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Abstract: According to the relevant theories on duality relation, the summation of the extractable
information of a quanton’s wave and particle properties, which are characterized by interference
visibility V and path distinguishability D, respectively, is limited. However, this relation is violated
upon quantum superposition between the wave-state and particle-state of the quanton, which is
caused by the quantum beamsplitter (QBS). Along another line, recent studies have considered
quantum coherence C in the l1-norm measure as a candidate for the wave property. In this study,
we propose an interferometer with a quantum which-path detector (QWPD) and examine the
generalized duality relation based on C. We find that this relationship still holds under such a
circumstance, but the interference between these two properties causes the full-particle property to
be observed when the QWPD system is partially present. Using a pair of polarization-entangled
photons, we experimentally verify our analysis in the two-path case. This study extends the duality
relation between coherence and path information to the quantum case and reveals the effect of
quantum superposition on the duality relation.

Keywords: wave-particle duality; quantum coherence; path distinguishability; polarization-
entangled photons

1. Introduction

Bohr’s principle of complementarity [1,2] provides the essence of quantum mechanics.
It states that a quantum system (i.e., quanton [3]) may possess multiple properties that
cannot be observed simultaneously. Wave-particle duality [4] is a well-known example.
For a quanton in an interferometer, its path information and interference visibility are
incompatible, such that the appearance of one will suppress the other. The general case
wherein we obtain incomplete path information and interference visibility is given by the
duality relation proposed by Englert [3]:

V2 + D2 ≤ 1. (1)

V is the interference visibility and defined as Imax−Imin
Imax+Imin

, where Imax and Imin are the maxi-
mum and minimum of the output intensity in the interferometer, respectively. D is the path
distinguishability and reflects the observer’s ability to determine through which path the
quanton passes in the interferometer. The equation is derived from the configuration shown
in Figure 1a, in which a which-path detector (WPD) system is introduced to a two-path
interferometer. According to the quanton’s path of propagation, the state of the WPD
system evolves to different corresponding states, and D is defined by the distinguishability
of these two states. This relation has been experimentally verified for various physical
systems [5–9].

As shown in Figure 1b, it was proposed in Ref. [10] that, without the use of a WPD sys-
tem, the quanton’s path information could also be obtained by an asymmetric beamsplitter
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(ABS) at the output, which has an arbitrary reflectivity R varying from 0 to 1. Two special
cases where R equals to 0.5 or 1 cause no or full path information to be obtained, and are
equivalent to the presence or absence of a symmetric beamsplitter (BS) respectively. Based
on this concept, a QBS was considered in Ref. [11], as shown in Figure 1c. A QBS consists
of a BS and a two-level controlling system. Depending on the state (|0 >c or |1 >c) of
the controlling system, the BS is in the absence or the presence of the interferometer, and
the quanton behaves as a particle or wave accordingly. For simplicity, |0 >c or |1 >c are
usually denoted as |absence〉 and |presnece〉, which are states of the QBS’s position degree
of freedom (DOF). Such a configuration leads to a quantum superposition of particle-state
and wave-state [12–19]. Surprisingly, the interference between these two states violates the
relation in Equation (1) [16].

BS BS

(a) (b)

(c) (d)

WPD

QBS: QWPD:

BS ABS

BS QBS BS QWPD

0

11

0

0 0

1

1 1

Figure 1. Models used to study the duality relation. (a) original model for deriving the duality
relation. The WPD system is introduced in the two-path interferometer. |d0〉 (|d1〉) is the state
of the WPD system’s response when the quanton propagates along path 0 (1), and it reveals the
quanton’s path information. (b) In the absence of the WPD system, we can obtain the quanton’s path
information from the ABS. (c) QBS enables wave-particle superposition. The dashed line indicates
the superposition between presence and absence, and so does the dashed line in (d). (d) Our model
used to study duality relation based on the quantum coherence C with a QWPD, which similarly
leads to wave–particle superposition. We omit the output BS because we only care about the state
before it.

