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Abstract: Recent advances in theoretical and experimental quantum computing raise the problem of
verifying the outcome of these quantum computations. The recent verification protocols using blind
quantum computing are fruitful for addressing this problem. Unfortunately, all known schemes have
relatively high overhead. Here we present a novel construction for the resource state of verifiable
blind quantum computation. This approach achieves a better verifiability of 0.866 in the case of
classical output. In addition, the number of required qubits is 2N + 4cN, where N and c are the
number of vertices and the maximal degree in the original computation graph, respectively. In other
words, our overhead is less linear in the size of the computational scale. Finally, we utilize the method
of repetition and fault-tolerant code to optimise the verifiability.

Keywords: blind quantum computation; quantum verification; delegated quantum computation

1. Introduction

Scalable quantum computing still has a long way to go, while quantum computing in cloud mode
is relatively reasonable. The scenario is that a client who only has access to classical computation and
a limited quantum device used for preparing or measuring single qubits delegates a computation
task to an untrusted server with a full-fledged quantum computer. In addition, the client’s input,
output, and computation remain private to the server. Such secure quantum computing protocols are
called blind quantum computing (BQC) [1–16]. However, how can a client verify the outcome of the
computation sent by a server when a quantum experiment solves a problem which is proven to be
intractable for classical computers? Fortunately, there has been a lot of progress in the development of
verification protocols [17–29]. The goal of verifiable universal blind quantum computation (VUBQC)
is to detect deviation with high probability when the server behave dishonestly and reject his output.
Here, the VUBQC scheme we consider is based on constructing the delegated computation to include
certain traps in such a way that the computation is not affected, while revealing no information to the
device [17]. Then one can verify that the computation has been performed correctly, with exponentially
small probability of error.

There are two important properties in the verification protocols [28]. The first one is verifiability,
which means the maximal probability for the output of the protocol to be incorrect and the client
accepting. The other one is correctness, which means the minimal probability for the client obtaining
the correct outcome when the server behaves honestly. Especially, we characterize the client as a verifier
and the server as a prover. The term “verifiable” for VUBQC is related to notions of completeness and
soundness in the context of interactive-proof system. Given a problem that is classically intractable,
the verifier can accept a correct solution with high probability and reject a invalid solution with
high probability at the end of the interaction with the prover. Note that even if the verifier accept
the outcome sent by the prover, the outcome may be still incorrect. However, the probability that
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the verifier accepting a wrong outcome can be reduced to a value approaching 0 through some
improvements for VUBQC.

In reality, exploring a verification protocol with arbitrarily small verifiability while keeping the
cost of resource optimal is still an opening problem. Some progress has been made in this regard. In [17],
dotted-complete graph was used for resource construction in verification protocol. It can achieve
verifiability ε= (5/6)d2d/5e, where d is the distance of error correcting code used in the protocol.
However, the overhead of verification protocol is quadratic in the size of the computation. In [25],
a optimised resource construction using dotted-triple graph was proposed, where the number of traps
can be a constant fraction of the total number of qubits. It can obtain verifiability ε= (8/9)dd/18e.
More importantly, it only requires a linear overhead in the size of the computation.

The verification scheme we present here makes use of similar elements as suggested in [17],
trap computations are used to detect errors and a fault-tolerant encoding of the computation is used
to amplify the detection rate. Compared with [17], we construct a sandglass-like resource state such
that the overhead is linearly related to the size of the computation. In addition, compared with [25],
not only do we just need fewer qubits, but also achieve a better verifiability.

The remainder of the paper is organized as follows. In Section 2 we give some basic notions
about verifiable universal blind quantum computation. Next, in Section 3 we give the process of
our sandglass-like resource state construction. Then in Section 4 we propose a verifiable blind
quantum computation protocol with sandglass-like resource state and analyse the correctness and
verifiability of the protocol. For classical output case and quantum output case, in Section 5 we propose
an improved scheme to improve verifiability. We finally conclude, in Section 6, with some discussions
and open problems.

2. Preliminaries

We briefly present the relevant concepts used in describing VUBQC protocols. The first one
is the model of measurement-based quantum computation (MBQC) [30–32]. Different from the
traditional quantum circuit model, in MBQC a given computation is performed by measuring qubits
from a large entangled state. This special entangled state consists of qubits prepared in the state
|+〉 = (|0〉+ |1〉)/

√
2, entangled using CZ =I ⊗ |0〉 〈0|+ Z⊗ |1〉 〈1| operations. The entangled

state is also known as graph state, which can be determined by a given graph. In other
words, given an undirected graph G with n vertices i ∈ V and edges (i, j) ∈ E, the graph
state |G〉 that corresponds to G is defined by |G〉 =

(
∏(i,j)∈E CZij

)
|+〉⊗n, where CZij is

the CZ operation acting on vertices sharing the edge (i, j). Then they are measured in the
basis

{∣∣+φ

〉
=
(
|0〉+ eiφ |1〉

)
/
√

2,
∣∣−φ

〉
=
(
|0〉 − eiφ |1〉

)
/
√

2
}

, where the measurement angle is
φ ∈ {0, π/4, · · · , 7π/4} depending on outcomes of previous measurements.

