inverse mapping layer used Gaussian noise with a mean
value of 0 and a standard deviation value of 0.3. In order to avoid training the inverse
mapping at the top level, the top-level classification layer was set to a linear function
with cross entropy loss, the learning rate was set at 0.03, and other layers used GBDT for
inverse mapping.

5. Results

The proposed model was compared with SVM-RBF [30], SVM-EMP [31], CNN [32],
3D-CNN [33], FuNet-C [34], and MDGCN [35] to explore whether the proposed model
was effective. SVM-RBF used the spectral features of the hyperspectral data as input for
training. SVM-EMP used the EMP features as input for training. The CNN model used
only spectral features and used a one-dimensional convolution kernel to extract them.
3D-CNN introduced the spatial dimension. The image blocks were input into the CNN
network, and the results were output. FuNet-C is a semisupervised network based on
graph neural network. MDGCN is applicable to the irregular image regions represented
by graph topological information. This experiment used three hyperspectral datasets: the
Pavia University, Indian Pines, and Salinas datasets.

5.1. Classification Results of the Pavia University Dataset

The Pavia University data were divided into a training set and a test set at a ratio of
5% and 95%. Each model used the same dataset to train and test.

Tables 1 and 2 and Figure 3 show the classification performances and classification
visualizations of the Pavia University dataset for various algorithms. Figure 3 shows the
results of seven different classification algorithms. Different colors represent different types
of experimental objects. The many different colors between RBF-SVM (a) and ground truth
(h) in the center of these two pictures indicate the poor classification performance of RBF-
SVM (a). The EMP-SVM (b) outperforms the RBF-SVM (a), but there is a gap between EMP-
SVM (b) and ground truth (h). The 2D-CNN (c) and 3D-CNN (d) obtain better classification
results compared to the former two algorithms because of the complex computing models
and hyperparameters. The 3D-CNN outperforms the 2D-CNN. The FuNet-C (e) and
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MDGCN (f), that are based on the graph, do not obtain a better performance than the
mGBDT. Our proposed model FE-DT (g) performs the best in all the models, as there are
significant similarities between the results of FF-DT (g) and ground truth (h). Furthermore,
it relies on a small complex network and minimal computing conditions, making the HSI
classification more practical.

Tables 1 and 2 show that, for the dataset of Pavia University, the overall accuracy
(OA) of SVM using EMP is greatly improved compared with that of SVM-PCA using
spectral features. The CNN method effectively utilized the features of the hyperspectral
images. Even the spectral dimension features are relatively good. The 3D-CNN extract
spectral-spacial features of hyperspectral images were also improved. However, due to the
structural limitations of CNNSs, if a high precision is required, a large number of training
data and a wider and deeper network are needed. The FuNet-C model is based on a
graph requiring a high computation complexity; however, its classification accuracy on this
dataset is lower than our proposed model. The same as MDGCN, that is based on graph
neural network. The MDGCN performs worse than the mGBDT. The mGBDT network
using EMP features can effectively and quickly train the network. In this experiment,
the proposed model is 11% higher in OA than the r-SVM. Furthermore, it is 8.7% higher in
KAPPA than the E-SVM. It can be seen that in most of types, FF-DT performs the best in all
the algorithms. Even compared to the CNN based model, it obtains a great result in both
training speed and classification accuracy in most of the class. It is shown in Table 2 that
our proposed model obtains the best classification result with or without considering the
weight of each component, illustrating the superiority of FF-DT.

(a) (b) © @ (h)

Figure 3. Classification results map of various algorithms on the Pavia University dataset: (a) RBF-SVM,
(b) EMP-SVMV, (c) 2D-CNN, (d) 3D-CNN, (e) FuNet-C, (f) MDGCN, (g) FF-DT, and (h) ground truth.

Table 1. Classification results of the Pavia University dataset.