On the other hand, instead of V after the output BS, the quanton’s quantum coherence
in the l1-norm measure [20], C, which is defined as the summation of the absolute values
of the off-diagonal elements in the quanton’s reduced density matrix before the output BS,
is considered to be a candidate to quantify the wave property in the N-path interferometer.
In Ref. [21], the authors studied the entanglement between the quanton and the WPD
system and provided a linear form of the duality relation. As an extension, the authors of
Ref. [22] derived a quadratic form, later revising it to a tight form [23]:(C + D− N−2

N−1√
N

N−1

)2

+

(
C− D√

N
N−1

)2

≤ 1. (2)

The relations between the quantum coherence and path distinguishability in Refs. [22,23]
have been experimentally demonstrated. See Refs. [24–26]. Until now, duality relations
based on coherence have been established when wave-like and particle-like properties are
classically mixed. However, no studies have dealt with the generalized relation when these
two properties are quantum-superimposed. As shown in Ref. [16], quantum superposition
adds new phenomena to classical considerations. Thus, an interesting question is whether
Equation (2) can be broken in the quantum case.

To address this question, we propose the addition of a QWPD, which is similar to the
QBS and can be in the quantum superposition of the presence and absence on the quanton’s
paths, and we study Equation (2) under such a circumstance. We find that the relation still
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holds, but the interference between the wave-state and particle-state enables observation of
full particle property with the partial presence of the QWPD. Using a pair of polarization-
entangled photons, we further experimentally verify our analysis in the two-path case. This
study extends the theory of duality relation between coherence and path distinguishability
to the quantum case, where these two properties are quantum-superimposed.

2. Theory
2.1. Model of a Two-Path Interferometer with a QWPD

In this section, we first introduce the principle of a standard (classical) WPD in
Figure 1a, and then propose our model of a two-path interferometer with a QWPD and the
quantum superposition of the wave-state and particle-state within it. A more general case
is presented in Section 2.3.

With the interaction between the quanton and the WPD system, the combined state is
expressed as [3]:

|ψ〉qd =
1√
2
(|0〉q |d0〉d + |1〉q |d1〉d), (3)

where |0〉q and |1〉q are the two path modes of the quanton, and |d0〉d and |d1〉d are the
two states of the WPD system corresponding to the case where the quanton propagates
along the two paths. Two points are noted here. First, the WPD system is not a real facility
which is experimentally used to detect the incidence of quantons. Instead, it is rather a
physical system which is initialized as |dini〉d and coupled to the interferometer. According
to the quanton’s propagation (along path 0 or path 1), the WPD system evolves to |d0〉d or
|d1〉d, respectively. Second, |d0〉d and |d1〉d are referred by the WPD’s another kind of DOF
as a response to the paths, which differs from the position DOF mentioned in Section 1.
When |d0〉d is identical to |d1〉d, we cannot obtain any path information from the state of
the WPD system. This leads to maximal coherence and corresponds to the wave-state case.
In other cases, some of the path information is revealed. In particular, when |d0〉d and |d1〉d
are orthogonal to each other, full-path information is revealed, and this corresponds to the
particle-state case.

We present our theoretical model in Figure 1d to generate the wave–particle su-
perposition with the QWPD. Since there are no constrictions on |dini〉d, |d0〉d and |d1〉d,
we temporarily assume that, before interacting with the quanton, |dini〉d is identical to |d0〉d.
Cases for arbitrary states of the QWPD are considered in Section 2.3.

Following the convention of previous studies on the QBS, we use |presence〉 and
|absence〉 to represent the position of the QWPD relative to the interferometer, and they
actually represent that the QWPD’s coupling to the interferometer is present and absent,
respectively. In the presence case, when the quanton propagates along path 1, it interacts
with the QWPD system and transforms its state to |d1〉d. When the quanton propagates
along path 0, the state of the QWPD system remains unchanged since it is initialized as
|d0〉d. Here, we assume that |d0〉d and |d1〉d are orthogonal and represent them as |0〉d and
|1〉d, respectively. In this case, the state of the combined system between the quanton and
the QWPD is

1√
2
(|0〉q |0〉d + |1〉q |1〉d) |presnece〉 . (4)

We denote 1√
2
(|0〉q |0〉d + |1〉q |1〉d) as |p〉qd, which is the particle-state and indicates

the particle-like behaviour of the quanton. In the absence case, no interaction occurs
between the QWPD system and the quanton, which leads to the state of the combined
system as

1√
2
(|0〉q + |1〉q) |0〉d |absence〉 . (5)

Similarly, we denote 1√
2
(|0〉q + |1〉q) |0〉d as |w〉qd, which is the wave-state and indicates

the wave-like behaviour of the quanton.
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Provided that the position DOF is initially in cos α |presence〉 + sin α |absence〉, it is
entangled with particle-state and wave-state as

cos α |p〉qd |presence〉+ sin α |w〉qd |absence〉 . (6)