The second part is blind quantum computing [2], which is based on the MBQC model. The protocol

runs as follows: (1) Randomly rotated single-qubit states
{∣∣∣+θj

〉
=
(
|0〉+ eiθj |1〉

)
/
√

2
}N

j=1
are prepared

by Alice, where θj ∈ {0, π/4, · · · , 7π/4} is a random angle, and then Alice sends them to Bob. (2) Bob
creates a certain graph state called the brickwork state [2] by entangling obtained states with CZ operations.
(3) Alice calculates the measurement angle depending on outcomes of previous measurements and sends
it to Bob. (4) Bob performs the measurement in the angle sent by Alice, and returns the measurement
result to Alice. (5) Alice and Bob repeat (3) and (4) until all qubits of the brickwork state are measured.
If Bob behaves honestly, Alice obtains the correct outcome of desired quantum computation. Furthermore,
whatever malicious Bob does, Bob learns nothing about computation’s input, output, and algorithm.

The last one is the VUBQC protocol [17], which augments BQC with the ability to detect malicious
behaviour of server (Bob). Because no entanglement is created when CZ operation acts on state |0〉 or
|1〉. One can randomly choose a |+θ〉 qubit (trap qubit) whose neighbours are computational basis
states (dummy qubits) such that this qubit is disentangled from the rest qubits in the graph state.
Then measuring this trap qubit in θ angle will obtain the deterministic outcome. In [17], the cylinder
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brickwork state was used such that there are only disentangled trap qubits in a product state with
a brickwork state left after entanglement operations are applied by the Bob. Due to the the positions of
the traps and dummies are unknown to Bob, the blindness of the protocol is guaranteed. The verifier
(Alice) uses trap qubits as traps to test that the prover (Bob) performs desired quantum operations.

3. Sandglass-Like Resource State Construction

We now proceed to construct sandglass-like resource state in a manner similar to the construction
of the dotted-triple graph state of [25]. As mentioned in MBQC, given a graph G we can obtain
a corresponding graph state |G〉, which is used to perform a universal quantum computation.
We call G a base graph. Then we use the base graph G to construct a sandglass-like graph S(G)

whose corresponding graph state |S(G)〉 achieves verifiable quantum computation. Furthermore,
some operations will be performed on a coloured version of the sandglass-like graph S(G) in order
to obtain a subgraph used for computation and a subgraph used for traps. Because the selection
of computation subgraph and trap subgraph is unknown to the prover, security of the scheme is
protected. The same as [25], our construction of subgraphs is local. However, our method requires less
qubits and obtains a better verifiability.

We then give specific definitions and related properties of the sandglass-like resource state.
Since the construction of resource state depends completely on the sandglass-like graph (each vertex
represents a qubit and each edge represents a CZ entanglement operation), we only need to consider
the construction of the sandglass-like graph.

According to reference [17], the dotting operator on graph G is defined to be the operator that
transforms a graph G to a new graph denoted by D(G) by replacing every edge in G with a new
vertex connected to the two vertices originally joined by that edge. Given an arbitrary base graph G,
the construction procedure of the sandglass-like graph S(G) is described as follows.

(1) A base graph G consists of vertices v ∈ V(G) and edges e ∈ E(G).
(2) For each vertex vi ∈ V(G), we define a set of two new vertices Pvi =

{
pvi

1 , pvi
2
}

, where pvi
k

represents the kth vertex of the set Pvi .
(3) For each edge eij ∈ E(G), which connects the vertices vi and vj, we define a set of four edges

Eij that connect vertices in the set Pvi with the vertices in the set Pvj . More concretely, the set Eij

consists of four edges e11
ij , e12

ij , e21
ij , and e22

ij , where emn
ij represents an edge connecting the vertex pvi

m

and the vertex p
vj
n .

(4) We define an intermediate graph I(G) to be a graph consisting of vertices
⋃

vi∈V(G) Pvi and edges⋃
eij∈E(G) Eij described in steps (2) and (3). We perform the dotting operator on the intermediate

graph I(G) resulting in a sandglass-like graph denoted by S(G).

