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Abstract: Pearson residuals aid the task of identifying model misspecification because they compare
the estimated, using data, model with the model assumed under the null hypothesis. We present
different formulations of the Pearson residual system that account for the measurement scale of
the data and study their properties. We further concentrate on the case of mixed-scale data, that is,
data measured in both categorical and interval scale. We study the asymptotic properties and the
robustness of minimum disparity estimators obtained in the case of mixed-scale data and exemplify
the performance of the methods via simulation.

Keywords: contingency tables; disparity; mixed-scale data; pearson residuals; residual adjustment
function; robustness; statistical distances

1. Introduction

Minimum disparity estimation has been studied extensively in models where the
scale of the data is either interval or ratio (Beran [1], Basu and Lindsay [2]). It has also
been studied in the discrete outcomes case. Specifically, when the response variable is
discrete and the explanatory variables are continuous, Pardo et al. [3] introduced a general
class of distance estimators based on φ-divergence measures, the minimum φ-divergence
estimators, and they studied their asymptotic properties. The estimators can be viewed as
an extension/generalization of the Maximum Likelihood Estimator (MLE). Pardo et al. [4]
used the minimum φ-divergence estimator in a φ-divergence statistic to perform goodness-
of-fit tests in logistic regression models, while Pardo and Pardo [5] extended the previous
works to address solving problems for testing in generalized linear models with binary
scale data.

The case where data are measured on discrete scale (either on ordinal or gener-
ally categorical scale) has also attracted the interest of other researchers. For instance,
Simpson [6] demonstrated that minimum Hellinger distance estimators fulfill desirable
robustness properties and for this reason can be effective in the analysis of count data prone
to outliers. Simpson [7] also suggested tests based on the minimum Hellinger distance
for parametric inference which are robust as the density of the (parametric) model can
be nonparametrically estimated. In contrast, Markatou et al. [8] used weighted likeli-
hood equations to obtain efficient and robust estimators in discrete probability models
and applied their methods to logistic regression, whereas Basu and Basu [9] considered
robust penalized minimum disparity estimators for multinomial models with good small
sample efficiency.

Moreover, Gupta et al. [10], Martín and Pardo [11] and Castilla et al. [12] used the
minimum φ-divergence estimator to provide solution to testing problems in polytomous
regression models. Working in a similar fashion, Martín and Pardo [13] studied the proper-
ties of the family of φ-divergence estimators for log-linear models with linear constraints
under multinomial sampling in order to identify potential associations between various
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variables in multi-way contingency tables. Pardo and Martín [14] presented an overview of
works associated with contigency tables of symmetric structure on the basis of minimum
φ-divergence estimators and minimum φ-divergence test statistics. Additional works in-
clude Pardo and Pardo [15] and Pardo et al. [16]. Alternative power divergence measures
have been introduced by Basu et al. [17].

The class of f or φ−divergences was originally introduced by Csiszár [18]. The struc-
tural characteristics of this class and their relationship to the concepts of efficiency and
robustness were studied, for the case of discrete probability models, by Lindsay [19]. Basu
and Lindsay [2] studied the properties of estimators derived by minimizing f−divergences
between continuous models and presented examples showing the robustness results of
these estimates. We also note that Tamura and Boos [20] studied the minimum Hellinger
distance estimation for multivariate location and covariance. Additionally, formal robust-
ness results were presented in Markatou et al. [8,21] in connection with the introduction of
weighted likelihood estimation.

If G is a real valued, convex function, defined on [0, ∞) and such that G(u) con-
verges to 0 as u → ∞, 0G(0/0) = 0, 0G(u/0) = uG∞, G∞ = lim

u→∞
(G(u)/u), the class of

φ−divergences is defined as

ρ(τ, mβ0) = ∑ G
( τ(t)

mβ0(t)

)
mβ0(t),

where τ(·), mβ0(·) are two probability models. Notice that we define ρ(τ, mβ0) on discrete
probability models first, where T = {0, 1, 2, . . . , T} is a discrete sample space, T possibly
infinite, and mβ0(t) ∈ M =

{
mβ(t) : β ∈ B

}
, B is the parameter space B ⊆ Rd.

Furthermore, different forms of the function G(u) provide different statistical distances
or divergences.

We can change the argument of the function G from τ(t)
mβ0

(t) to τ(t)
mβ0

(t) − 1. Then, G is a

function of the Pearson residual which is defined as δ(t) = τ(t)
mβ0

(t) − 1, and takes values in

[−1, ∞). If the measurement scale is interval/ratio, then the Pearson residuals are modified
to reflect and adjust for the discrepancy of scale between data, that are always discrete,
and the assumed continuous probability model (see Basu and Lindsay [2]).

The Pearson residual is used by Lindsay [19], Basu and Lindsay [2] and
Markatou et al. [8,21] in investigating the robustness of the minimum disparity and
weighted likelihood estimators, respectively. This residual system allows one to iden-
tify distributional errors. If, in the equation of Pearson residual, we replace τ(t) with
its best nonparametric representative d(t), the proportion of observations in a sample
with value t, then δ(t) = d(t)

mβ0
(t) − 1. We note that the Pearson residuals are called so

because n ∑ δ2(t)m(t) is Pearson’s chi-squared distance. Furthermore, these residuals
are not symmetric since they take values in [−1, ∞] and are not standardized to have
identical variances.

How does robustness fit into this picture? In the robustness literature, there is a
denial of the model’s truth. Following this logic, the framework based on disparities starts
with goodness-of-fit by identifying a measure that assesses whether the model fits the
data adequately. Then, we examine whether this measure of adequacy is robust and in
what sense. A fundamental tool that assists in measuring the degree of robustness is the
Pearson residual, because it measures model misspecification. That is, Pearson residuals
provide information about the degree to which the specified model mβ fits the data. In this
context, outliers are defined as those data points that have a low probability of occurrence
under the hypothesized model. Such probabilistic outliers are called surprising observations
(Lindsay [19]). Furthermore, the robustness of estimators obtained via minimization of the
divergence measures we discuss here is indicated by the shape of the associated Residual
Adjustment Function (RAF), a concept that is reviewed in Section 2. Of note is that in con-
tingency table analysis, the generalized residual system is used for examination of sources
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of error in models for contingency tables, see, for example, Haberman [22], Haberman and
Sinharay [23]. The concept of generalized residuals in the case of generalized linear models
is discussed, for example, in Pierce and Schafer [24].

Data sets are comprised of data measured on both categorical (ordinal or nominal)
scale and interval/ratio scale. We can think of these data as realizations of discrete and
continuous random variables respectively. Examples of data sets that include mixed-scale
data are electronic health records containing diagnostic codes (discrete) and laboratory mea-
surements (e.g., blood pressure, alanine amino transferase (ALT) measurements on inter-
val/ratio scale) and marketing data (customer records include income and gender informa-
tion). Additional examples include data from developmental toxicology (Aerts et al. [25]),
where fetal data from laboratory animals include binary, categorical and continuous out-
comes. In this context, the joint density of the discrete and continuous random variables is
given as mβ(x, y) = fβ1(y|x)gβ2(x), where βT = (βT

1 , βT
2 ) are parameter vectors indexing

the joint, conditional on x and probability density function of x.
Work on the analysis of mixed-scale data is complicated by the fact that is difficult

to identify suitable joint probability distributions to describe both measurement scales of
the data, although a number of ad hoc methods to the analysis of mixed-scale data have
been used in applications. Olkin and Tate [26] proposed multivariate correlation models
for mixed-scale data. Copulas also provide an attractive approach to modeling the joint
distribution of mixed-scale data, though copulas are less straightforward to implement,
and there are subtle identifiability issues that complicate the specification of a model
(Genest and Nes̆lehová [27]).

To formulate the joint distribution in the mixed-scale variables case one can either
specify the marginal distribution of the discrete variables and the conditional distribution
of the continuous variables. Alternatively, one can specify the marginal distribution of the
continuous variables and the conditional distribution of the discrete variables given the
continuous variables. Of note here is that the direction of factorization generally yields
distinct model interpretations and results. The first approach has received much attention
in the literature, in the context of the analysis of data with mixtures of categorical and
continuous variables. Here, the continuous variables follow different multivariate normal
distributions for each possible setting of the categorical variable values; the categorical vari-
ables then follow an arbitrary marginal multinomial distribution. This model is known in
the literature as the conditional Gaussian distribution model and is central in the discussion
of graphical association models with mixed-scale variables (Lauritzen and Wermuth [28]).
A very special case of this model is used in our simulations.

In this paper, we develop robust methods for mixed-scale data. Specifically, Section 2
reviews basic concepts in minimum disparity estimation, Section 3 defines Pearson residu-
als for data measured in discrete, interval/ratio and mixed-scale, and studies their proper-
ties. Section 4 establishes the optimization problem for obtaining estimators of the model
parameters, while Sections 5 and 6 establish the robustness and asymptotic properties
of these estimators. Finally, Section 7 presents simulations showing the performance of
these methods and Section 8 offers discussions. The Appendix A includes proofs of the
theoretical results.