When this DOF finally collapses on |+〉 = 1√
2
(|presence〉+ |absence〉), the (unnormal-

ized) state of the combined system is

(cos α |p〉qd + sin α |w〉qd) |+〉 , (7)

and we have the quantum superposition between particle-state and wave-state as

|ψ〉qd = F(α)(cos α |p〉qd + sin α |w〉qd), (8)

where F(α) is the normalization factor as

F(α) = (1 + sin α cos α)−
1
2 . (9)

2.2. Duality Relation Based on l1-Norm Measure of Quantum Coherence with a QWPD

When N = 2, Equation (2) reduces to C2 + D2 ≤ 1. In this section, we study this rela-
tion in the interferometer with the QWPD and show that it still holds in such a configuration,
but the interference between |p〉qd and |w〉qd makes it different from the classical case.

The reduced density matrix of the quanton is ρq = Trd(ρqd), where ρqd = |ψ〉qd 〈ψ| is
the density matrix for the combined system. Consequently, C is calculated to be

C(α) = F2(α)|sin α(sin α + cos α)|. (10)

The path distinguishbaility D(α) is defined as

D(α) = 2P(α)− 1 (11)

in Refs. [22,23], where P(α) is the maximal success probability of the minimum-error
state discrimination (MESD) between the two corresponding states of the detector system.
For the calculation of D(α), we first consider P(α). When the quanton is found to propagate
along path 0 or 1, the unnormalized states of the QWPD system are

q 〈0|ψ〉qd =
F(α)√

2
(cos α + sin α) |0〉d

q 〈1|ψ〉qd =
F(α)√

2
(sin α |0〉d + cos α |1〉d).

(12)

To obtain the quanton’s path information with MESD, we should distinguish the
states in the ensemble {pi, |d̃i〉}1

i=0, where |d̃i〉 is the normalized state of q 〈i|ψ〉qd, and

pi =
∣∣∣q 〈i|ψ〉qd

∣∣∣2 is the probability for the QWPD system to be in the state of |d̃i〉. They are
derived as

p0 =
F2(α)

2
(cos α + sin α)2, p1 =

F2(α)

2
,

|d̃0〉d = |0〉d , |d̃1〉d = sin α |0〉d + cos α |1〉d .
(13)

According to the relevant theory [27], P(α) is derived as

P(α) =
1
2

(
1−

√
1− 4p0 p1| 〈d̃0|d̃1〉 |2

)
. (14)
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From Equations (10), (11) and (14), we have D(α) =
√

1− C2(α), and Equation (2)
still holds when N = 2.

Although the duality relation is not broken, the wave–particle superposition still
presents new aspects. The interferometer is constructed to be symmetric. However, from
Equation (13), the quanton has unequal probabilities of propagating along the two paths.
This is a consequence of the interference between the wave-state and particle-state. To illus-
trate the relation between the wave-particle interference and the unequal probabilities, we
consider the classical mixture between |p〉qd and |w〉qd with the density matrix

ρ = cos2 α |p〉qd 〈p|+ sin2 α |w〉qd 〈w| , (15)

where the particle-state and the wave-state do not interfere with each other. Similar to the
above analysis, the probabilities for the quanton to propagate along path 0 and path 1 are
derived as

cos2 α
∣∣∣q 〈0|p〉qd

∣∣∣2 + sin2 α
∣∣∣q 〈0|w〉qd

∣∣∣2 =
1
2

(16)

and
cos2 α

∣∣∣q 〈1|p〉qd

∣∣∣2 + sin2 α
∣∣∣q 〈1|w〉qd

∣∣∣2 =
1
2

, (17)

respectively. Without the wave-particle interference, the quanton still has an equal proba-
bility to propagate along the two paths.

As a special case of the unequal probabilities, when α = 3
4 π, p1 = 1. Thus, we are

sure that the quanton propagates along path 1, and its entire path information is available.
Meanwhile, the QWPD system is totally present only when sin α = 0. This indicates that
full particle-like behavior can be observed when the QWPD system is partially present.