Note that the sandglass-like graph S(G) is actually equal to D(I(G)). An example of the construction
of sandglass-like graph S(G) is illustrated in Figure 1. The base graph G considered in this example
consists of four vertices and three edges, as shown in the Figure 1a. The corresponding intermediate graph
I(G) is shown in the Figure 1b. Furthermore, Figure 1c gives the sandglass-like graph S(G) corresponding
to the base graph G. According to the construction method, total number of vertices in the sandglass-like
graph is |V(S(G))| = 2 |V(G)|+ 4 |E(G)|. We therefore only need (2N + 4cN) qubits for our verifiable
quantum computation, where N is the number of qubits for universal quantum computation and c
is the maximum degree of the base graph. Our construction can apply to other graph states. Since the
basic unit of any graph state is two qubits entangled by a CZ gate, the construction procedure of our
sandglass-like graph is exactly aimed at a transformation to each basic unit.
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Figure 1. (a) A base graph G consisting of four vertices and three edges. (b) The intermediate graph
I(G) corresponding to the base graph G. (c) The sandglass-like graph S(G) corresponding to the base
graph G. The circle represents a primary vertex and the square represents an added vertex.

Once we have the sandglass-like graph S(G) we can color it for subsequent break operations and
bridge operations. We call the set of vertices Pvi a primary set. In addition, we say that the vertices
in each primary set are primary vertices. Similarly, we denote the set of four vertices related to each
edge eij as an added set Aevi ,vj

, and say that the vertices in each added set are added vertices. Similar to
the trap-coloring in [25], our definition about trap-coloring of the sandglass-like graph S(G) satisfies
the following conditions.

(1) Primary vertices are coloured in one of the three colours of white, red or green.
(2) Added vertices are coloured in one of the three colours of white, red or green.
(3) One of vertices in each primary set Pvi is uniformly at random chosen to be colored in green.

The remaining one vertex of Pvi has probability α to be colored in red and probability 1− α to be
colored in white, where α is an appropriate constant and 0 < α < 1.

(4) The colours of the primary vertices determine the colours of the added vertices. These added vertices
connecting primary vertices of different colours are white. These added vertices connecting both
green primary vertices are green. Moreover, these added vertices connecting both white primary
vertices are red.

Since the color of the added vertices depends on the color of the primary vertices, one may have
no red vertex in each primary set Pvi or added set Aevi ,vj

. A specific example of trap-coloring is given
in Figure 2a.

(a) (b)

Figure 2. (a) The trap-colouring of the sandglass-like graph S(G). (b) A computation subgraph and
a trap subgraph obtained by performing break operations on the white vertices of the coloured S(G).
For each green computation vertex, there may be a corresponding red trap vertex.
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While the construction and the coloring principle of the sandglass-like graph is public, the specific
coloring scheme is completely decided by Alice (the client) so that Bob (the server) can not know
which vertex is green or red or white. Every vertex has the possibility to be coloured in red (trap qubit).
In addition, the coloring of every primary set is independent from the coloring of other primary
sets, and the coloring of every added set depends on the coloring of two adjacent primary sets.
These features make the security proof of [25] still applicable for our analysis.

Our inspiration comes from that we keep the computation qubits (green vertices) hidden to
an untrusted client while increasing the probability that the qubit (vertex) that any attack acts on is
a trap qubit (red vertex) such that any attack has a higher probability to be detected. Specifically,
compared with [25] whose such a detection probability is 1/3 for each primary set and 1/9 for each
added set, our detection probability is α/4 for each primary set and (1− α)2/4 for each added set.
The lower detection probability obtained when α is 2−

√
3 crucially leads to our better verifiability for

the case of classical output (see Theorem 2 in Section 4). Note that we actually trade certain symmetry
(an arbitrary qubit is uniformly and randomly coloured in any one of the three colours of white, red
or green) to obtain less resource overhead. However, as we will see later, this asymmetry just cause
slightly inferior verifiability for the case of quantum output.

In what follows we show how to get computation subgraph and trap subgraph from the colored
sandglass-like graph. To do this, we need to introduce the break and bridge operations in [17].

The bridge operator on a vertex v of degree 2 on graph G is defined to be the operator which
connects the two neighbors of v and then removes vertex v and both adjacent edges from G. The break
operator on a vertex v of graph G is defined to be the operator that removes vertex v and all adjacent
edges from G.

As shown in Figure 3, the break and bridge operators are demonstrated, respectively. In Figure 3a
the break operator acting on vertex v2 removes vertex v2 and edges e12,e23 resulting in isolated two
vertices v1,v3. In Figure 3b the bridge operator acting on vertex v2 connects vertices v1,v3 with a new
edge e13 and removes vertex v2 and edges e12,e23 resulting in two direct connected vertices.

1v 2v 3v12e 23e 1v 2v 3v12e 23e

13e
(a) (b)

Figure 3. (a) A break operator on the vertex v2. (b) A bridge operator on the vertex v2.

