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Abstract: Rényi entropy as a generalization of the Shannon entropy allows for different averaging
of probabilities of a control parameter α. This paper gives a new perspective of the Kalman filter
from the Rényi entropy. Firstly, the Rényi entropy is employed to measure the uncertainty of the
multivariate Gaussian probability density function. Then, we calculate the temporal derivative of the
Rényi entropy of the Kalman filter’s mean square error matrix, which will be minimized to obtain
the Kalman filter’s gain. Moreover, the continuous Kalman filter approaches a steady state when the
temporal derivative of the Rényi entropy is equal to zero, which means that the Rényi entropy will
keep stable. As the temporal derivative of the Rényi entropy is independent of parameter α and is
the same as the temporal derivative of the Shannon entropy, the result is the same as for Shannon
entropy. Finally, an example of an experiment of falling body tracking by radar using an unscented
Kalman filter (UKF) in noisy conditions and a loosely coupled navigation experiment are performed
to demonstrate the effectiveness of the conclusion.

Keywords: Rényi entropy; discrete Kalman filter; continuous Kalman filter; algebraic Riccati equation;
nonlinear differential Riccati equation

1. Introduction

In the late 1940s, Shannon introduced a logarithmic measure of information [1] and a theory that
included information entropy (the literature shows that it is related to Boltzmann entropy in statistical
mechanics). The more stochastic and unpredictable a variable is, the larger its entropy is. As a measure
of information, entropy has been used in various fields, such as information theory, signal processing,
information-theoretic learning [2,3], etc. As a generalization of the Shannon entropy, Rényi entropy,
named after Alfréd Rényi [4], allows for different averaging of probabilities through a control
parameter α, and is usually used to quantify the diversity, uncertainty, or randomness of random
variables. Liang [5] presented the evolutionary entropy equations and the uncertainty estimation for
Shannon entropy and relative entropy, which is also called Kullback–Leibler divergence [6], within the
framework of dynamical systems. However, higher-order Rényi entropy has some better properties
than Shannon entropy by setting the control parameter α in most cases.

The Kalman filter [7] and its variants have been widely used in navigation, control, tracking,
etc. Many works focus on combining different entropy and entropy-like quantities with the original
Kalman filter to improve the performance. When the state space equation is nonlinear, Rényi entropy
can be used to measure the nonlinearity [8,9]. Shannon entropy was used to estimate the weight
of each particle from the weights of different measurement models for the fusion algorithm in [10].
Quadratic Rényi entropy [11] of innovation has been used as a minimum entropy criterion under
a nonlinear and non-Gaussian circumstance [12] in unscented Kalman filter (UKF) [13] and finite
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mixtures [14]. A generalized density evolution equation [15] and polynomial-based non-linear
compensation [16] were used to improve the minimum entropy filtering [17]. Relative entropy has
been used to measure the similarity between the probabilistic density functions during the recursive
processes of the nonlinear filter [18,19]. As for the nonlinear measurement equation with additive
Gaussian noise, relative entropy can be deduced to measure the nonlinearity of the measurement [20],
and can also be used to measure the approximation error of the i-th measurement element in the
partitioned update Kalman filter [21]. When the state variables and the measurement variables do not
belong to strict Gaussian distribution, such as in the seamless indoor/outdoor multi-source fusion
positioning problem [22], the estimation error can be measured by the relative entropy. Relative entropy
can also be used to calculate the number of particles in the unscented particle filter for mobile robot
self-localization [23] and to calculate the sample window size in the cubature Kalman filter (CKF) [24]
for attitude estimation [25]. Moreover, it has been verified that the original Kalman filter can be derived
by maximizing the relative entropy [26]. Meanwhile, the robust maximum correntropy criterion
has been adopted as the optimal criterion to derive the maximum correntropy Kalman filter [27,28].
However, there has been no work on the direct connections between the Rényi entropy and the Kalman
filter theory until now.

In this paper, we propose a new perspective of the Kalman filter from the Rényi entropy for the first
time, which bridges the gap between the Kalman filter and the Rényi entropy. We calculate the temporal
derivative of the Rényi entropy for the Kalman filter mean square error matrix, which provides the
optimal recursive solution mathematically and will be minimized to obtain the Kalman filter gain.
Moreover, from the physical point of view, the continuous Kalman filter approaches a steady state when
the temporal derivative of the Rényi entropy is equal to zero, which also means that the Rényi entropy
will keep stable. A numerical experiment of falling body tracking in noisy conditions with radar using
the UKF and a practical experiment of loosely-coupled integration are provided to demonstrate the
effectiveness of the above conclusion.