Because the relations based on coherence are declared to be equivalent to Equation (1)
when N = 2, we now explain why Equation (2) holds with a QWPD system, but Equation (1)
is violated with the QBS. In previous relevant studies, C was considered to be equivalent to
the interference visibility V when N = 2. Thus, Equation (2) reduces to Equation (1) [21].
However, this declaration depends on the condition that the output BS used for calculating
V is symmetric. In Ref. [16], the quanton’s path information was revealed by the ABS
without introducing a WPD system. The asymmetry of the output BS causes the setup to
be invalid to illustrate the break of duality based on C because this relation is no longer
equivalent with the duality relation in Equation (1). In our study, we consider the quanton’s
path information to be revealed by the QWPD system, and the output BS is still symmetric
under such circumstances. It is not unusual that, whereas Equation (1) is broken with a
QBS, the duality relation based on coherence with a QWPD still holds.

2.3. Duality Relation in a More General Case

In this section, we consider the duality relation in the N-path interferometer. The
QWPD system is now set to be an N-level system with an orthonormal basis {|d0〉, |d1〉, · · · ,
|dN−1〉}, each corresponding to one of the N paths. The initial state of the QWPD system
is generally expressed as |dini〉d = ∑N−1

i=0 βi |di〉 , βi ∈ R. We draw the same conclusion as
that derived in Section 3, i.e., Equation (2) is not violated, and full particle information is
available with the partial presence of the QWPD system.

Similar to Equation (8), the superposition of the wave-state and particle-state is
expressed as

|Ψ〉qd = FN(α)(cos α |P〉qd + sin α |W〉qd), (18)

where |P〉qd and |W〉qd are the particle-state and wave-state as

|P〉qd =
N−1

∑
i=0
|i〉q |di〉d , |W〉qd =

N−1

∑
i=0
|i〉q |dini〉d , (19)
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and FN(α) is the normalization factor as

FN(α) = (N + sin α cos α(〈P|W〉+ 〈W|P〉))−
1
2 . (20)

Here, |P〉qd and |W〉qd are unnormalized for convenience, and the normalization factor
is absorbed into FN(α). Equation (19) can be rewritten as

|Ψ〉qd =
N−1

∑
i=0

√
pi |i〉q |d̂i〉d , (21)

where |d̂i〉d ≡ |d̃i〉d |d 〈d̃i|d̃i〉d |−
1
2 with |d̃i〉d ≡ cos α |di〉d + sin α |dini〉d, and pi ≡ F2

N(α)(1+
βi sin 2α) with βi = 〈di|d〉 is the probability that a quanton propagates along the ith path.
Because Equation (21) is the standard form of the entangled state between the quanton and
the WPD system, the relation in Equation (2) is not violated. However, as we show next,
full information from the particle property is still attainable with the partial presence of the
QWPD system.

Based on Equation (21), the density matrix of the combined system is

ρqd =
N−1

∑
i,j=0

√
pi pj |i〉q 〈j| ⊗ |d̂i〉d 〈d̂j| , (22)

and the element (ρq)i,j in the reduced density matrix of the quanton is

√
pi pj

N−1

∑
k=0
〈dk|d̂i〉 〈d̂j|dk〉

=
√

pi pj| 〈d̃i|d̃i〉 |−
1
2 | 〈d̃j|d̃j〉 |−

1
2

N−1

∑
k=0
〈dk|d̃i〉 〈d̃j|dk〉 .

(23)

We focus on the off-diagonal elements (i.e., i 6= j), and the summation in Equation (23)
is simplified as

N−1

∑
k=0
〈dk|d̃i〉 〈d̃j|dk〉 = sin2 α + sin α cos α(βi + β j). (24)

In the two-path case of Section 3, we assume |dini〉d = |d0〉d, and the full particle
property was obtained when the quanton was determined to propagate along path 1 (i.e.,
p1 = 1). This is impossible in the N-path case. However, when |dini〉d = 1√

N ∑N−1
i=0 |di〉d,

and α = π − arctan 2√
N

, all off-diagonal elements vanish, ρq is totally de-coherent, and

the quanton remains in a particle-state. Under such circumstances, pi = 1
N ∀i, and

〈d̃i|d̃j〉 = 0 ∀i 6= j. The states of the QWPD system are completely distinguishable.

3. Experiment and Results
3.1. Principle of the Experimental Design

We further design a scheme to experimentally verify our theoretical analysis when
N = 2. Instead of focusing on the interaction between the quanton and the QWPD system
shown in Figure 1d, we directly generate the quantum superposition between wave-state
and particle-state in Equation (8), which is analogous to the methods used in previous
experimental verifications [24–26] of duality relations with a standard WPD system.