Note that both break and bridge operations on a graph have corresponding implementations of
quantum form [17]. To clarify this, if we measure any qubit in a graph state in Pauli Z basis, we will
get a state obtained from the graph, in which the measured vertex and its adjacent edges are removed,
up to local Pauli Z corrections. It is equivalent to the break operation. However, what we use more
frequently is another equivalent method. In other words, we set the qubit that the break operator
acts on to be a dummy qubit, where the dummy qubit is in the state |0〉 or |1〉. Depending on the
specific value of the dummy qubit, a Pauli Z rotation on all the neighboring qubits in the graph will be
introduced after the entanglement operation is performed. As for the bridge operation, if we measure
any qubit in Pauli Y basis, we will obtain the graph state corresponding to the graph, in which the
measured vertex and its adjacent edges are removed and a new edge connecting the adjacent vertices
is created, up to local Z rotations by π/2 or −π/2.

Now we move on the generation process of the computation subgraph and trap subgraph.
Given a colored sandglass-like graph S(G), we perform break operations on the white vertices
and bridge operations on the green added vertices (green square vertices) such that we can obtain
a computation subgraph and a trap subgraph, as illustrated by Figure 2b. Further more, the red
vertices and green vertices are actually trap qubits and computation qubits, respectively. Note that
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in Figure 2b we preserve the green square vertices for matching computation qubits with trap qubits
(dashed circle).

It is noteworthy that our sandglass-like graph draws the same conclusion as Theorem 1 in [25],
which will be used in Section 5. To interpret this, we introduce relevant concepts in [25]. We define
the base-location of a vertex f of the sandglass-like graph S(G) to be the set Pv or Ae that contains
f in S(G). Given a sandglass-like graph S(G) and a collection of n base-locations E , we call the set
E independently colourable locations (ICL) if the choice of colours within any set corresponding
to a base-location in E is independent from the choice of colours in sets corresponding to other
base-locations in E .

Lemma 1. Given a set S consisting of n base-locations in the sandglass-like graph S(G) and assume that the
base graph G has maximum degree c. Then there exist a subset S′ ⊆ S such that S′ is independently colourable
locations and contains at least |S′| = n

2c+1 base-locations.

Proof. From the graph S with n locations, an ICL subset S′ can be found as follows. From our construction
of the sandglass-like graph, a local-colouring of an added base location corresponds to a local-colouring
of both adjacent primary base-locations. Then the necessary and sufficient condition of ICL is obtained.
In other words, a set of n base-locations E is ICL if and only if for all pairs i, j ∈ E the sets εi ∩ εj = ∅
(Lemma 3 of [25]), where εi = {i} if the base-location i is primary and εi = NS(G) (i) if the base-location i
is added.

One the one hand, if S′ contains a primary base-location vi, then all its adjacent added base-locations
(the maximal number is c) aij,aik will be excluded, as shown in Figure 4a. On the other hand, if S′

contains an added base-location aij, then all its adjacent primary base-locations vi,vj and the adjacent
added base-locations aik,aim,ajn of the primary base-locations vi,vj will be excluded, as shown in Figure 4b.
The number of excluded base-locations is at most 2c.

As a result, in the worst case there exists an ICL subset S′ with at least n
2c+1 base-locations.

ivjv kv iv jv

kv

mv nv

(a) (b)

Figure 4. (a) The introduction of a primary base-location vi. (b) The introduction of an added
base-location aij. Black vertices are excluded for satisfying independently colourable locations (ICL).
The dash line circles all the influenced vertices.

4. Verifiable Blind Quantum Computation with the Sandglass-Like Resource State

In this section, similar to [17,25], we present our verifiable blind quantum computation protocol.
However, we use our sandglass-like graph state as the resource state of verifiable blind quantum
computation. In addition, compared with [17,25], the verifiability and overhead of our protocol
are optimised.

The essential idea of verification protocol is that the trap-colouring chosen by Alice (verifier) is
unknown to Bob (prover) so that malicious Bob is difficult to deviate the computation while keeping
the trap qubit untouched.

Recall the main procedures for VUBQC [17]. Alice converts a computation task to a graph
G′, where corresponding graph state |G′〉 consists of computation qubits, dummy qubits and trap
qubits. In addition, each qubit of |G′〉 has a measurement angle φi called computation angle,
where φi ∈ A = {0, π/4 , · · · , 7π/4 } for all computation qubits and dummy qubits and φi = 0 for all
trap qubits. Alice then prepares states

∣∣+θi

〉
for all computation qubits and trap qubits and computational
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basis states |0〉 and |1〉 for all dummy qubits. Alice sends all these qubits to Bob, who then entangles
them to obtain the graph state |G′〉. Alice sends the practical measurement angle δi = φ′i + θi + ri in the
measurement order to Bob, where φ′i is the updated computation angle depending on φi and outcomes of
Bob’s previous measurements s, θi ∈ A is used to encrypt measurement angle φi and ri ∈ {0, 1} is used to
encrypt the outcome of measurement. Especially, δi = θi + ri for all trap qubits and δi ∈ A for all dummy
qubits. When Bob’s each trap measurement outcome bt is equal to expected value rt, the outcomes of
measurements are accepted and corrected by Alice to obtain real results of the computation task.