2. Concepts in Minimum Disparity Estimation

Beran [1] introduced a robust method to estimate the parameters of a statistical model,
called minimum Hellinger distance estimation. The parameter estimator is obtained by
minimizing the Hellinger distance between a parametric model density and a nonparamet-
ric density estimator. Lindsay [19] extended the aforementioned method to incorporate
many other distances, and introduced the concept of the residual adjustment function in
the context of minimum disparity estimation. The Minimum Distance Estimators (MDE) of
a parameter vector β are obtained by minimizing over β, the distance (or disparity)

ρ(d, mβ) = ∑
x

G(δ(x))mβ(x), (1)



Entropy 2021, 23, 107 4 of 26

where the assumed model mβ is a probability mass function. When the model mβ is contin-
uous, the MDE of the parameter vector β is obtained by minimizing over β the quantity

ρ( f ∗, m∗β) =
∫

G(δ(x))m∗β(x) dx, (2)

where f ∗(x) =
∫

k(x; t, h)dF̂(t), m∗β(x) =
∫

k(x; t, h)mβ(t) dt, F̂ is the empirical distribution
function obtained from the data and k is a smooth family of kernel functions. One example
is the normal density with mean t and standard deviation h. Furthermore, δ(x) is the Pear-
son residual defined as δ(x) = f ∗(x)/m∗(x)− 1. Lindsay [19] and Basu and Lindsay [2]
discuss the efficiency and robustness properties of these estimators.

If G(δ) = 1
λ(1+λ)

{
(1+ δ)(λ+1)− 1

}
we obtain the class of power divergence measures.

Notice that we have G(0) = 0. Different values of λ offer different measures; for example,
when λ = −2 we obtain Neyman’s chi-squared divided by 2 measure, while λ = −1,−1/2
return the Kullback-Leibler and Hellinger distances, respectively.

Under appropriate conditions, (1) and (2) can be written as

∑ A(δ(x))mβ(x) = 0,

or ∫
A(δ(x))∇m∗β(x) dx = 0,

where A(δ) = (δ + 1)G′(δ)− G(δ) and the prime denotes differentiation with respect to δ.
Lindsay [19] has shown that the structural characteristics of the function A(δ) play an

important role in the robustness and efficiency properties of these methods. Furthermore,
without loss of generality, we can center and rescale A(δ), and define the RAF as follows.

Definition 1 (Lindsay [19]). Let A(δ) be an increasing and twice differentiable function on
[−1, ∞) defined as

A(δ) = (δ + 1)G′(δ)− G(δ),

A(0) = 0,

A′(0) = 1,

where G is strictly convex and twice differentiable with respect to δ on [−1, ∞) with G(0) = 0.
Then, A(δ) is called residual adjustment function.

Remark 1. Since A′(δ) = (1 + δ)G′′(δ), the second order differentiability of G, in addition to its
strict convexity, implies that A(δ) is strictly increasing function of δ on [−1, ∞). Thus, we can
define A(δ) as above without changing the solutions of the aforementioned estimating equations in
the discrete case (see Lindsay [19], p. 1089). In the continuous case, such standardization does not
change the estimating properties of the associated disparities (see Basu and Lindsay [2], p. 687).

Two fundamental and at the same time conflicting goals in robust statistics are the
goals of robustness and efficiency. In the traditional literature on robustness, first order
efficiency is sacrificed and, instead, safety of the estimation or testing method against
outliers is guaranteed. Here, one adheres to the notion that information about robustness
of a method is carried by the influence function. In our setting, using the influence
function to characterize the robustness properties of the associated estimation procedures
is misleading. Instead, the shape of the RAF, A(·), provides information to the extent of
which our procedures can be characterized as robust. The interested reader is directed to
Lindsay [19] for further discussion on this topic.

3. Pearson Residual Systems

In this section, we define various Pearson residuals, appropriate for the measurement
scale of the data. We introduce our notation first.
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Let (yi, xi), i = 1, 2, . . . , n be realizations from n independent and identically dis-
tributed random variables that follow a distribution with density mβ(x, y). Recall that we
use the word density to denote a general probability function, independently of whether
the random variables X, Y are discrete, continuous or mixed. In what follows, we define
different Pearson residual systems that account for the measurement scale of the data and
study their properties.

Case 1: Both X and Y are discrete.
In this case, the pairs (yi, xi) follow a discrete probability mass function mβ(xi, yi). Define
the Pearson residual as

δ(x, y) =
nx,y

n
mβ(y|x)πx

− 1,

where πx = P(X = x) = g(x), and nx,y is the number of observations in the cell with
Y = y and X = x.

Note that this definition of the Pearson residual is nonparametric on the discrete
support of X. In the case of regression, one can carry out a semiparametric argument to
obtain the estimators of the vector β and πx.

We now establish that, under correct model specification, the residual δ(x, y) con-
verges, almost surely, to zero.

Proposition 1. When the model is correctly specified and as n→ ∞,

δ(x, y) a.s.−→ 0.

Proof. Write

δ(x, y) =
nx,y

n
mβ(y|x)πx

− 1

=

nx,y
nx
· nx

n

mβ(y|x)πx
− 1.

Then

nx

n
=

(# of observations in the sample equal to x)
n

=
1
n

n

∑
i=1

I(xi = x),

where I(·) is the indicator function. Furthermore,

E

[
1
n

I(Xi = x)

]
= P(X = x) < ∞,

and by the strong law of large numbers

nx

n
a.s.−−−→

n→∞
E[I(X = x)] = P(X = x) = πx.

Similarly,

nx,y

nx

a.s.−→ mβ(y|x),

therefore

δ(x, y) a.s.−−−→
n→∞

0
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under correct model specification.

Case 2: Y is continuous and X is discrete.
This is the case in some ANOVA models. We can still define the Pearson residual in this
setting as

δ(x, y) =
fn(y, x)

mβ(y, x)
− 1,

where

fn(y, x) = f ∗n (y|x)g(x)

=
{ ∫

k(y, t, h) dF̂n(t|x)
}nx

n
and

mβ(y, x) = m∗β(y|x)g(x)

=
{ ∫

k(y, t, h) dMβ(t|x)
}

πx.

Then,

δ(x, y) =
f ∗n (y|X = x) nx

n
m∗β(y|X = x)πx

− 1.

Proposition 2. Assume the model is correctly specified and k(y, t, h) is a continuous function.
Then,

δ(x, y) a.s.−−−→
n→∞

0.

Proof. Under the strong law of large numbers

nx

n
a.s.−−−→

n→∞
πx.

Under the correct model specification, continuity of the kernel function and the fact that F̂n
converges completely to F (implication of Glivenko-Cantelli theorem),

lim
n→∞

∫
k(y; t, h) dF̂n(t|x)→

∫
k(y; t, h) dF(t|x) =

∫
k(y; t, h) dMβ(t|x) = m∗β(y|x)

(extension of Helly-Bray lemma). Therefore,

nx
n f ∗n (y|x)

πx m∗β(y|x)
a.s.−→ πx

πx
·

m∗β(y|x)
m∗β(y|x)

= 1

and hence

δ(x, y) =
nx
n f ∗n (y|x)

πx m∗β(y|x)
− 1 a.s.−→ 1− 1 = 0.

Case 3: Y is continuous and X is continuous.
In this case, the pairs (yi, xi) follow a continuous probability distribution. The Pearson
residual is then defined as

δ(x, y) =
f ∗n (y, x)

m∗β(y, x)
− 1,
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where

f ∗n (x, y) =
∫

k(x, y; t1, t2) dF̂n(t1, t2),

m∗β(x, y) =
∫

k(x, y; t1, t2)mβ(t1, t2) dt1dt2.

As an example, we take the linear regression model with random carriers X, and
εi ∼ N(0, 1). Furthermore, assume that the random carriers follow a normal distribution
with mean vector µ and covariance matrix Σ. In this case, yi = xT

i β + εi and the quantities
zi = (yi − xT

i β)/σ are independent, identically distributed random variables when β
represents the vector of true parameters. Hence, the zi’s represent realizations of a random
variable Z that has a completely known density f (z). Thus,

mβ(x, y) = mβ(z|x) · g(x), z = (y− xT β)/σ

and hence
m∗β(x, y) = m∗β(y− xT β|X = x)g∗(x),

m∗β(y− xT β|X = x) = m∗β(z|x) =
∫

k(z, t, h) dMβ(t|x),

g∗(x) =
∫

k′(x, t′, h′)g(t′) dt′.

The kernel k(z, t, h) is selected so that it facilitates easy computation. Kernels that
do not entail loss of information when they are used to smooth the assumed parametric
model are called transparent kernels (Basu and Lindsay [2]). Basu and Lindsay [2] provide
a formal definition of transparent kernels and an insightful discussion on the point of why
transparent kernels do not exhibit information loss when convoluted with the hypothesized
model (see Section 3.1 of Basu and Lindsay [2]).

4. Estimating Equations

In this section, we concentrate on cases 1, 2 presented in the previous section. We care-
fully outline the optimization problems and discuss the associated estimating equations
for these two cases. The case where both X and Y are continuous has been discussed in the
literature, see, for example, Markatou et al. [21].

Case 1: Both X and Y are discrete.
In this case, the minimum distance estimators of the parameter vector β and πx are obtained
by solving the following optimization problem

min
β,πx

ρ(d, mβ) (3)

subject to
∑
x

πx = 1.

Optimization problem (3) is equivalent to the problem

min ∑
x,y

G(δ(x, y))mβ(x, y)

subject to
∑
x

πx = 1.