In experiments, we generate a pair of polarization-entangled photons which represent
the quanton and the QWPD system, respectively, and use polarization DOF of each photon
to encode the path modes of the quanton and the response of the QWPD system. To make
it more readable, before the introduction of the experimental setup, we first elaborate how
to generate the states in Equations (6) and (8) with bipartite entanglement. Two conditions
are supposed to be met for our purposes.
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1. For the particle-state |p〉qd in Equation (6), the entanglement should be maintained,
while, for the wave-state |w〉qd in Equation (6), the entanglement should be eliminated.

2. An ancillary DOF is required to represent the position DOF in Equation (6), i.e.,
|presence〉 and |absence〉. It should first be entangled with |p〉qd and |w〉qd, and then
collapse on |+〉 to generate the state in Equation (8).

To meet these two conditions, we design our experimental setup shown in Figure 2a.
A pair of polarization-entangled photons at 810 nm is generated via a type-I spontaneous
parametric down-conversion process [28] in two cascaded 600-µm-thick BBO crystals,
pumped by a 100-mW continuous beam at 405 nm. These two photons representing the
quanton and the QWPD system are entangled as

|Φ〉 = 1√
2
(|H〉q |H〉d − |V〉q |V〉d), (25)

where |H〉 and |V〉 are the horizontal and vertical polarization states of the photons. The
polarizations of the two photons are used to encode |p〉qd and |w〉qd, while the transmission
and re f lection of the quanton photon by the polarization-dependent beamsplitter (PBS) are
used to encode the position DOF, and are controlled by the angle of HWP2 in Figure 2a.
Though the QWPD’s position DOF is represented by the path mode of the quanton photon,
this method is sensible because the path mode DOF is independent of the polarization
DOFs of the two photons. We now explain how the setup works to meet the two conditions.

HWP

QWP

BD BD

polarizer

IF

BBO

APD

APD

PBS

(a)

particle case

quanton

BD

PBS

wave case

quanton

(b) (c)

APD
APD

optical trap

1 2 1 2

3

3'

1 2

3

3'

QWPDQWPD

APD

BD BD

PBS APD

NPBS

Figure 2. Experimental setup to generate wave–particle superposition. (a) the whole setup. The
pump beam is initialized as 1√

2
(|H〉 − |V〉) using a half-wave plate (HWP), generating a pair of

polarization-entangled photons in a pair of β-Ba2B2O4 (BBO) crystals. HWP1, HWP2, HWP3, and
HWP3’ are set as π

4 , α
2 , π

4 , and 3
8 π, respectively. Before the two photons are coupled into fibers, they

pass through two interference filters (IFs) having bandwidths of 3 nm. Then, they are counted by two
avalanche photodiode detectors (APDs), and the signals are processed in a coincidence detection with
a time window of 5 ns. The two sandwich-like configurations on the pump beam and the quanton
photon, consisting of two quarter-wave plates (QWPs) and an HWP, are used to adjust the relative
phase between horizontal and vertical polarizations. The QWP on the quanton photon is used only
in the quantum state tomography (QST). (b,c) are simplified schemes to illustrate the generation of
particle-state and wave-state in (a). More details are in the main text.
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3.1.1. Generation of |p〉qd and |w〉qd

First, we explain the realization of condition 1 with simplified Figure 2b,c, which
represent the implementations of |p〉qd and |w〉qd, respectively. In Figure 2a, the HWP1,

HWP3, and HWP3′ are set as π
4 , π

4 and 3
8 π. When the HWP2 is set as 0, the quanton

photon’s propagation is shown in Figure 2b.
From the state in Equation (25), when the quanton photon passes through a beam-

displacer (BD), its path modes of horizontal and vertical polarizations are spatially sepa-
rated by 3 mm. After the first HWP1 placed on the lower path, the polarizations of both
paths are horizontal. After HWP2 placed on both paths, the quanton photon is transmitted
by the PBS. Finally, after HWP3 placed on the upper path, these two paths are recombined,
and the state of the combined system is given by

1√
2
(|V〉q |H〉d − |H〉q |V〉d) |transmitted〉 = |p〉qd |transmitted〉 . (26)

The bipartite entanglement is maintained for the particle-state. To make Equation (26)
consistent with Equation (4), we encode |V〉q, − |H〉q, |H〉d, |V〉d and |transmitted〉 as |0〉q,
|1〉q, |0〉d, |1〉d, and |presence〉, respectively. When the QWPD photon’s polarization is |H〉d
(or |V〉d), we can get that the quanton photon’s polarization is |V〉q (or− |H〉q). Knowledge
of the quanton’s information is revealed by the QWPD photon, and the quanton photon
behaves as a particle.