Here, in our scheme the graph G′ is replaced by sandglass-like graph S(G), φi is equal to π/2
for all the added green vertices required to be measured in Pauli Y basis for performing the bridge
operators and the function of calculation δi is set as C (i, φi, θi, ri, xi, s). We therefore give our verification
protocol as shown in Protocol 1.

Protocol 1 Verifiable blind quantum computation with sandglass-like resource state.
Alice’s resources:
(1) A graph G with N vertices for performing the desired computation task in MBQC mode.
The coloured sandglass-like graph S(G) with at most 2N + 4cN vertices, where c is the maximal
degree of the base graph G and labeling of vertices is known to Alice and Bob.
(2) The positions of dummy qubits for the break operations, set D, chosen to be positions of all white
vertices. The positions of trap qubits chosen to be all red vertices. The positions of computation qubits
chosen to be all green vertices, where green square vertices are used to perform bridge operations.
(3) An l-qubit input state |I〉.
(4) A sequence of measurement angles φ=(φi)1≤i≤(4N+6cN) with φi ∈ A = {0, π/4, · · · , 7π/4}.
2N + 4cN random variables θi with values taken uniformly at random from A. l random variables xi,
2N + 4cN random variables ri, and |D| random variables di with values taken uniformly at random
from {0, 1}. A binary string s of length at most 2N + 4cN for recording true measurement outcomes
related to Bob’s measurement outcomes, where s is initially set to be vector 0.
(5) A fixed function C (i, φi, θi, ri, xi, s) that for each non-output qubit i computes the angle of the
measurement of qubit i to be sent to the Bob.
Initial step:
(1) Alice’s move: Alice sets all the values in s to be 0 and encodes the l-qubit input state as |e〉 =
Xx1 Z (θ1)⊗ · · · ⊗ Xxl Z (θl) |I〉. She then prepares the remaining qubits in the following form: If i ∈ D,

then qubit i is set to be |di〉; otherwise qubit i is set to be ∏j∈NS(G)(i)∩D Zdj
∣∣+θi

〉
=

∣∣∣∣+θi+∑j∈NS(G)(i)∩D djπ

〉
,

where NS(G) (i) represents the neighborhood of vertex i in S(G). Then Alice sends Bob all qubits in the
order of the labeling of the vertices of the graph S(G).
(2) Bob’s move: Bob receives 2N + 4cN single qubits and entangles them according to S(G).
Step i: 1 ≤ i ≤ (2N + 4cN)
(1) Alice’s move: Alice computes the angle δi equal to C (i, φi, θi, ri, xi, s) and sends it to Bob. If qubit i
is the trap qubit, then the angle δi is set to be θi + riπ.
(2) Bob’s move: Bob measures qubit i with angle δi and sends Alice result bi.
(3) Alice’s move: Alice sets the value of si in s to be bi ⊕ ri.
Verification:
(1) After obtaining all the output qubits from Bob, if the trap qubit t is an output qubit, Alice measures
it with angle δt = θt + rtπ to obtain bt.
(2) Alice accepts if bi = ri for all the trap qubits i.
(3) Alice applies corrections according to measurement outcomes bi and secret parameters θi,
ri at the output layer green qubits in order to obtain the final output.

Theorem 1 (Correctness). If Alice and Bob follow the steps of Protocol 1 honestly, then Alice accepts the
correct outcome.

Proof. Proof follows along similar lines of Theorem 2 in [25]. In Protocol 1 the dummy qubits are
placed at white vertices of the coloured sandglass-like graph S(G). Note that the effect of dummy
qubits is the break operation on the graph S(G). As a result, a green computation subgraph and
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a red trap subgraph are obtained. Since both subgraphs have no effect to each other, we consider the
measurements on the computation subgraph and the trap subgraph separately.

The correctness on the computation subgraph stems from the correctness of universal blind
quantum computation [2]. To clarify, if each qubit in computation subgraph is rotated qubit

∣∣+θi

〉
and

measured in angle δi = C (i, φi, θi, ri, xi, s), then all the deviations from the actual implementation of
the measurement pattern are corrected. Therefore Alice will get desired computation output.

As for the trap subgraph, trap qubits are isolated. Every trap qubit
∣∣+θi

〉
will obtain deterministic

measurement outcome bi = ri after it is measured in angle δi equal to θi + riπ. Alice will accepts the
output, as honest Bob will always return bi = ri for all trap qubits.

Theorem 2 (Verifiability). Protocol 1 is 0.905 verifiable in the case of quantum output and 0.866 verifiable
in the case of classical output.