The class of G functions that we use creates distances that belong in the family of
φ-divergences.
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Proposition 3. The estimating equations for β and πx are given as:

∑
x,y

w(δ(x, y)) nx,y u(y|x; β) = 0,

∑
x,y

w(δ(x, y)) nx,y

{ I(X = x)
πx

− 1
}
= 0.

(4)

The function w(δ(x, y)) is a weight function, such that 0 ≤ w(δ(x, y)) ≤ 1, and it is defined as

w(δ(x, y)) = min
{ [A(δ(x, y)) + 1]+

δ(x, y) + 1
, 1
}

with [·]+ indicating the positive part of the function A(δ(x, y)) + 1.

Proof. The main steps of the proof are provided in the Appendix A.1.

Remark 2.

1. The above two estimating equations can be solved with respect to β and πx. In an iterative
algorithm, we can solve the second equation (4) explicitly for πx to obtain

πx =
∑y w(δ(x, y))nx,y

∑x,y w(δ(x, y))nx,y
.

This means that if the model does not fit any of the y, observed at a particular x well, the weight
for this x will drop as well.

2. When A(δ(x, y)) = δ(x, y) the corresponding estimating equation for β becomes
∑x,y nx,yu(y|x; β) = 0 and the MLE is obtained. This is because the corresponding weight
function w(δ(x, y)) = 1. In this case, the estimating equations for the πxs become

∑ nx,y

[
I(X=x)

πx
− 1
]
= 0, the estimating equations for the MLEs of πx.

3. The Fisher consistency property of the function that introduces the estimates guarantees that
the expectation of the corresponding estimating function is 0, under the correct model specification.

Case 2: Y is continuous and X is discrete.
In this case, the estimates of the parameters β and πx are obtained by solving the following
optimization problem

min
β,πx

∑
x

∫
G(δ(x, y))m∗β(y, x)dy

subject to
∑
x

πx = 1.

In general m∗β(y, x) = m∗β(y|x)πx; in the case where y, x are independent m∗β(y, x) =
m∗β(y)πx, and the optimization problem stated above is equivalent to

min
β,πx

∑
x

πx

∫
G(δ(x, y))m∗β(y)dy (5)

subject to
∑
x

πx = 1.
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Proposition 4. The estimating equations for β and πx in the case of independence of y, x are given
as follows:

∑
x

πx

∫
A(δ(x, y))∇β m∗β(y)dy = 0,

∑
x

πx

∫
A(δ(x, y))

[ I(X = x)
πx

− 1
]

m∗β(y)dy = 0,
(6)

where A(δ) is the residual adjustment function (RAF) that corresponds to the function G, and G′(δ)
is the derivative of G with respect to δ.

Proof. Straightforward, after differentiating the Lagrangian with respect to β and πx.

Case 3: Y is continuous and X is continuous.
In this case, we refer the reader to Basu and Lindsay [2].

5. Robustness Properties

Hampel et al. [29] and Hampel [30,31] define robust statistics as the “statistics of
approximate parametric models”, and introduce one of the fundamental tools of robust
statistics, the concept of the influence function, in order to investigate the behavior of a
statistic Tn expressed as a functional T(G). The influence function is a heuristic tool with
the intuitive interpretation of measuring the bias caused by an infinitesimal contamination
at a point x on the estimate standardized by the mass of contamination. Its formal definition
is as follows:

Definition 2. The influence function of a functional T at the distribution F is given as

IF(x; T, F) = lim
t→0

T((1− t)F + t∆x)− T(F)
t

,

in those x ∈ X where the limit exists, 0 ≤ t ≤ 1 and ∆x is the Dirac measure defined as

∆x(u) =

{
1, u = x,
0, u 6= x.

(7)

If an estimator has a bounded influence function, the estimator is considered to be
robust to outliers, that is data which is away from the pattern set by the majority of the
data. The effect of bounding the influence function is the sacrifice of efficiency; estimators
with bounded influence function, while are not affected by outlying points, are not fully
efficient under the correct model specification.

Our goal in calculating the influence function is to show the full efficiency of the
proposed estimators. That is, the influence function of the proposed estimators, under cor-
rect model specification, equals the influence function of the corresponding maximum
likelihood estimators. In our context, robustness of the estimators is quantified by the
associated RAFs (see Lindsay [19] and Basu and Lindsay [2]).

In what follows, we will derive the influence function of the estimators for the pa-
rameter vector β in the case where both y, x are discrete. Similar calculations provide
the influence functions of estimators obtained under the remaining scenarios. To do so,
we need to resort to the estimators’ functional form, denoted by βε, with corresponding
estimating equations

∑
s,t

w(δε(s, t))u(t|s; βε)dε(s, t) = 0,

where dε(s, t) = (1− ε)d(s, t) + ε∆x,y(s, t). The influence function is then obtained by dif-
ferentiating the aforementioned estimating equations with respect to ε and then evaluating
the derivative at ε = 0.
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Proposition 5. The influence function of the β estimator is given by

β′0 = [A(d)]−1B(x, y; d),

where

A(d) =∑
s,t
[δ0(t) + 1]w′(δ0(s, t))u(t|s; β0)uT(t|s; β0)d(s, t)

−∑
s,t

w(δ0(s, t))∇u(t|s; β0)d(s, t),

B(x, y; d) =∑
s,t

[ I(s = x, t = y)
mβ0(t|s)πs

− d(s, t)
mβ0(t|s)πs

w′(δ0(s, t))
]
u(t|s; β0)d(s, t)

−∑
s,t

w(δ0(s, t))u(t|s; β0)d(s, t) + w(δ0(x, y))u(t|s; β0),

with u(t|s; β) = ∇ ln mβ(t|s), and the subscript 0 indicates evaluation at a parametric model.

Proof. The proof is obtained via straightforward differentiation and its main steps are
provided in the Appendix A.2.

Proposition 6. Under the assumption that the model is correct, the influence function derived,
reduces to the influence function of the MLE of β.

Proof. Under the assumption that the adopted model is the correct model, the density
d(s, t) is mβ0(s, t), so that δ(s, t) = 0. Now recall that w(0) = 1 and w′(0) = 0, so the
expression A(d) reduces to

A(d) = −∑
s,t
∇u(t|s; β0)mβ0(s, t)

= i(β, x, y).
(8)

Furthermore, the expression B(x, y; d) reduces to u(y|x; β0), where we assume exchange-
ability of differentiation and integration and use the fact that u(t|s; β0) = u(s, t; β0). Hence,
the influence function is given as

i−1(β; x, y)u(y|x; β0),

which is exactly the influence function of the MLE. Therefore, full efficiency is preserved
under the model.

6. Asymptotic Properties

In what follows, we establish asymptotic normality of the estimators in the case of
discrete variables. The techniques for obtaining asymptotic normality in the mixed-scale
case are similar and not presented here.

Case 1: Both X and Y are discrete.
Recall that the k−th estimating equation is given as ∑x,y w(δβ(x, y))nx,yuk(y|x; β) = 0,
which can be expanded in Taylor series in the neighborhood of the true parameter β0
to obtain:

1
n ∑

x,y
w(δβ(x, y))nx,yuk(y|x; β) ∼= An + (β− β0)

T Bn +
1
2
(β− β0)

TCn(β− β0), (9)
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where
An =

1
n ∑

x,y
w(δβ(x, y))nx,yuk(y|x; β0),

Bn = ∇β

{ 1
n ∑

x,y
w(δβ(x, y))nx,yuk(y|x; β)

}∣∣∣
β0

,
(10)

Cn is a p× p Hessian matrix whose (t, e)−th element is given as

∂2

∂βt∂βe

{ 1
n ∑

x,y
w(δβ(x, y))nx,yuk(y|x; β)

}∣∣∣
β0

.

Under assumptions 1–8, listed in the Appendix A.3, we have the following theorem.

Theorem 1. The minimum disparity estimators of the parameter vector β are asymptotically
normal with asymptotic variance I−1(β0), where I(·) indicates the Fisher information matrix.

7. Simulations

The simulation study presented below has two aims. The first one, is to indicate the
versatility of the disparity methods for different data measurement scales. The second
aim is to exemplify and study the robustness of these methods under different contamina-
tion scenarios.

Case 1: Both X and Y are discrete.
The Cressie-Read family of power divergence is given by

PWD(d, mβ) = ∑ mβ(x, y) · [1 + δ(x, y)]λ+1 − 1
λ(λ + 1)

= ∑ d(x, y) ·
[d(x, y)/mβ(x, y)]λ − 1

λ(λ + 1)
,

where d(x, y) = nx,y/n is the proportion of observations with value x, y and mβ(x, y) =
mβ(y|x)πx is the density function of the model of interest.

To evaluate the performance of our algorithmic procedure, we use the following
disparity measures, that is,

Likelihood disparity (λ = 0) :

LD(d, mβ) = ∑ d(x, y) ·
{

log[d(x, y)/mβ(x, y)]
}

,

Twice-squared Hellinger’s (λ = −1/2) :

HD(d, mβ) = 2 ·∑
[√

d(x, y)−
√

mβ(x, y)
]2

,

Pearson’s chi-squared divided by 2 (λ = 1) :

PCS(d, mβ) = ∑
[
d(x, y)−mβ(x, y)

]2
2 ·mβ(x, y)

,

Symmetric chi-squared
(

G(δ(x, y)) =
2[δ(x, y)]2

δ(x, y) + 2

)
:

SCS(d, mβ) = 2 ·∑
[
mβ(x, y)− d(x, y)

]2[
mβ(x, y) + d(x, y)

] .