Similarly, when the HWP2 in Figure 2a is set as π
4 , the quanton photon’s propagation

is shown in Figure 2c. After the HWP2, the polarizations of both paths are vertical, and the
quanton photon is reflected by the PBS. If we block the right path and collect the quanton
photon only on the left path, the state of the two photon polarizations is |V〉q |H〉d, and the
bipartite entanglement is eliminated. After a third HWP3′ having the angle of 3

8 π, the state
of the combined system is

1√
2
(|V〉q − |H〉q) |H〉d |re f lected〉 = |w〉qd |re f lected〉 . (27)

With the above encoding and |re f lected〉 representing |absence〉, Equation (27) is
consistent with Equation (5). Since the polarization of the QWPD photon is independent of
that of the quanton photon, no knowledge of the quanton’s information is revealed, and
the quanton behaves as a wave. Thus, the maintaining and elimination of the bipartite
entanglement for the particle case and wave case, respectively, are realized.

3.1.2. Generation of Quantum Superposition between |p〉qd and |w〉qd

Second, we explain how |transmitted〉 and |re f lected〉 works as the position DOF to
meet condition 2. According to the explanation for condition 1, when the HWP2 in Figure 2a
is set as an arbitrary angle α, the propagation of the quanton photon is in the superposition
between Figure 2b,c, This is shown as the superposition between the clockwise red lines
and the counterclockwise blue lines inside the displaced Sagnac loop [29] in Figure 2a.
Under such a circumstance, |transmitted〉 and |re f lected〉 are entangled with |p〉qd and
|w〉qd as √

2 cos α |p〉qd |transmitted〉+ sin α |w〉qd |re f lected〉 . (28)

The collapse on |+〉 is implemented by a non-polarizing BS (NPBS) to recombine
|transmitted〉 and |re f lected〉 at the output, and the (unnormalized) state evolves to

(
√

2 cos α |p〉qd + sin α |w〉qd) |+〉 . (29)

Corresponding to Equation (8), we generate a wave–particle superposition as

F′(α)(
√

2 cos α |p〉qd + sin α |w〉qd), (30)
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where F′(α) is the normalization factor. Because in the generation of |w〉qd the quanton has
a probability of 1

2 to be absorbed by the trap, Equation (30) differs from Equation (8) with
the coefficients of |p〉qd. However, Equation (30) is equivalent to Equation (8) in that it also
generates a continuous quantum superposition between |p〉qd and |w〉qd.

The setup is arranged to ensure that the three path modes interfere stably. First, each
mode propagates through the same elements or an equal number of waveplates. Second,
the PBS and NPBS are glued together as a cube.

3.2. Measuring Coherence and Path Distinguishability

In the experiment, we perform single-qubit QST [30] on the quanton photon, and we
calculate its coherence, C, according to the measured density matrix. Path distinguishability
D is obtained by projective measurement on the QWPD photon as follows.

Because the amplitudes in Equation (30) differ from those in Equation (8), the QWPD
states and their probabilities in Equation (13) are calculated as

|d̃0〉d = |H〉d , |d̃1〉d =
1√
p1

(cos α |V〉d + sin α/
√

2 |H〉d)

p0 =
p0

p0 + p1
, p1 =

p1
p0 + p1

,
(31)

where
p0 = (cos α +

1√
2

sin α)2, p1 = cos2 α +
1
2

sin2 α. (32)

According to Ref. [27], in order to achieve the maximal success probability in dis-
crimination between states |d̃0〉d and |d̃1〉d, the projectors in the positive operator-valued
measure are

Π0 = |π0〉 〈π0| , Π1 = |π1〉 〈π1| = I −Π0, (33)

with
|π0〉 = cos δ |0′〉+ sin δ |1′〉 . (34)