The proof of above Theorem 2 can be found in Appendix A. According to the process of proof,
the verifiability of Protocol 1 is equivalent to solving the following optimization problems.

minα∈(0,1) max
{

1− 1
4 α, 1− 1

2 α,− 1
4 α2 + 1

2 α + 3
4

}
, (1)

minα∈(0,1) max
{

1− 1
2 α,− 1

4 α2 + 1
2 α + 3

4

}
, (2)

where Equations (1) and (2) respectively correspond to the case of quantum output and the case of
classical output. Theorem 2 shows that the probability of accepting an incorrect outcome is constant.

5. Optimization of Verifiability

While we achieve the verification of blind quantum computing with the sandglass-like resource
state, our protocol’s verifiability is too high to be applied in practice. In this section, similar to [25],
we will utilize one method respectively to reduce verifiability ε to arbitrarily small number in both
cases of classical output and quantum output.

In the case of classical output we repeat Protocol 1 a certain number of times. Since all repetitions
obtain the same correct output when Bob is honest, the verifiability can be decreased by adding
an additional verification condition that Alice accepts final output if all of repetitions get the same
output. From this result we can construct a new verification protocol based on repetitions, as given
in Protocol 2. In the case of quantum output we use the technology of fault-tolerant code [33,34],
which is often used in topological fault-tolerant blind quantum computation [4]. The main idea is
that malicious Bob needs to make more attacks on computation qubits because of the existence of
fault-tolerant code , which will increase the possibility of being caught by Alice. We therefore have
Protocol 3.

Protocol 2 Optimised VUBQC with sandglass-like resource state for classical output.
Alice’s resources:
(1) The number of repetitions R =

log ε
log 0.866 , where ε is the desired security level.

(2) The rest of the resources are the same as Protocol 1.
Step i: 1 ≤ i ≤ R
(1) Follow the steps of Protocol 1, where each repetition of Protocol 1 corresponds to identical
computation task.
(2) If Alice accepts the output, she records the classical output as Oi.
Verification:
(1) If any single repetition of Protocol 1 is rejected, the overall computation will be rejected. Otherwise,
Alice compares all Oi. If all Oi are identical, Alice accepts this output as the output of computation.

Theorem 3. Protocol 2 is 0.866R verifiable for classical output, where R is the number of repetitions.



Entropy 2020, 22, 996 9 of 13

Proof. Recall that the verifiability represents maximal probability that Alice accepts an incorrect
outcome. Because the condition that Alice accepts final output is that all repetitions of Protocol 1 are
accepted and all of them return the same output. The event that Alice accepts an incorrect output
means that all repetitions of Protocol 1 are accepted and return the same incorrect output. Since the
verifiability of Protocol 1 is 0.866, the verifiability of Protocol 2 is 0.866R.

Protocol 3 Optimised VUBQC with sandglass-like resource state for quantum output.
Alice’s resources:
(1) A base graph G encoded in a fault-tolerant way for correcting errors less than δ.
(2) The rest of the resources are the same as Protocol 1.
Same steps as in Protocol 1.

Theorem 4. Protocol 3 is 0.905
⌈

δ
2(2c+1)

⌉
verifiable for quantum output, where δ is the number of tolerated errors

on the base graph G and c is the maximal degree of G.

The proof of the above Theorem 4 can be found in Appendix B. From Theorem 3 and Theorem 4
we can see that the verifiability of verification protocol is exponentially small.

6. Conclusions

Inspired by the dotted triple-graph by Kashefi and Wallden [25], we have introduced the concept of
sandglass-like graph whose corresponding graph state can be used to be the resource state of verifiable
blind quantum computing. We then proposed a verifiable blind quantum computation protocol with
sandglass-like resource state. Based on this protocol, we proposed one new scheme in the case of
classical and the case of quantum output to improve the verifiability of the original protocol.

Our main contribution can be described as follows. We have broken the symmetry
of the trap-coloring in [25]. In other words, the possibility to be colored in green, the possibility
to be colored in white, and the possibility to be colored in red are set to be not equal for each primary
vertex. This essential point allows us to design a better resource state, which only requires a less linear
overhead in the size of the computation. In addition, we achieves a better verifiability for the case
of classical output, i.e., a lower probability that the client accepts a wrong outcome from the server,
by optimizing the setting of the probability in the trap-coloring.

In [17], Joseph F. Fitzsimons et al proposed a VUBQC protocol using a dotted-complete graph
state. Their verifiability is (5/6)d2d/5e, where d is the defect thickness under RHG fault-tolerance
scheme [35–37]. Here, RHG fault-tolerance scheme is a fault-tolerant version of the one-way quantum
computer using a cluster state in three spatial dimensions, which was proposed by Raussendorf,
Harrington and Goyal [36]. However, the overhead of their protocol is quadratic. In other words,
the number of qubits required for the protocol is O(N2), where N is the number of qubits used
to implement desired computation. The protocol of Elham Kashefi et al [25] considered a dotted

triple-graph state. Their verifiability is (8/9)R in the case of classical output and
( 8

9
)⌈ δ

2(2c+1)

⌉
in the case

of quantum output, where R denotes the number of repetitions, δ is the number of errors that can
be detected or corrected, and c is the maximal degree of the base graph G implementing desired
computation. In addition, their overall cost is 3N + 9cN. In contrast to these schemes, our protocols’

verifiability is 0.866R in the case of classical output and 0.905
⌈

δ
2(2c+1)

⌉
in the case of quantum output.