The data are generated in four different ways using three different sample sizes N,
say N = 100; N = 1000 and N = 10,000. The data format used can be represented in a
5 × 5 contingency table, with ni,j, i = 1, 2, . . . , 5; j = 1, 2, . . . , 5 denoting the counts in the
ij-th cell, ni• and n•j representing the row and column totals, respectively. Furthermore,
the variable x indicates columns, while y indicates the rows. In each of the aforementioned
cases/scenarios, 10,000 tables were generated and that corresponds to the number of Monte
Carlo (MC) replications. Our purpose is to get the mean values of the estimates of the
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parameters mβ(y|x)’s and πx’s along with their corresponding standard deviations (SDs).
Notice that, in this setting, the estimation of πx and mβ(y|x) is completely nonparametric,
that is, no model is assumed for estimating the marginal probabilities of X and Y.

The table was generated by using either a fixed total sample size N or fixed marginal
probabilities. These two data generating schemes imply two different sampling schemes
that could have generated the data with consequences for the probability model one would
use. For example, with fixed total sample size the distribution of the counts is multinomial,
or if the row margin is fixed in advance the distribution of the counts is a product binomial
distribution. In the former case of fixed N, we explored two different scenarios: a balanced
and an imbalanced one. The imbalanced scenario allows for the presence of one zero cell in
the contingency table, whereas the balanced scenario does not. In the latter case of fixed
marginal probabilities, the row marginal probabilities (mβ(y|x)’s) were fixed, while the
column marginals (πx’s) were randomly chosen and these values were used to obtain the
contingency table. In this case, we also explored a balanced and an imbalanced scenario
based on whether the row marginal probabilities were chosen so that to be equal to each
other or not, respectively.

Specifically, under Scenario Ia, where the total sample size N was fixed and the
balanced design was exploited, none of the nij’s (nij 6= 0, ∀ i, j = 1, 2, 3, 4, 5) was set equal
to zero, with equal row and column marginal probabilities. Table 1 presents the mean of
10,000 estimates and the corresponding SDs for all four distances (PCS, HD, SCS, LD) when
N is fixed under the balanced scenario. Table 1 clearly shows that all distances provide
estimates approximately equal to 0.200 regardless of the sample size used. Furthermore,
as the sample size increases, the SDs decrease noticeably.

In Scenario IIa, where the total sample size N was fixed and the contingency table was
structured using the imbalanced design, the presence of a zero cell (n11 = 0) was allowed.
The results of this scenario are presented in Table 2, where the estimates were calculated
exploiting all disparity measures. For the LD, n11 was set equal to 10−8. The presence
of zero cells in contingency tables has a large history in the relevant literature on contin-
gency tables analysis, where several options are provided for the analysis of these tables
(Fienberg [32], Agresti [33], Johnson and May [34], Poon et al. [35]). From Table 2, one
could infer that the different distances handle differently the zero cell. This difference is
reflected in the estimate of m̂β(y1|x) = m̂β1 , because it is affected by the zero value of n11.
The strongest control is provided by the Hellinger and symmetric chi-squared distances.
All distances estimate the parameters πxi similarly, with the bias in their estimation been
between 2.7% and 5.2%. The SDs are almost the same for all distances per estimate and
their values are ameliorated for N = 10,000.

A referee suggested that in certain cases interest may be centered on smaller sam-
ples. We generated 2× 3 tables with fixed total sample size of 50 and 70 observations.
Tables 3 and 4 describe the results when the contingency tables were generated under a
balanced and an imbalanced design with associated respective Scenarios Ib and IIb. More
precisely, Table 3 presents the estimators of the marginal row and column probabilities
obtained when PC, HD, SCS and LD distances are used. We notice that the increase in
the sample size provides for a decrease in the overall absolute bias in estimation, defined
as ∑L

`=1 |θ̂` − θ0,`|, where θ̂` is the estimate of the `-th component of an L × 1 vector θ
and θ0,` is the corresponding true value. In our case, θT = (mβ1 , mβ2 , πx1 , πx2 , πx3). This
observation applies to all distances used in our calculations. Table 4 presents results as-
sociated with the imbalanced case. The generated 2× 3 tables contain two empty cells
(n12 = n21 = 0). Once again, for calculating the LD, cells n12 = n21 = 10−8. We notice that
the bias associated with the estimates is rather large for all the distances, and an increased
sample size does not alleviate the observed bias. Basu and Basu [9] have proposed an
empty cell penalty for the minimum power-divergence estimators. This penalty leads
to estimators with improved small sample properties. See also Alin and Kurt [36] for a
discussion of the need of penalization in small samples.
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Table 5 provides the results obtained under Scenario III. In this case, the parameter
estimates were calculated using the PCS, HD, SCS and LD distances when the 5 × 5
contingency table was constructed by fixing the row marginal probabilities so that they
were all set at 0.20, that is, (0.20, 0.20, 0.20, 0.20, 0.20). The column marginals were randomly
chosen in the interval [0, 1] and summed to 1. In this case, the produced column marginal
probabilities were (0.1472, 0.2365, 0.3196, 0.2370, 0.0597). The simulation study reveals that
the estimates of the parameters mβ(y|x)’s and πx’s do not differ substantially from the
respective row and column marginal probabilities for any of the four distances utilized.
The SDs are approximately the same and they get lower values for larger N.

Finally, in Table 6 the data generation was done by exploiting Scenario IV, that is, by
having fixed the row marginal probabilities, which were not equal to each other; while,
the column marginals were randomly chosen in the interval [0, 1] so that they sum to 1.
In particular, the row marginal probabilities were fixed at values (0.04, 0.20, 0.20, 0.20, 0.36),
while the column marginals used were (0.2171, 0.1676, 0.2347, 0.1178, 0.2628). When N = 100,
the value of m̂β(y1|x) = m̂β1 is not approximately 0.07 and not equal to 0.04 for all distances.
However, when N = 1000 or N = 10,000, we get better estimates irrespectively of the
disparity measure choice. The SDs are approximately the same and they become smaller as
the sample size increases.

We also notice from Tables 1, 5 and 6 that in all cases the standard deviation associated
with the estimates obtained when we use other than likelihood distances, is approximately
the same with the standard deviation that corresponds to the likelihood estimates, thereby
showing the asymptotic efficiency of the disparity estimators.

All calculations were performed using the R language. Given that the problem
described in this section can be viewed as a general non-linear optimization problem,
the solnp function of the Rsolnp package (Ye [37]) was used to obtain the aforementioned
estimates. For our calculations, we tried using a variety of different initial values (π̂(0)

x ’s
and m̂(0)

β (y|x)’s); we notice that no matter how the initial values were chosen, the estimates
were always pretty similar and very close to the observed values (ni•/N and n•j/N for
i, j = 1, 2, 3, 4, 5). Only the number of iterations needed for convergence is slightly affected.
Consequently, random numbers from a Uniform distribution in the interval [0, 1] were
set as initial values (which were not necessarily summing to 1). The solnp function has a
built-in stopping rule and there was no need to set our own stopping rule. We only set the
boundary constraints to be in the interval [0, 1] for all estimates which were also subject to
∑ πx = ∑ mβ(y|x) = 1.

Other functions may also be used to obtain the estimates. For example, we used
the auglag function of the nloptr package with local solvers “lbfgs” or “SLSQP” (Conn
et al. [38], Birgin and Martínez [39]) which emulates Augmented Lagrangian multipliers.
However, the convergence using the solnp function (the number of iterations was on
average 2) was extremely faster than using the auglag function (the average number of
iterations was approximately 100). For this reason, the results presented in Tables 1–6 were
based only on the function solnp.
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Table 1. Scenario Ia: Means and standard deviations (SDs) of 4 distances (PCS, HD, SCS, LD). A 5× 5
contingency table was generated having fixed the total sample size N under a balanced design with
nij 6= 0, ∀ i, j = 1, 2, 3, 4, 5. The number of Monte Carlo (MC) replications used is 10,000.

N Statistical
Distance Summary

Estimates
Means and SDs over 10,000 Replications

m̂β1 m̂β2 m̂β3 m̂β4 m̂β5 π̂x1 π̂x2 π̂x3 π̂x4 π̂x5

100 PCS Mean 0.199 0.199 0.201 0.201 0.200 0.201 0.200 0.199 0.200 0.201
SD 0.038 0.041 0.039 0.039 0.039 0.038 0.038 0.037 0.038 0.038

HD Mean 0.199 0.200 0.200 0.200 0.201 0.200 0.200 0.200 0.200 0.200
SD 0.037 0.041 0.037 0.037 0.037 0.037 0.037 0.035 0.036 0.037

SCS Mean 0.199 0.201 0.200 0.200 0.200 0.200 0.200 0.199 0.200 0.201
SD 0.037 0.041 0.038 0.038 0.038 0.032 0.033 0.030 0.031 0.032

LD Mean 0.199 0.200 0.200 0.200 0.200 0.200 0.002 0.200 0.200 0.200
SD 0.035 0.039 0.036 0.036 0.036 0.035 0.036 0.036 0.034 0.035

1000 PCS Mean 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
SD 0.014 0.015 0.016 0.016 0.014 0.017 0.015 0.015 0.013 0.016

HD Mean 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
SD 0.013 0.015 0.013 0.013 0.013 0.013 0.012 0.012 0.012 0.013

SCS Mean 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
SD 0.014 0.015 0.013 0.013 0.013 0.008 0.009 0.011 0.012 0.008

LD Mean 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
SD 0.013 0.015 0.013 0.013 0.013 0.013 0.013 0.012 0.012 0.013

10,000 PCS Mean 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
SD 0.008 0.007 0.006 0.006 0.009 0.010 0.010 0.007 0.008 0.006

HD Mean 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
SD 0.004 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

SCS Mean 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
SD 0.004 0.005 0.004 0.004 0.004 0.007 0.005 0.008 0.008 0.004

LD Mean 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
SD 0.004 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

Table 2. Scenario IIa Means and SDs of 4 distances (PCS, HD, SCS, LD). A 5× 5 contingency table
was generated having fixed the total sample size N under an imbalanced design with n11 = 0.
The number of MC replications used is 10,000.