Class r-SVM E-SVM CNN 3D-CNN FuNet-C MDGCN  FF-DT

0.8790 0.9910 0.9960 0.9860 0.9492 0.9896 0.9980
0.8830 0.8770 0.9840 0.9720 0.9917 0.9963 0.9990
0.7090 0.9980 0.8310 0.9710 1.0000 0.8976 0.966
0.9470 0.9990 0.8360 0.9820 0.9782 0.9509 0.9930
0.9990 1.0000 0.9780 1.0000 1.0000 0.9728 1.0000
0.8680 0.9740 0.9150 1.0000 0.9990 0.9740 1.0000
0.8340 0.9960 0.9870 0.9980 0.8592 0.9804 0.9980
0.8390 0.9940 0.9360 0.9980 0.9025 0.9635 0.9980
1.0000 1.0000 0.8820 0.8910 0.9993 0.9039 0.9840
0.8780 0.9340 0.9530 0.9810 0.9720 0.9881 0.9980

AA 0.8840 0.9810 0.9270 0.9710 0.9591 0.9758 0.9970
KAPPA 0.8340 0.9110 0.9380 0.9720 0.9629 0.9841 0.9980

Do>\000\10\U'IH>OJN|—\
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Table 2. 5% Pavia University dataset.

Macro Avg Weighted Avg
Precision Recall F1-Score Precision Recall F1-Score
EMP-SVM 98.1% 98.4% 98.2% 98.8% 98.8% 98.7%
RBF-SVM 98.1% 97.1% 97.6% 98.5% 98.4% 98.4%
CNN 98.2% 97.7% 97.9% 98.6% 98.6% 98.5%
3D-CNN 95.2% 93.8% 94.3% 95.0% 94.8% 94.7%
FE-DT 99.8% 99.7% 99.7% 99.8% 99.8% 99.8%

5.2. Classification Results on the Indian Pines Dataset

The images in the Indian pines dataset have a small space size but contain 16 types of
features. The data were divided into a training set and a test set at a ratio of 10% and 90%.

The classification performance and visualization of the Indian Pine dataset by this
experiment and multiple comparison algorithms are shown in Tables 3 and 4 and Figure 4.

Figure 4 shows results of five different classification algorithms on the Indian Pines
dataset. There are many noisy points in the RBF-SVM (a) and EMP-SVM (b), which indicates
their poor classification performance. The 2D-CNN (c) and 3D CNN (d) outperform the
former two algorithms, because their inner structures are complex. The FuNet-C (e) and
MDGCN (f) obtain a better performance than the former models, for the complex network
architecture based on graph. Our proposed model, FF-DT (g), is the most similar to the
ground truth (h).

Tables 3 and 4 show that the SVM classification and CNN effect are not particularly
good if only spectral features are used. As the Indian Pines dataset is small, there are
too many categories. However, extended morphological features can effectively represent
the information contained in the hyperspectral images, and the performance of SVM is
effectively improved. 3D-CNN used spectral-spacial information, and the classification
effect was better. The FuNet-C and MDGCN perform well in this dataset; however,
their classification accuracy are lower than our proposed mGBDT. With the importing of
mGBDT algorithm. The fusion of the three features fully embodies the spatial and spectral
features of the hyperspectral images and the spectral information of the datasets. Moreover,
the mGBDT model makes a great contribution to the classification results. From the Table 3,
the FF-DT model is 27% higher in AA than the r-SVM. In OA and KAPPA, it outperforms
all the baselines. From Table 4, it is shown that the FF-DT obtains a best classification
precision in 5% Indian Pines dataset. In weighted average value, FF-DT obtains the best
performance in all the evaluation metrics, illustrating the importance of weighting each
component in classification process.

(g) (n)

Figure 4. Classification results map of various algorithms on the Indian Pines dataset: (a) RBF-SVM,
(b) EMP-SVM, (c) 2D-CNN, (d) 3D-CNN, (e) FuNet-C, (f) MDGCN, (g) FF-DT, and (h) ground truth.
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Table 3. Classification results of the Indian Pines dataset.