It means that our verifiability is better in the former case and slightly worse in the later case.
More importantly, our overhead is 2N + 4cN.

For future studies, our construction can be applied to device-independent VUBQC [20,21,24] and
other specific fault-tolerance codes. It is still an open problem to further reduce overhead of VUBQC.
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Appendix A. Proof of Theorem 2

Our proof makes full use of results from the proof of Theorem 3 of [25]. We represent the probability
for Alice accepting an incorrect outcome in Protocol 1 by perror. According to (C.12) of [25], we have the
following bound for perror.

perror ≤ max
i∈Ei

∑
T

p (T) ∏
t∈T

(
∑
θt ,rt

p (θt) p (rt)
(〈

ηvT
t
∣∣ σi|t

∣∣ηvT
t
〉)2
)

, (A1)

where σi is a tensor product of Pauli operators related to Bob’s deviation and σi|t ∈ {I, X, Y, Z} represents
the action of σi on the qubit t. Here, i ∈ Ei means all i satisfying condition |Bi|+ |Ci|+

∣∣DO
i

∣∣ ≥ 1,
where the sets are defined as follows.

Ai =
{

γ : σi|γ = I, 1 ≤ γ ≤ 4N + 6cN
}

,

Bi =
{

γ : σi|γ = X, 1 ≤ γ ≤ 4N + 6cN
}

,

Ci =
{

γ : σi|γ = Y, 1 ≤ γ ≤ 4N + 6cN
}

,

Di =
{

γ : σi|γ = Z, 1 ≤ γ ≤ 4N + 6cN
}

. (A2)

Moreover, DO
i denotes subset of Di subject to the constraint that γ is an output qubit. Then we

explain the meaning of
∣∣ηvT

t
〉
. vT = {t, rt, θt} represents the fixed choice of Alice’s random variables

about trap qubits. In addition,
∣∣ηvT

t
〉

=
∣∣+θt

〉
when trap qubit t belongs to output qubits and∣∣ηvT

t
〉
= |+rt〉 otherwise. Note that

∣∣ηvT
t
〉

is actually the ideal state of trap qubit after all the
entanglements done by Bob. In addition, T denotes positions of trap qubits, whose corresponding
probability is p (T). θt or rt represents the value of trap qubit t corresponding to whether the trap qubit
belongs to the output qubit or not. In the same way, p (θt) and p (rt) denote probability of choosing θt

and rt, respectively.
To further bound perror, we use the conclusion [25] that an attack σi having the fewest non-trivial

terms (i.e., σi|γ ∈ {X, Y, Z} if γ is an output qubit, or σi|γ ∈ {X, Y} if γ is not an output qubit)
corresponds to the maximal perror. Moreover, there is at least one non-trivial Pauli attack in the set
Ei. Combining both points, we can achieve the maximal perror when there is exactly one non-trivial
Pauli attack. Assume that the position of the single non-trivial attack Bob does is β. β belongs to either
Pvβ

or Aeβ
. For convenience, we use Fβ to denote Pvβ

or Aeβ
uniformly, where Fβ = Pvβ

if β belongs to
a primary location Pvβ

and Fβ = Aeβ
if β belongs to a primary location Aeβ

. Then according to (C.14)
of [25], the maximal perror becomes

perror ≤ max
i∈Ei

∑
tβ∈Fβ

∑
θtβ

,rtβ

p
(
tβ

)
p
(

θtβ

)
p
(

rtβ

) (〈
ηvT

tβ

∣∣∣ σi|tβ

∣∣∣ηvT
tβ

〉)2
. (A3)



Entropy 2020, 22, 996 11 of 13

Now we divide Fβ into three cases to analyse the upper bound of perror. The first case is that the
non-trivial attack acts on the output primary location PO

vβ
, i.e., Fβ = PO

vβ
.

perror ≤ max
i∈Ei

∑
tβ∈PO

vβ

∑
θtβ

,rtβ

p
(
tβ

)
p
(

θtβ

)
p
(

rtβ

) (〈
ηvT

tβ

∣∣∣ σi|tβ

∣∣∣ηvT
tβ

〉)2

= max
i∈Ei

1
16 ∑

tβ∈PO
vβ

∑
θtβ

,rtβ

p
(
tβ

) (〈
+θtβ

∣∣∣σi|tβ

∣∣∣+ θtβ

〉)2

= max
i∈Ei

1
16 ∑

θtβ
,rtβ

((
1− α

2

)
· 1 + α

2
·
(〈

ηvT
tβ

∣∣∣ σi|tβ

∣∣∣ηvT
tβ

〉)2
)