The structure of this paper is as follows. In Section II, the definitions and properties of Shannon
entropy and Rényi entropy are presented. In Section III, the Kalman filter is derived from the
perspective of minimizing the temporal derivative of Rényi entropy, and the connection between the
Rényi entropy and the algebraic Riccati equation is explained. In Section IV, experimental results and
analysis are given by the simulation of the UKF and the real integrated navigation data. We finally
conclude this paper and provide an outlook for future work in Section V.

2. The Connection between the Kalman Filter and the Temporal Derivative of the Rényi Entropy

2.1. Rényi Entropy

To calculate the Rényi entropy of the continuous probability density function (PDF), it is necessary
to extend the definition of the Rényi entropy to the continuous form. The Rényi entropy of order α for a
continuous random variable with a multivariate Gaussian PDF p(x) is defined [4] and calculated [9] as:

Hα
R(x) =

1
1− α

ln
∫
S

pα(x)dx =
N
2

ln(2πα
1

α−1 ) +
1
2

ln(det Σ), (1)

where α > 0, α 6= 1, and α is a parameter providing a family of entropy functions. N is the dimension
of the random variable x. S is the support. Σ is the covariance matrix of p(x).

It is straightforward to show that the temporal derivative of the Rényi entropy is given by [9]:

Ḣ(α)
R (x) =

1
2

Tr{Σ−1Σ̇}, (2)

where Σ̇ is the temporal derivative of the covariance matrix and Tr(·) is the trace operator.
It is easy to get the Shannon entropy for the multivariate Gaussian PDF by taking the limitation

of Equation (1) as α approaches 1. This entropy is given as H(x) = N
2 ln(2πe) + 1

2 ln(det Σ), and the
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temporal derivative of the Shannon entropy is given as Ḣ(x) = 1
2 Tr{Σ−1Σ̇}. It is obvious the temporal

of the Shannon entropy is the same as the temporal of the Rényi entropy. Therefore, we will see
later that the conclusion can also be derived from the temporal derivative of the Shannon entropy.
However, the Rényi entropy for the multivariate Gaussian PDF instead of the temporal derivative of the
Rényi entropy will be used by adjusting the free parameter α for different uncertainty measurements
in most cases, as the filtering problem has to account for the nonlinearity and the non-Gaussian noise;
we adopt the Rényi entropy as the measurement for uncertainty.

2.2. Kalman Filter

Given the continuous-time linear system [29]:

Ẋ(t) = F(t)X(t) + G(t)w(t) (3)

Z(t) = H(t)X(t) + v(t), (4)

where X(t) is the state vector; F(t) is the state transition matrix; G(t) is the system noise driving matrix;
Z(t) is the measurement vector; H(t) is the measurement matrix; and w(t) and v(t) are independent
white Gaussian noise with zero mean value; their covariance matrices are Q(t) and R(t), respectively:

E[w(t)] = 0,E[w(t)wT(τ)] = Q(t)δ(t− τ) (5)

E[v(t)] = 0,E[v(t)vT(τ)] = R(t)δ(t− τ) (6)

E[w(t)vT(τ)] = 0, (7)

where δ(t) is the Dirac impulse function, Q(t) is a symmetric non-negative definite matrix, and R(t) is
a symmetric positive matrix.

The continuous Kalman filter can be deduced by taking the limit of the discrete Kalman filter.
The discrete-time state-space model is arranged as follows [29]:

Xk = Φk|k−1Xk−1 + Γk|k−1Wk−1 (8)

Zk = HkXk + Vk (9)

where Xk is an n-dimensional state vector; Zk is an m-dimensional measurement vector; Φk|k−1,
Γk|k−1, and Hk are the known system structure parameters, which are called the n× n dimensional
one-step state update matrix, the n× l dimensional system noise distribution matrix, and the m× n
dimensional measurement matrix, respectively; Wk−1 is the l-dimensional system noise vector, and Vk
is the m-dimensional measurement noise vector. Both of them are Gaussian noise vector sequences
with zero mean value, and are independent of each other:

E[Wk] = 0,E[WkWT
j ] = Qkδkj (10)

E[Vk] = 0,E[VkVT
j ] = Rkδkj (11)

E[WkVT
j ] = 0. (12)

The above equation is the basic assumption for the noise requirement in the Kalman filtering state
space model, where Qk is a symmetric non-negative definite matrix, and Rk is a symmetric positive
definite matrix. δkj is the Kronecker δ function.