Class r-SVM E-SVM CNN 3D-CNN FuNet-C MDGCN  FF-DT
1 0.1432 0.9296 0.9723 0.8053 0.8793 0.8857 0.7863

2 0.6663 0.8839 0.8732 0.9042 0.7672 0.9275 0.9286
3 0.6053 0.8924 0.9113 0.8796 0.8256 0.9434 0.9943
4 0.5474 0.7662 0.8591 0.6023 0.7394 0.9553 0.9766
5 0.8537 0.8535 0.6940 0.8931 0.9271 0.9352 0.8323
6 0.9747 0.9713 0.9667 0.9740 0.9735 0.9803 1.0000
7 0 0.5772 0.5216 0.9129 0.9590 0.8176 1.0000
8 0.9957 1.0000 1.0000 0.9645 0.9841 0.9939 0.9769
9 0.1677 0.5561 0.4528 0.8236 1.0000 0.8058 0.9843
10 0.7377 0.8837 0.8346 0.963 0.7947 0.8997 0.7714
11 0.8566 0.9128 0.9377 0.949 0.8767 0.9776 0.9798
12 0.6223 0.8242 0.8768 0.7524 0.7641 0.9417 0.9890
13 0.9952 0.9958 0.9249 0.9125 0.9936 0.9824 0.8083
14 0.9693 0.9972 0.9764 0.9846 0.9433 0.9811 0.9981
15 0.464 0.9224 0.9595 1.000 0.6738 0.9555 0.7786
16 0.9171 0.8811 0.4562 0.9632 0.9512 0.8175 0.9711
OA 0.7875 0.9113 0.9123 0.9256 0.8797 0.9650 0.9721
AA 0.6572 0.8674 0.8264 0.8422 0.9033 0.9493 0.9233

KAPPA 0.7557 0.8981 0.8933 0.9142 0.8629 0.8601 0.9662

Table 4. 5% Indian Pines dataset.

Macro Avg Weighted Avg
Precision Recall F1-Score Precision Recall F1-Score
EMP-SVM 94.9% 96.2% 95.4% 93.6% 93.5% 93.5%
RBF-SVM 84.9% 81.4% 82.4% 96.0% 96.4% 96.1%
CNN 92.1% 92.5% 92.0% 96.2% 96.3% 96.1%
3D-CNN 91.3% 92.6% 91.7% 91.4% 91.3% 91.2%
FF-DT 96.0% 92.3% 93.9% 97.1% 97.0% 97.0%

5.3. Classification Results on the Salinas Dataset

The Salinas dataset was divided: 5% for training data and 95% for test data. Tables 5
and 6 and Figure 4 show the classification results and classification visualizations of the
different methods for the Salinas dataset.

Figure 5 shows the results of five different classification algorithms on the Salinas
dataset. It can be seen that the SVM using EMP (b) features outperforms the RBE-SVM (a).
Many different color points are shown in the RBF-SVM (a) and EMP-SVM (b), indicating
that these two algorithms do not classify well. The 2D-CNN (c) and 3D CNN (d) out-
perform the former two algorithms, because they have imported spatial information and
possess large amounts of hyperparameters. The FuNet-C model (e) and MDGCN model
(f) conducted on the dataset show a good classification result, based on the graph neural
network. Our proposed model, FF-DT (g), appears to have the least points compared to
the other algorithms, representing its superiority in HSI classification.

Tables 5 and 6 show that, due to the characteristics of the Salinas hyperspectral imagery,
even if a support vector machine is used to train the spectral dimension, it can achieve
better results. Similarly, a SVM using EMP features will have better results. Because of the
integration of spatial dimensions, the 3D-CNN leads to an improved prediction accuracy
than the 2D-CNN network. Furthermore, FuNet-C and MDGCN show much improvement
in classification accuracy. However, the mGBDT network using feature fusion is still the best
on the whole. From the Table 5, it can be seen that the FF-DT model is 21% higher in KAPPA
than the r-SVM. In OA and AA, FE-DT obtains the best performance. From Table 6, we found
that the FF-DT performs best in 5% Indian Pines dataset, especially when the weight of
each component is considered. It also can be seen that the EMP-SVM performs great in all
evaluation metrics, illustrating the superiority of extended morphological features.
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Figure 5. Classification results map of various algorithms on the Salinas dataset: (a) RBF-SVM,
(b) EMP-SVM, (c) 2D-CNN, (d) 3D-CNN, (e) FuNet-C,(f) MDGCN, (g) FE-DT, and (h) ground truth.