≤ max
i∈Ei

1
16

(16 ·
(

1− α

2

)
+ 4α)

= 1− α

4
. (A4)

In the equality of the second line, we used θtβ
∈ {0, π/4, · · · , 7π/4} and rtβ

∈ {0, 1}. In the
equality of the third line, we used that the probability that any qubit of primary set is a trap qubit is

α/2, and σi|tβ
is non-trivial if and only if β=tβ. In the last inequality, ∑θtβ

(〈
+θtβ

∣∣∣ σi|tβ

∣∣∣+θtβ

〉)2
≤ 4

for any non-trivial σi|tβ
∈ {X, Y, Z} is used.

The second case is that the non-trivial attack acts on the added location Aeβ
. In the similar way,

we can obtain

perror ≤ max
i∈Ei

∑
tβ∈Aeβ

∑
θtβ

,rtβ

p
(
tβ

)
p
(

θtβ

)
p
(

rtβ

) (〈
ηvT

tβ

∣∣∣ σi|tβ

∣∣∣ηvT
tβ

〉)2

= max
i∈Ei

1
16 ∑

tβ∈Aeβ

∑
θtβ

,rtβ

p
(
tβ

) (〈
+rtβ

∣∣∣ σi|tβ

∣∣∣+rtβ

〉)2

= max
i∈Ei

1
16 ∑

θtβ
,rtβ

((
1− (1− α)2

4

)
· 1 + (1− α)2

4
·
(〈

+rtβ

∣∣∣ σi|tβ

∣∣∣+rtβ

〉)2
)

= −1
4

α2 +
1
2

α +
3
4

. (A5)

In the equality of the third line, we considered that the probability that any qubit of added set

is a trap qubit is (1− α)2/4. In the equation of the fourth line, ∑rtβ

(〈
+rtβ

∣∣∣ σi|tβ

∣∣∣+rtβ

〉)2
= 0 for any

non-trivial σi|tβ
∈ {X, Y}.

The last case is that the non-trivial attack acts on the non-output primary location PNO
vβ

,

i.e., Fβ = PNO
vβ

. Similarly, we can get the upper bound of perror, which is 1− α/2.
The overall bound of perror for the case of quantum output is the maximal value of all above

situations. As for the case of classical output, the overall bound of perror is the maximal value of above
situations excluding the output primary location. We aim to determine the value of α to minimize the
overall bound of perror. The concrete optimal functions corresponding to quantum output and classical
output are described in the Equations (1) and (2), respectively. From solving problems, we obtain the
minimum 0.905 for the case of quantum output iff α is (3−

√
5)/2, and we get the minimum 0.866 for

the case of quantum output iff α is 2−
√

3.

Appendix B. Proof of Theorem 4

Our proof follows results from the proof of Theorem 4 of [25]. In our sandglass-like graph S(G),
any non-trivial error (X or Y) on an added qubit is equivalent to a local error on each of two adjacent
primary qubits. So one needs at least δ/2 errors on the qubits of S(G) to corrupt a computation. Then the
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set Ei of attacks in the proof of Theorem 2 becomes E′i =
{

i : |Bi|+ |Ci|+
∣∣DO

i

∣∣ ≥ δ/2
}

. Since every
location (Pv or Ae) contains exactly a qubit for computation subgraph, at least δ/2 non-trivial attacks
should be performed on different locations to disturb computation. We denote the set of locations having
at least one non-trivial attack by Si, where |Si| ≥ δ/2 . According to the expression of perror, the fewer
non-trivial attacks result in the greater value of bound. An upper bound of perror is obtained when there
are exactly δ/2 different locations with exactly a single non-trivial attack in each location, i.e., |Si| = δ/2 .
Utilizing Lemma 1, there is a subset S′i ⊆ Si that is independently colourable locations and it contains at
least

∣∣S′i∣∣ = dδ/2 (2c + 1) e locations. Here we set attacks in locations of Si\S′i to be trivial (σi|γ = I or Z)
and attacks in locations of S′i to be non-trivial for gaining an upper bound of perror. According to the
inequality (A1), we have the same expression as (E.1) of [25].

perror ≤ max
i∈E′i

|S′i |
∏
β=1

∑
tβ∈Fβ

p
(
tβ

)
∑

θtβ
,rtβ

p
(

θtβ

)
p
(

rtβ

) (〈
ηvT

tβ

∣∣∣ σi|tβ

∣∣∣ηvT
tβ

〉)2
(A6)

The right side of above expression consists of the product of
∣∣S′i∣∣ items, while the upper bound of

each item is 0.905. So we have perror ≤ 0.905
⌈

δ
2(2c+1)

⌉
.
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