N Statistical
Distance Summary

Estimates
Means and SDs over 10,000 Replications

m̂β1 m̂β2 m̂β3 m̂β4 m̂β5 π̂x1 π̂x2 π̂x3 π̂x4 π̂x5

100 PCS Mean 0.052 0.197 0.198 0.198 0.355 0.165 0.173 0.172 0.245 0.245
SD 0.028 0.045 0.044 0.044 0.053 0.041 0.039 0.044 0.044 0.047

HD Mean 0.026 0.202 0.202 0.202 0.368 0.156 0.168 0.168 0.254 0.254
SD 0.019 0.049 0.045 0.045 0.054 0.041 0.042 0.041 0.046 0.049

SCS Mean 0.033 0.209 0.209 0.209 0.340 0.166 0.172 0.171 0.245 0.246
SD 0.022 0.047 0.045 0.045 0.051 0.036 0.036 0.033 0.038 0.040

LD Mean 0.040 0.200 0.200 0.200 0.360 0.160 0.170 0.170 0.250 0.250
SD 0.020 0.043 0.040 0.040 0.048 0.037 0.038 0.036 0.042 0.044

1000 PCS Mean 0.044 0.197 0.197 0.197 0.365 0.164 0.170 0.170 0.248 0.248
SD 0.011 0.017 0.014 0.014 0.018 0.013 0.014 0.013 0.015 0.015

HD Mean 0.034 0.203 0.202 0.202 0.359 0.156 0.170 0.170 0.252 0.252
SD 0.005 0.015 0.013 0.013 0.016 0.011 0.012 0.012 0.013 0.014

SCS Mean 0.038 0.210 0.210 0.210 0.332 0.166 0.169 0.169 0.248 0.248
SD 0.006 0.015 0.014 0.014 0.016 0.014 0.013 0.011 0.013 0.014

LD Mean 0.040 0.200 0.200 0.200 0.360 0.160 0.170 0.170 0.250 0.250
SD 0.006 0.015 0.013 0.013 0.016 0.012 0.012 0.011 0.013 0.014

10,000 PCS Mean 0.044 0.197 0.196 0.196 0.367 0.164 0.170 0.170 0.248 0.248
SD 0.002 0.006 0.007 0.007 0.010 0.007 0.006 0.005 0.007 0.008

HD Mean 0.034 0.203 0.202 0.202 0.359 0.156 0.171 0.171 0.252 0.252
SD 0.002 0.005 0.004 0.004 0.005 0.004 0.004 0.004 0.004 0.005

SCS Mean 0.038 0.210 0.210 0.210 0.332 0.166 0.169 0.169 0.248 0.248
SD 0.002 0.005 0.004 0.004 0.005 0.007 0.006 0.004 0.006 0.006

LD Mean 0.040 0.200 0.200 0.200 0.360 0.160 0.170 0.170 0.250 0.250
SD 0.002 0.005 0.004 0.004 0.005 0.004 0.004 0.004 0.004 0.004
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Table 3. Scenario Ib: Means and Biases of 4 distances (PCS, HD, SCS, LD). A 2× 3 contingency table
was generated having fixed the total sample size N under a balanced design with nij 6= 0, ∀ i =
1, 2, j = 1, 2, 3. The number of MC replications used is 10,000.

N Statistical
Distance Summary

Estimates
Means and Biases over 10,000 Replications

m̂β1 m̂β2 π̂x1 π̂x2 π̂x3

50 PCS Mean 0.5008 0.4992 0.3339 0.3336 0.3325
Abs.Biases 0.0008 0.0008 0.0006 0.0003 0.0009

Overall Bias 0.0034
HD Mean 0.5008 0.4992 0.3339 0.3335 0.3326

Abs.Biases 0.0008 0.0008 0.0006 0.0002 0.0007
Overall Bias 0.0031

SCS Mean 0.5007 0.4993 0.3338 0.3335 0.3326
Abs.Biases 0.0007 0.0007 0.0005 0.0002 0.0007

Overall Bias 0.0028
LD Mean 0.5008 0.4992 0.3339 0.3335 0.3326

Abs.Biases 0.0008 0.0008 0.0006 0.0002 0.0008
Overall Bias 0.0032

70 PCS Mean 0.4998 0.5002 0.3333 0.3331 0.3337
Abs.Biases 0.0002 0.0002 0.0001 0.0003 0.0003

Overall Bias 0.0011
HD Mean 0.4998 0.5002 0.3333 0.3330 0.3336

Abs.Biases 0.0002 0.0002 0.0000 0.0003 0.0003
Overall Bias 0.0009

SCS Mean 0.4998 0.5002 0.3334 0.3331 0.3335
Abs.Biases 0.0002 0.0002 0.0000 0.0002 0.0002

Overall Bias 0.0008
LD Mean 0.4999 0.5001 0.3333 0.3330 0.3336

Abs.Biases 0.0001 0.0001 0.0000 0.0003 0.0003
Overall Bias 0.0009

Table 4. Scenario IIb: Means and Biases of 4 distances (PCS, HD, SCS, LD). A 2× 3 contingency table
was generated having fixed the total sample size N under an imbalanced design with n12 = n21 = 0.
The number of MC replications used is 10,000.

N Statistical
Distance Summary

Estimates
Means and Biases over 10,000 Replications

m̂β1 m̂β2 π̂x1 π̂x2 π̂x3

50 PCS Mean 0.6391 0.3609 0.3489 0.2278 0.4234
Abs.Biases 0.0276 0.0276 0.0155 0.0611 0.0766

Overall Bias 0.2084
HD Mean 0.7815 0.2185 0.3346 0.0497 0.6157

Abs.Biases 0.1149 0.1149 0.0013 0.1170 0.1157
Overall Bias 0.4638

SCS Mean 0.6420 0.3580 0.3510 0.2726 0.3765
Abs.Biases 0.0247 0.0247 0.0176 0.1059 0.1235

Overall Bias 0.2964
LD Mean 0.6677 0.3323 0.3342 0.1660 0.4998

Abs.Biases 0.0010 0.0010 0.0009 0.0007 0.0002
Overall Bias 0.0038

70 PCS Mean 0.6377 0.3623 0.3483 0.2297 0.4220
Abs.Biases 0.0290 0.0290 0.0150 0.0631 0.0780

Overall Bias 0.2141
HD Mean 0.7812 0.2188 0.3328 0.0491 0.6180

Abs.Biases 0.1145 0.1145 0.0005 0.1175 0.1180
Overall Bias 0.4650

SCS Mean 0.6395 0.3605 0.3505 0.2739 0.3756
Abs.Biases 0.0271 0.0271 0.0172 0.1072 0.1244

Overall Bias 0.3030
LD Mean 0.6657 0.3343 0.3331 0.1671 0.4998

Abs.Biases 0.0010 0.0010 0.0002 0.0004 0.0002
Overall Bias 0.0028
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Table 5. Scenario III: Means and SDs of 4 distances (PCS, HD, SCS, LD). A 5× 5 contingency table
was generated having fixed the row marginal probabilities at (0.20, 0.20, 0.20, 0.20, 0.20). The number
of MC replications used is 10,000.