Table 5. Classification results of the Salinas dataset.

Class r-SVM E-SVM CNN 3D-CNN FuNet-C MDGCN FF-DT

1 0.9991 1.0000 0.9780 0.9860 0.9951 0.9711 1.0000
2 0.9911 1.0000 1.0000 1.0000 0.9985 0.8983 0.9998
3 0.9642 0.9983 1.0000 1.0000 0.9690 0.9879 0.9570
4 0.9863 0.9966 0.9777 0.9538 0.9905 0.9741 0.9988
5 0.9954 0.9993 1.0000 0.9670 0.9569 0.9824 0.8834
6 1.0000 1.0000 0.9941 1.0000 0.9990 0.9947 0.9866
7 0.9994 1.0000 0.9972 1.0000 0.9983 0.9971 0.9957
8 0.7453 0.7369 0.8694 0.9826 0.8655 0.8490 1.0000
9 0.9914 0.9975 1.0000 0.9987 0.9817 0.9878 0.9985
10 0.8313 1.0000 0.9816 0.9954 0.9676 0.9853 0.9797
11 0.9414 1.0000 0.9855 1.0000 0.9635 0.9916 0.9994
12 0.9715 1.0000 0.9999 0.9728 1.0000 0.9957 1.0000
13 0.9493 1.0000 1.0000 0.9983 0.9975 0.9944 1.0000
14 0.9795 0.9997 0.9914 0.9947 0.9473 0.9944 0.9990
15 0.8013 0.9416 0.9993 0.9193 0.7846 0.9616 1.0000
16 0.9985 1.0000 0.9892 0.9975 0.9886 0.9771 0.9993
OA 0.9023 0.9225 0.9736 0.9813 0.9422 0.9564 0.9956
AA 0.9465 0.9795 0.9855 0.9858 0.9686 0.9801 0.9870

KAPPA 0.8883 09114 0.9726 0.9785 0.9356 0.9515 0.9941

Table 6. 5% Salinas dataset.

Macro Avg Weighted Avg
Precision Recall F1-Score Precision Recall F1-Score
EMP-SVM 98.8% 98.5% 98.6% 97.1% 97.1% 97.1%
RBF-SVM 98.4% 98.7% 98.5% 96.7% 96.7% 96.7%
CNN 98.7% 98.8% 98.7% 98.4% 98.9% 98.5%
3D-CNN 94.9% 94.3% 94.0% 90.8% 89.8% 88.9%
FF-DT 99.4% 98.7% 99.0% 99.5% 99.5% 99.5%

5.4. The Effect of Multi-Feature Fusion

In order to show the effect of multi-feature fusion, we added a comparison experiment
of single feature and multi-feature fusion, shown in Table 7. The experiment showed that
multi-feature fusion has an improved classification effect. The feature vector dimensions
extracted by EMP, Linear MSSC, Nonlinear MSSC, and Feature Fusion are 30, 18, 42,
and 90, respectively. For the Pavia University dataset in Table 1, Feature Fusion was 9.1%
higher than the single EMP feature, 4.6% higher than the single Linear MSSC, and 0.2%
higher than the single Nonlinear MSSC. For the Salinas dataset in Table 1, Feature Fusion
was 0.4% higher than the single EMP feature, 15.2% higher than the single Linear MSSC,
and 0.8% higher than the single Nonlinear MSSC. The Indian Pines dataset had similar
results compared to the Salinas dataset.
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Table 7. Classification accuracy (OA) of single and fusion features.