δ and the basis are derived by

tan δ =
λ− (p0 − p1) cos2 γ

sin γ cos γ

λ =
1
2
(p0 − p1 +

√
1− 4p0 p1 cos2 2γ)

cos2 γ =
1
2
(1 + 〈d̃0|d̃1〉)

(35)

and

|0′〉 = 1
2 cos γ

(|d̃0〉+ |d̃1〉)

|1′〉 = 1
2 sin γ

(|d̃0〉 − |d̃1〉).
(36)

P(α) in Equation (14) is expressed as

P(α) = p0 〈π0| d̃0 |π0〉+ p1 〈π1| d̃1 |π1〉 . (37)

For each value of α, we first calculate |π0〉 and |π1〉 according to the equations from
Equations (31) to (36). Then, we record the four coincidence counts, nV0, nV1, nH0, and
nH1, where nV0 is the count when the polarizers in front of the quanton photon and the
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QWPD photon are set as |V〉 and |π0〉, respectively, and the other three counts have similar
meanings. P(α) is calculated as

P(α) =
nV0 + nH1

nV0 + nV1 + nH0 + nH1
. (38)

Then, D(α) is obtained by Equation (11).
Our measured coherence and path distinguishability are shown in Figure 3. From

Figure 3a,b, the measured coherence and path distinguishability are in agreement with
the theoretical analysis. When α = 0, the quanton exhibits particle-like behavior, and, as α
increases, it is gradually morphed to a wave state with an increase in C(α) and a decrease
in D(α). When α reaches π

2 , the quanton is in the full-wave state. When α varies from
π
2 to π, C(α) does not gradually decrease to 0. Instead, it drops to 0 fast and remains
at a low-value region. On the contrary, D(α) rises to 1 fast and stays at a high-value
region. This is the consequence of the interference between the wave-state and particle-
state when they are in a quantum superposition. In particular, when α = π − arctan(

√
2),

D(α) reaches the maximum of one theoretically, and we have full-path information when
the QWPD system is partially present. More experimental details are exhibited in the
Supplementary Materials.

(a) (b) (c)

Figure 3. Experimental results of coherence C (a), path distinguishability D (b), and the duality
relation between them (c). We vary α from 0◦ to 180◦ with an interval of 10◦. Moreover, we measure
C and D when α is approximately 125◦, which corresponds to the case where the quanton’s full path
information is obtained with the QWPD’s partial presence. The measured results are shown with
red dots, and the theoretical comparisons are shown with blue curves. The error bars are calculated
using Poissonian statistics generated based on experimental measured counts.

The deviation of the measured results from the theoretical analysis is caused by the
inaccuracy in the rotation of the waveplates and polarizers, the detection loss of the photons,
the imperfect interference of the path modes, the additional phase introduced when rotating
the HWPs, and, mainly, the imperfect entanglement between the two photons caused by
the imperfect interference in the two BDs, which is obvious when D(α) is relatively large.
In Figure 3c, we exhibit the plot of (C, D) for each α, and the theoretical result is described
as C(α)2 + D(α)2 = 1. When D(α) is relatively large, the measured (C, D) lies inside the
circle. This is because, when the two photons are not perfectly entangled, the states of the
QWPD corresponding to |V〉q and |H〉q are mixed states, and, according to Ref. [22,23],
C2 + D2 is smaller than one. We measured the S value in the CHSH inequality [31] when
α = 0, and the value was 2.5, which is not close to the theoretical maximum of 2

√
2,

implying the imperfect entanglement.

4. Conclusions

In conclusion, we studied the duality relation based on quantum coherence in the
l1-norm measure, when there was superposition of the presence and absence of a QWPD,
which leads to the wave–particle superposition. In contrast with previous similar studies,
the relation still holds under such a condition, but the interference between wave-state
and particle-state facilitates the obtainment of the quanton’s full-path information when
the QWPD system is partially present. Using a pair of polarization-entangled photons,
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we experimentally generated the wave–particle superposition and verified our theoretical
analysis using the two-path case. One of the limitations of this work is that the demonstra-
tion was only performed when N = 2, and the experiment for the multi-path interference
was expected. This study extends the duality relation to the quantum case and provides a
new aspect of duality relation with quantum wave-particle superposition.

Supplementary Materials: The following are available at www.mdpi.com/xxx/s1. Table S1: Average
of the coincidence counts for the measurement of C, Table S2: Average of the coincidence counts for
the measurement of D.
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DOF degree of freedom
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QWP quarter-wave plate
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