N Statistical
Distance Summary

Estimates
Means and SDs over 10,000 Replications

m̂β1 m̂β2 m̂β3 m̂β4 m̂β5 π̂x1 π̂x2 π̂x3 π̂x4 π̂x5

100 PCS Mean 0.199 0.200 0.200 0.200 0.201 0.153 0.230 0.302 0.229 0.086
SD 0.037 0.037 0.037 0.037 0.037 0.034 0.039 0.043 0.039 0.023

HD Mean 0.200 0.200 0.200 0.200 0.200 0.147 0.230 0.311 0.230 0.082
SD 0.039 0.040 0.039 0.039 0.040 0.033 0.043 0.037 0.042 0.019

SCS Mean 0.200 0.200 0.200 0.200 0.200 0.153 0.230 0.302 0.230 0.085
SD 0.039 0.085 0.038 0.038 0.038 0.033 0.039 0.043 0.039 0.022

LD Mean 0.200 0.200 0.200 0.200 0.200 0.150 0.230 0.307 0.230 0.083
SD 0.038 0.038 0.038 0.038 0.038 0.033 0.041 0.045 0.040 0.019

1000 PCS Mean 0.200 0.200 0.200 0.200 0.200 0.148 0.236 0.319 0.236 0.061
SD 0.013 0.013 0.013 0.013 0.014 0.012 0.014 0.017 0.015 0.011

HD Mean 0.200 0.200 0.200 0.200 0.200 0.147 0.237 0.320 0.237 0.059
SD 0.013 0.013 0.013 0.013 0.013 0.011 0.014 0.015 0.014 0.008

SCS Mean 0.200 0.200 0.200 0.200 0.200 0.148 0.236 0.319 0.237 0.060
SD 0.015 0.015 0.015 0.015 0.015 0.011 0.014 0.016 0.014 0.013

LD Mean 0.200 0.200 0.200 0.200 0.200 0.147 0.237 0.320 0.237 0.059
SD 0.013 0.013 0.013 0.013 0.013 0.011 0.014 0.015 0.013 0.008

10,000 PCS Mean 0.200 0.200 0.200 0.200 0.200 0.147 0.236 0.320 0.237 0.060
SD 0.006 0.006 0.006 0.006 0.006 0.008 0.006 0.011 0.006 0.008

HD Mean 0.200 0.200 0.200 0.200 0.200 0.147 0.236 0.320 0.237 0.060
SD 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.004 0.002

SCS Mean 0.200 0.200 0.200 0.200 0.200 0.147 0.236 0.320 0.237 0.060
SD 0.005 0.005 0.005 0.005 0.005 0.004 0.006 0.008 0.006 0.008

LD Mean 0.200 0.200 0.200 0.200 0.200 0.147 0.236 0.320 0.237 0.060
SD 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.002

Table 6. Scenario IV: Means and SDs of 4 distances (PCS, HD, SCS, LD). A 5× 5 contingency table
was generated having fixed the row marginal probabilities at (0.04, 0.20, 0.20, 0.20, 0.36). The number
of MC replications used is 10,000.

N Statistical
Distance Summary

Estimates
Means and SDs over 10,000 Replications

m̂β1 m̂β2 m̂β3 m̂β4 m̂β5 π̂x1 π̂x2 π̂x3 π̂x4 π̂x5

100 PCS Mean 0.074 0.197 0.197 0.197 0.335 0.214 0.173 0.228 0.132 0.253
SD 0.022 0.037 0.038 0.038 0.045 0.038 0.035 0.039 0.031 0.041

HD Mean 0.070 0.194 0.195 0.195 0.346 0.215 0.170 0.231 0.126 0.258
SD 0.015 0.039 0.039 0.039 0.048 0.041 0.037 0.042 0.030 0.044

SCS Mean 0.074 0.194 0.195 0.195 0.342 0.214 0.173 0.229 0.131 0.253
SD 0.015 0.039 0.039 0.039 0.048 0.038 0.035 0.040 0.030 0.041

LD Mean 0.071 0.195 0.196 0.196 0.342 0.214 0.172 0.230 0.128 0.256
SD 0.015 0.037 0.038 0.038 0.046 0.040 0.036 0.041 0.030 0.042

1000 PCS Mean 0.042 0.200 0.200 0.200 0.358 0.217 0.168 0.234 0.119 0.262
SD 0.011 0.014 0.013 0.013 0.017 0.014 0.013 0.014 0.014 0.015

HD Mean 0.039 0.200 0.200 0.200 0.361 0.217 0.167 0.235 0.118 0.263
SD 0.006 0.013 0.013 0.013 0.015 0.013 0.012 0.013 0.010 0.014

SCS Mean 0.039 0.200 0.200 0.200 0.361 0.217 0.168 0.234 0.118 0.263
SD 0.007 0.013 0.013 0.013 0.016 0.016 0.013 0.014 0.010 0.015

LD Mean 0.040 0.200 0.200 0.200 0.360 0.217 0.167 0.235 0.118 0.263
SD 0.006 0.013 0.013 0.013 0.015 0.013 0.012 0.013 0.010 0.014

10,000 PCS Mean 0.040 0.200 0.200 0.200 0.360 0.217 0.167 0.235 0.118 0.263
SD 0.008 0.005 0.007 0.007 0.009 0.006 0.005 0.005 0.007 0.006

HD Mean 0.040 0.200 0.200 0.200 0.360 0.217 0.167 0.235 0.118 0.263
SD 0.002 0.004 0.004 0.004 0.005 0.004 0.004 0.004 0.003 0.004

SCS Mean 0.040 0.200 0.200 0.200 0.360 0.217 0.167 0.235 0.118 0.263
SD 0.002 0.004 0.004 0.004 0.005 0.006 0.005 0.007 0.003 0.008

LD Mean 0.040 0.200 0.200 0.200 0.360 0.217 0.167 0.235 0.118 0.263
SD 0.002 0.004 0.004 0.004 0.005 0.004 0.004 0.005 0.003 0.005
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Case 2: X is discrete and Y is continuous
In this section, we are interested in solving the optimization problem (5) when X is discrete,
Y is continuous and X, Y are independent of each other. To evaluate the performance of our
procedure, we used Hellinger’s distance, which in this case takes on the following form:

HD( f ∗, m∗β) =
∫

∑
x

[√
f ∗N(x, y)−

√
m∗β(x, y)

]2
dy =

∫
∑
x

[√
f ∗Y (y) ·

nX
N
−
√

mX(x) ·m∗Y (y)
]2

dy.

The aim of this simulation is to obtain the minimum Hellinger distance estimators
of πx and µ assuming (without loss of generality) that σ2 is known to be equal to 1.
All calculations were performed in R language.

For this purpose, we generated mixed-type data of size N using the package OrdNor
(Amatya and Demirtas [40]). More precisely, the data are comprised of one categorical vari-
able X with three levels and probability vector (1/3, 1/3, 1/3), while the continuous part
is coming from a trivariate normal distribution; symbolic Y = (Y1, Y2, Y3) ∼ MVN3(µ, I3),
where µT = (µ1, µ2, µ3). We used two different mean vectors: µT = (0, 0, 0) and µT =
(0, 3, 6). The set of ordinal and normal variables were generated concurrently using an
overall correlation matrix Σ, which consists of three components/sub-matrices: ΣOO, ΣON
and ΣNN , with O and N corresponding to “Ordinal” and “Normal” variables, respectively.
More precisely, the overall correlation matrix Σ used is the following

Σ =


1 ρON ρON ρON

ρON 1 0 0
ρON 0 1 0
ρON 0 0 1

,

where ΣOO = 1, ΣNN = I3, ΣON =
(
ρON ρON ρON

)
and ρON represents the polyserial

correlations for the ON combinations (for more information on polyserial correlations
refer to Olsson et al. [41]). Since X, Y were assumed to be independent, we set ρON = 0.0.
However, we also used weak correlations, say ρON = 0.1 and 0.2, to investigate whether
the estimates we receive in these cases remain reasonable.

The kernel function was the multivariate normal density MVN3(0, H) with H be-
ing estimated by the data using the kde function of the ks package (Duong [42]), m∗Y (y)
represented the multivariate normal density MVN3(µ, Σ + H) and mX(x) was the multi-
nomial mass function. This choice of smoothing parameter, stemmed from the fact that
we were interested in evaluating the performance, in terms of robustness, of standard
bandwidth selection.

To solve the optimization problem, the solnp function of the Rsolnp package (Ye [37])
was used. Specifically, the initial values set for the probabilities πx1 , πx2 , πx3 associated
with the X variable were random uniform numbers in the interval [0, 1], while the initial
values for the means µy1 , µy2 , µy3 were random numbers in the interval [Q1(Yi), Q3(Yi)]
for i = 1, 2, 3, where Q1 and Q3 stand for the respective 25th and the 75th quantile per
component of the continuous part. Following the same procedure with the one of Basu
and Lindsay [2] in the univariate continuous case, here (in the mixed-case) the numerical
evaluation of the integrals was also done on the basis of the Simpson’s 1/3rd rule using
the sintegral function of the Bolstad2 package (Bolstad [43]). Moreover, we calculated
the mean values, the SDs, as well as the percentages of bias of the mean and the probability
vectors for three different sample sizes: N = 100; N = 1000 and N = 1500 over 1000 MC
replications. The bias is defined as the difference of the estimates from their “true” values,
that is, bias(µyi ) = µ̂yi − µi and bias(πxi ) = π̂xi − 1/3 for i = 1, 2, 3. The results are shown
in Tables 7 and 8.

In particular, Table 7 illustrates the mean values, the SDs and the bias percentages
of the corresponding minimum Hellinger distance estimators, over 1000 MC replications,
for the three different sample sizes and polyserial correlations, when µ = (0, 0, 0)T . The es-
timates for the πxi are approximately equal to 1/3 = 0.333, while the µyi estimates are
almost zero, even in the cases of weak correlations. When ρON = 0.0, the sample size
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choice does not seem to affect the values of the estimates either overall or per component
of X, Y variables. Specifically, we observe that the total absolute bias, computed as the sum
of the individual component-wise absolute biases of the vectors πT = (π1, π2, π3) and
µT = (µ1, µ2, µ3) are approximately the same, with larger samples providing slightly less
biases at the expense of a higher computational cost.