Features PaviaU Salinas Indian Pines
EMP (30) 0.9074 0.9916 0.9689
Linear MSSC 0.9522 0.8433 0.8510
Non-Linear MSSC 0.9961 0.9876 0.9675
Feature Fusion 0.9984 0.9955 0.9707

In the experiments on the hyperspectral data, we used the same model structure, input-
32-32-output, for the three different datasets with different numbers and classifications.
The classification results show that the mGBDT model is more robust. In terms of training
time, the mGBDT model was trained on a personal PC. The time required was also close to
the time required to run a deep network on a GPU device.

Our proposed method consists of feature fusion and an effective classifier mGBDT.
In order to obtain better classification accuracy, we need to spend a lot of effort to adjust the
parameters of deep model, and when data changes, the deep network also needs to adjust
the network structure. The mGBDT is a new model of tree structure proposed in 2018.
Compared with the deep learning model, the design of the model is easy for theoretical
analysis and practical training, and only requires simple hardware conditions to perform
model training. Considering the advantages of mGBDT, we first introduce mGBDT to hy-
perspectral classification. The mGBDT model, with the same parameter settings, can meet
the training of different data (We use the same parameter settings, in the experiment of hy-
perspectral data. The model structure, intput-32-32-output, can obtain better classification
results, showing that the mGBDT model has better robustness.), and mGBDT also has other
advantages. To illustrate the advantages of mGBDT in terms of computational consump-
tion, we have added speed comparison experiments of 3D-CNN and the proposed FF-DT
shown as Figure 6. Graphics processing often requires a higher-cost GPU, while mGDBT
requires only a normal CPU to achieve faster convergence speed. (The selected data set is
the commonly used hyperspectral data set Pavia, 3D-CNN uses GPU: GeFore GTX 1080Ti;
the proposed FF-DT uses CPU: Intel i7). Compared with 3D-CNN, shorter training time
and faster convergence is much more competitive in some certain scenarios. Therefore,
this model can be effectively applied to some lightweight remote sensing devices.

compare the 3Dcnn and proposed method

10 1
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0.6 -
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0 200 400 GO0 BOO 1000 1200 1400
time/s

Figure 6. Speed comparison of 3D-CNN and the proposed FF-DT.

In conclusion, the FE-DT method is proposed to solve the problem that the traditional
method cannot effectively use the spatial information of hyperspectral data. The extracted
EMP features greatly preserve the geometric information of the image, while the linear and
nonlinear multi-scale spatial features well retain the edge and contour information of the
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image. After the three features are fused, the target image’s effective information will be
well retained, which could be beneficial for subsequent classification tasks. On the classifier,
we choose the mGBDT with strong representation ability and adaptive adjustment ability
of structure complexity to improve the classification performance. From the comparative
analysis with three comparative experiments, it can be seen that the algorithm in this
chapter excels in the classification task of hyperspectral images. Even for Indian Pines
with small homogeneous regions, the algorithm in this chapter can greatly retain its edge
information, making the classification process more efficient and accurate. From the
experimental classification accuracy table and classification result graph, the efficiency of
the algorithm in this chapter can be seen.

6. Conclusions

Models based on deep convolutional neural networks are widely used in hyperspectral
image processing fields, such as image classification, but deep networks require sufficient
training data, appropriate adjustments of many parameters, and high hardware conditions.
It is difficult to obtain good results for small sample data because of the disadvantages of
back-propagation algorithms. To overcome these shortcomings, the proposed method in
this paper introduces feature fusion and an mGBDT model to better extract and classify the
spectral and spatial features of hyperspectral images. First, principal component analysis
was used to reduce the dimensions of the data. Extended morphology profiles (EMPs),
linear multi-scale spatial characteristics, and nonlinear multi-scale spatial characteristics
were used to extract spectral features. Finally, a mGBDT model was constructed for
classification. The model based on the decision tree requires fewer hyperparameters and
simple training conditions. This paper proposes an algorithm that can achieve relatively
good classification accuracy with limited hardware conditions and short iterations. In the
three hyperspectral image classification experiments, the proposed model combined the
excellent performance of the tree and the use of EMP features to effectively extract the
spatial and spectral information of hyperspectral images and can thus achieve better
performance than other current classical models.
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