Table 7. Means, Absolute Biases and Overall Absolute Bias of the Hellinger’s distance (HD). The data
were concurrently generated with a given correlation structure (an overall correlation matrix Σ) and
consist of a discrete variable X with marginal probability vector (1/3, 1/3, 1/3) and a continuous
vector Y = (Y1, Y2, Y3) ∼ MVN3(µ, I3), where µT = (0, 0, 0) and I3 is a (3× 3) identity matrix.
The number of MC replications used is 1000.

ρON N Summary

Estimates
Means, Biases over 1000 Replications

π̂x1 π̂x2 π̂x3 µ̂y1 µ̂y2 µ̂y3

0.0 50 Mean 0.332 0.340 0.329 0.016 0.011 −0.011
Abs. Biases 0.001 0.007 0.004 0.016 0.011 0.011
Overall Bias 0.050

100 Mean 0.330 0.350 0.320 0.017 −0.018 −0.010
Abs. Biases 0.003 0.017 0.013 0.017 0.018 0.010
Overall Bias 0.078

1000 Mean 0.324 0.337 0.339 0.001 −0.008 0.007
Abs. Biases 0.009 0.004 0.006 0.001 0.008 0.007
Overall Bias 0.035

0.1 50 Mean 0.351 0.320 0.329 −0.006 0.003 0.005
Abs. Biases 0.018 0.013 0.004 0.006 0.003 0.005
Overall Bias 0.049

100 Mean 0.330 0.323 0.347 0.001 0.005 −0.004
Abs. Biases 0.003 0.010 0.014 0.001 0.005 0.004
Overall Bias 0.037

1000 Mean 0.327 0.343 0.330 −0.021 0.008 0.003
Abs. Biases 0.006 0.010 0.003 0.021 0.008 0.003
Overall Bias 0.051

In Table 8, analogous results are presented with the difference that the mean vec-
tor used was µ = (0, 3, 6)T . The πxi estimates are very close to 1/3 (= 0.333) for all X
components, no matter which sample size or correlation is used. On the contrary, the in-
terpretation of the µi estimates slightly differs in this case. We also calculated the overall
absolute bias as well as the individual, per parameter, absolute biases. In this case, larger
samples clearly provide estimates with smaller bias for both parameter vectors π, µ and
for both cases, the case of independence as well as the case of weak correlations. However,
the computational time increases.

In what follows, we also present -for illustration purposes- a small simulation ex-
ample using a mixed-type, contaminated data set of size N = 1000, which was gener-
ated using OrdNor package setting ρON = 0.0 . Once again, the data were comprised
of one categorical variable X with three levels and probability vector (1/3, 1/3, 1/3),
and a trivariate continuous vector Y = (Y1, Y2, Y3). The contamination is happening
only in the continuous part on the basis of α ∈ {1.00, 0.95, 0.90, 0.85, 0.80}, as follows:
Y ∼ α × MVN3(0, I3) + (1− α) × MVN3(µ, I3), where µT = (3, 3, 3). This means that,
N1 = α× N data were generated with Y coming from multivaraiate standard normal and
the remaining N2 = N−N1 subset of the data followed a multivaraiate normal distribution
with mean vector µT = (3, 3, 3). It goes without saying that when α = 1.00, there is no
contamination. Here, we are still considering the same optimization problem with the one
described above and, consequently, we are interested in evaluating the minimum Hellinger
distance estimators over 1000 MC replications by examining/studying to what extend the
contamination level affects these estimates.
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Table 8. Means, Absolute Biases and Overall Absolute Bias of the Hellinger’s distance (HD). The data
were concurrently generated with a given correlation structure (an overall correlation matrix Σ) and
consist of a discrete variable X with marginal probability vector (1/3, 1/3, 1/3) and a continuous
vector Y = (Y1, Y2, Y3) ∼ MVN3(µ, I3), where µT = (0, 3, 6) and I3 is a (3× 3) identity matrix.
The number of MC replications used is 1000.

ρON N Summary

Estimates
Means, Biases over 1000 Replications

π̂x1 π̂x2 π̂x3 µ̂y1 µ̂y2 µ̂y3

0.0 50 Mean 0.340 0.328 0.332 −0.004 2.606 5.227
Abs. Biases 0.007 0.005 0.001 0.004 0.394 0.773
Overall Bias 1.184

100 Mean 0.313 0.350 0.337 −0.004 2.777 5.593
Abs. Biases 0.020 0.017 0.004 0.004 0.223 0.407
Overall Bias 0.675

1000 Mean 0.338 0.334 0.328 0.012 2.972 5.958
Abs. Biases 0.005 0.001 0.005 0.012 0.028 0.042
Overall Bias 0.093

0.1 50 Mean 0.347 0.323 0.330 −0.021 2.628 5.249
Abs. Biases 0.014 0.010 0.003 0.021 0.372 0.751
Overall Bias 1.171

100 Mean 0.317 0.343 0.340 0.017 2.817 5.615
Abs. Biases 0.016 0.010 0.007 0.017 0.183 0.385
Overall Bias 0.618

1000 Mean 0.334 0.320 0.346 −0.013 2.988 5.956
Abs. Biases 0.001 0.013 0.013 0.013 0.012 0.044
Overall Bias 0.096

0.2 50 Mean 0.324 0.333 0.343 −0.004 2.589 5.240
Abs. Biases 0.009 0.000 0.010 0.004 0.411 0.760
Overall Bias 1.194

100 Mean 0.329 0.350 0.321 0.024 2.763 5.549
Abs. Biases 0.004 0.017 0.012 0.024 0.237 0.451
Overall Bias 0.745

1000 Mean 0.337 0.344 0.319 −0.011 2.971 5.951
Abs. Biases 0.004 0.011 0.014 0.019 0.029 0.049
Overall Bias 0.118

As indicated from Table 9, when there is no contamination in the data (α = 1.00),
the estimates for the πxi s are almost equal to 1/3, while the µy’s estimates are almost
equal to zero. As the data become more contaminated (i.e., the value of α decreases),
the minimum disparity estimators corresponding to X variable remain pretty consistent
with their true values. However, this is not the case with the estimates for the µyi s, which
deteriorate as the value of the contamination level α shifts from the target/null value,
that is 1.00.

The mean parameters are estimated with reasonable bias (maximum bias is 9% for the
second component of the mean) when α = 0.95, that is the contamination is 5%. When the
contamination is 10%, the bias of the mean components is relatively high but still below
19%. With higher contamination, the percentage of bias in the mean components is in
the interval [28.3%, 47%]. This is the result of using standard density estimation to obtain
the smoothing parameters for the different mean components. Smaller values of these
component smoothing parameters result in substantial bias reduction.
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Table 9. Means and SDs of the Hellinger’s distance (HD). The data were concurrently generated
with a given correlation structure (an overall correlation matrix Σ) and consist of a discrete variable X
with marginal probability vector (1/3, 1/3, 1/3) and a continuous trivariate vector Y = (Y1, Y2, Y3) ∼
α×MVN3(0, I3) + (1− α)×MVN3(µ, I3), where µT = (3, 3, 3), I3 is a (3× 3) identity matrix and
α = 1.00(0.05)0.80 indicates the contamination level. The number of MC replications used is 1000.

ρON N α Summary

Estimates
Means and SDs over 1000 Replications

π̂x1 π̂x2 π̂x3 µ̂y1 µ̂y2 µ̂y3

0.0 1000 1.00 Mean 0.324 0.337 0.339 0.001 −0.008 0.007
SD 0.293 0.293 0.298 0.378 0.378 0.386

0.95 Mean 0.327 0.326 0.347 0.068 0.090 0.079
SD 0.304 0.299 0.309 0.413 0.413 0.413

0.90 Mean 0.318 0.331 0.351 0.188 0.170 0.189
SD 0.300 0.305 0.306 0.443 0.450 0.436

0.85 Mean 0.324 0.337 0.339 0.292 0.283 0.312
SD 0.293 0.293 0.297 0.484 0.487 0.491

0.80 Mean 0.324 0.337 0.338 0.447 0.436 0.470
SD 0.293 0.293 0.297 0.552 0.547 0.559

We also looked at the case where the continuous model was contaminated by a
trivariate normal with mean µT = (1.5, 1.5, 1.5) and covariance matrix I. In this case (results
not shown), when the contamination is 5% the maximum bias of the mean components is
6.6%, while when the contamination is 10% the maximum bias of the mean components is
13.5%. Again, in this case the bandwidth parameters were obtained by fitting a unimodal
density to the data.

The above results are not surprising. A judicious selection of the smoothing parameter
decreases the bias of the component estimates of the mean. Agostinelli and Markatou [44]
provide suggestions of how to select the smoothing parameter that can be extended and
applied in this context.

8. Discussion and Conclusions

In this paper, we discuss Pearson residual systems that conform to the measurement
scale of the data. We place emphasis on the mixed-scale measurements scenario, which is
equivalent to having both discrete (categorical or nominal) and continuous type random
variables, and obtain robust estimators of the parameters of the joint probability distribution
that describes those variables. We show that, disparity methods can be used to actually
control against model misspecification and the presence of outliers, and these methods
provide reasonable results.

The scale and nature of measurement of the data imposes additional challenges, both
computationally and statistically. Detecting outliers in this multidimensional space is an
open research question (Eiras-Franco et al. [45]). The concept of outliers has a long history
in the field of statistics and outlier detection methods have broad applications in many
scientific fields such as security (Diehl and Hampshire [46], Portnoy et al. [47]), health care
(Tran et al. [48]) and insurance (Konijn and Kowalczyk [49]) to mention just a few.

Classical outlier detection methods are largely designed for single measurement scale
data. Handling mixed measurement scale is a challenge with few works coming from
both, the field of statistics (Fraley and Wilkinson [50], Wilkinson [51]) and the fields of
engineering and computer science (Do et al. [52], Koufakou et al. [53]). All these works use
some version of a probabilistic outlier, either looking for regions in the space of data that
have low density (Do et al. [52], Koufakou et al. [53]) or by attaching a probability, under a
model, to the suspicious data point (Fraley and Wilkinson [50], Wilkinson [51]).

Our concept of a probabilistic outlier discussed here and expressed via the construction
of appropriate Pearson residuals can unify the different measurement scales, and the class
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of disparity functions discussed above can provide estimators for the model parameters
that are not influenced unduly by potential outliers.

One of the important parameters that controls the robustness of these methods is the
smoothing parameter(s) used to compute the density estimator of the continuous part
of the model. In our computations, we use standard smoothing parameters obtained
from utilizing appropriate R functions for density estimation. The results show that,
depending on the level of contamination and the type of contaminating probability model,
the performance of the methods is satisfactory. Specifically, a small simulation study using
the model reported in the caption of Table 9 shows that the overall bias associated with the
mean components of the standard multivariate normal model is low when contamination
with a multivariate normal model with mean components equal to 3 is less than or equal
to 10%. But even in this case, when the percentage of contamination is greater than 10%,
the bias increases when the smoothing parameter used is the one obtained from the R
density function. Here, smaller values of the smoothing parameter guarantee reduction of
the bias.

Devising rules for selecting the smoothing parameter(s) in the context of mixed-scale
measurements that can guarantee robustness for larger than 5% levels of contamination
may be possible. However, it is the opinion of the authors that greater levels of data
inhomogeneity may indicate model failure, a case where assessing model goodness of fit is
of importance.

Author Contributions: The authors of this paper have contributed as follows. Conceptualization:
M.M.; Methodology: M.M., E.M.S., R.L.; Software: E.M.S., H.W.; Writing-original draft presentation: M.M.,
E.M.S., R.L., H.W.; Supervision, funding acquisition and project administration: M.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Troup Fund, KALEIDA Health Foundation, under award
number 82114, to Markatou who supported the work of the first and the third author of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ALT Alanine Aminotransferase
HD Twice-Squared Hellinger’s Disparity
LD Likelihood Disparity
MC Monte Carlo Replications
MDE Minimum Distance Estimators
MLE Maximum Likelihood Estimator
PCS Pearson’s Chi-Squared Disparity Divided by 2
PWD Power Divergence Disparity
RAF Residual Adjustment Function
SCS Symmetric Chi-Squared Disparity
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Appendix A

Appendix A.1. Proof of Proposition 3

Proof. The equations (4) are obtained from solving optimization problem (3). To solve this
problem we need to form the corresponding Langrangian, which is

∑
x,y

G(δ(x, y))mβ(y|x)πx − λ(∑ πx − 1).
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(i) Let ∇β denote gradient with respect to β. The estimators of β are obtained as solutions
of the set of equations:

∇β

{
∑
x,y

G(δ(x, y))mβ(y|x)πx − λ(∑ πx − 1)
}
= 0,

which can be equivalently expressed as follows,

∑
x,y

πx[∇βG(δ(x, y))]mβ(y|x) + ∑
x,y

πxG(δ(x, y))∇β(y|x) = 0.

Notice that the ∇β of G(δ(x, y)) is given by

∇βG(δ(x, y)) = −G′(δ(x, y))(δ(x, y) + 1) u(y|x; β),

where the superscript "’" denote derivative with respect to δ, δ(x, y) is the Pearson residual and

u(y|x; β) =
∇βmβ(y|x)

mβ(y|x)
= ∇β ln[mβ(y|x)]

is the score for β in the conditional distribution of y given x. Therefore,

∑
x,y

A(δ(x, y))πxu(y|x; β)mβ(y|x) = 0,

where
A(δ(x, y)) = G′(δ(x, y))[δ(x, y) + 1]− G(δ(x, y)).

By making use of the fact that ∑x πx∇βmβ(y|x) = 0, the resulting equations can repre-
sented as

∑
x,y

A(δ(x, y)) + 1
δ(x, y) + 1

nx,yu(y|x; β) = 0,

or equivalently,
∑
x,y

w(δ(x, y))nx,yu(y|x; β) = 0.

Without loss of generality, we can take,

w(δ(x, y)) = min
{ [A(δ(x, y)) + 1]+

δ(x, y) + 1
, 1
}

, w(δ(x, y)) ≤ 1.

(ii) We now need to obtain π̂x, which can be obtained by setting the gradient of formula
with respect to πz equal to zero, that is, by the following equations:

∑
y

G′(δ(z, y))[∇πzδ(z, y)]mβ(y|z)πz + ∑
y

G(δ(z, y))mβ(y|z)− λ = 0.

Recording A(δ(z, y)) = G′(δ(z, y))[δ(z, y) + 1] − G(δ(z, y)) and δ(z, y) + 1 =
nz,y/n

mβ(y|z)πz
,

the above equations are reduced to,

∑
y

A(δ(z, y))mβ(z, y)
1

πz
+ λ = 0

and we readily conclude that,

πz = −
1
λ ∑

y
A(δ(z, y))m(z, y), ∀z.
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Furthermore, to satisfy the constraint ∑x πx = 1, we obtain

λ = −∑
x,y

A(δ(x, y))mβ(x, y).

Therefore, we get

∑
x,y

A(δ(x, y))mβ(y, x)
[ I(X = z)

πx
− 1
]
= 0

and by making use of the fact that ∑x,y mβ(x, y)
[

I(X=z)
πx
− 1
]
= 0, the above equation can

be represented as

∑
x,y

w(δ(x, y))nx,y

[ I(X = x)
πx

− 1
]
= 0

for any x where I(X = x) is the indicator function of the event {X = x}.

Appendix A.2. Proof of Proposition 5

Recall that βε is a solution of the set of estimating equation

∑
s,t

w(δε(s, t))u(t|s; βε)dε(s, t) = 0, (A1)

where dε(s, t) = (1− ε)d(s, t) + ε∇x,y(s, t) and u(t|s; β) =
∇βmβ(s,t)

mβ(s,t) = ∇β ln[mβ(s, t)] is a

p-dimensional vector.
The influence function of β is calculated by differentiating, with respect to ε, the quan-

tity (A1), and evaluating the derivative at ε = 0. Thus, we need

d
dε

{
∑
s,t

w(δε(s, t))u(t|s; βε)d(s, t)

− ε ∑
s,t

w(δε(s, t))u(t|s; βε)d(s, t)

+ ε ∑
s,t

w(δε(s, t))u(t|s; βε)∇(x,y)(s, t)
}∣∣∣

ε=0
= 0.

(A2)

Taking into account that δε(s, t) = dε(s,t)
mβ(s,t) − 1 = dε(s,t)

mβ(t|s)πs
− 1, the aforementioned evaluation

implies {
∑
s,t
(δ0(t) + 1)w′0(δ0(s, t))u(t|s; β0)uT(t|s; β0)d(s, t)

−∑
s,t

w(δ0(s, t))∇u(t|s; β0)d(s, t)
}

β′0

=∑
s,t

{ I(s = x, y = t)
mβ0(t|s)πs

− d(s, t)
mβ0(t|s)πs

w′(δ0(s, t))
}

u(t|s; β0)d(s, t)

−∑
s,t

w(δ0(s, t))u(t|s; β0)d(s, t) + w(δ0(x, y))u(y|x; β0),

(A3)

which implies that
β′0 = IF(β; F) = [A(d)]−1B(x, y; d).

Appendix A.3. Assumptions of Theorem 1

The following assumptions are needed to be able to establish asymptotic normality of
the estimators.

1. The weight functions are nonnegative, bounded and differentiable with respect to δ.



Entropy 2021, 23, 107 24 of 26

2. The weight function is regular, that is, w′(δ)(δ + 1) is bounded, where w′(δ) is the
derivative of w with respect to δ.

3. ∑x,y m
1
2 (x, y)E[u2

k(y|x; β0)] < ∞.

4. The elements of the Fisher information matrix are finite and the Fisher information
matrix is nonsingular.

5. ∑x,y m
1
2 (x, y)E[u2

i (y|x; β0)u2
j (y|x; β0)] < ∞ ∀i, j = 1, 2, · · · , p.

6. If β0 denotes the true value of β, there exist functions Mijk(x) such that |uijk(y|x; β0)| ≤
Mijk(x), ∀β with ‖ β− β0 ‖2< r(β0), r(β0) < 0 and Eβ0 |Mijk(y|x)| < ∞, ∀i, j, k.

7. If β0 denotes the true value of β, there is a neighborhood N(β0) such that for β ∈ N(β0)
the quantity |ut(y|x; β0)ui(y|x; β0)ue(y|x; β0)| are bounded by M1(y|x) and M2(y|x)
respectively, such that their corresponding expectations are finite.

8. A′′(δ + 1)(δ + 1) is bounded, where A′′ denotes the second derivative of A with respect
to δ.
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