The covariance parameters Qk and Rk play roles similar to those of Q and R in the continuous filter,
but they do not have the same numerical values. Next, the relationship between the corresponding
continuous and discrete filter parameters will be derived.
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To achieve the transformation from the continuous form to the discrete form, the relations between
Q and R and the corresponding Qk and Rk for a small step size Ts are needed. According to the linear
system theory, the relation between Q and Qk from Equation (3) to Equation (8) is as follows:

Φk|k−1 = Φ(tk, tk−1) ≈ e
∫ tk

tk−1
F(τ)dτ

(13)

Γk|k−1Wk−1 =
∫ tk

tk−1

Φ(tk, τ)G(τ)w(t)dτ. (14)

Denote the discrete-time interval as Ts = tk − tk−1, when F(t) does not change too dramatically
within the shorter integral interval [tk−1, tk]. Take the Taylor expansion of eF(tk−1)Ts with respect to
F(tk−1)Ts and set F(tk−1)Ts << I, so the higher-order terms are negligible and the one-step transition
matrix, Equation (13), can be approximated as:

Φk|k−1 ≈ eF(tk−1)Ts = I + F(tk−1)Ts + F2(tk−1)
T2

s
2!

+ F3(tk−1)
T3

s
3!

+ · · · ≈ I + F(tk−1)Ts. (15)

Equation (14) shows that Γk|k−1Wk−1 is the linear transform of the Gaussian white noise w(τ);
the result remains the normal distribution random vector. Therefore, the first- and second-order
statistical characteristics can be used to describe and be equivalent to Γk|k−1Wk−1. Referring to
Equation (5), the mean of Γk|k−1Wk−1 is given as follows:

E[Γk|k−1Wk−1] = E[
∫ tk

tk−1

Φ(tk, τ)G(τ)w(τ)dτ] =
∫ tk

tk−1

Φ(tk, τ)G(τ)E[w(τ)]dτ = 0. (16)

For the second-order statistical characteristics, when k 6= j, the time parameter between the noise
w(τk) and w(τj) is independent, so Γk|k−1Wk−1 and Γj|j−1Wj−1 are uncorrelated:

E[(Γk|k−1Wk−1)(Γj|j−1Wj−1)
T ] = 0 (k 6= j). (17)

When k = j, thus

E[(Γk|k−1Wk−1)(Γk|k−1Wk−1)
T ] = E

{
[
∫ tk

tk−1

Φ(tk, τ)G(τ)w(τ)dτ][
∫ tk

tk−1

Φ(tk, s)G(s)w(s)ds]T
}

= E
{∫ tk

tk−1

Φ(tk, τ)G(τ)w(τ)
∫ tk

tk−1

wT(s)GT(s)ΦT(tk, s)dsdτ

}
=
∫ tk

tk−1

Φ(tk, τ)G(τ)
∫ tk

tk−1

E[w(τ)wT(s)]GT(s)ΦT(tk, s)dsdτ.

(18)

Substituting Equation (5) into the above equation:

E[(Γk|k−1Wk−1)(Γk|k−1Wk−1)
T ] =

∫ tk

tk−1

Φ(tk, τ)G(τ)
∫ tk

tk−1

Q(t)δ(τ − s)GT(s)ΦT(tk, s)dsdτ

=
∫ tk

tk−1

Φ(tk, τ)G(τ)Q(τ)GT(τ)ΦT(tk, τ)dτ.
(19)

When the noise control matrix G(τ) changes slowly during the time interval [tk−1, tk],
Equation (19) becomes:
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E[(Γk|k−1Wk−1)(Γk|k−1Wk−1)
T ]

≈
∫ tk

tk−1

[I + F(tk−1)(tk − τ)]G(tk−1)Q(τ)GT(tk−1)[I + F(tk−1)(tk − τ)]Tdτ

= [I + F(tk−1)Ts] · [G(tk−1)Q(tk−1)GT(tk−1)Ts] · [I + F(tk−1)Ts]
T

+
1

12
F(tk−1)G(tk−1)Q(tk−1)GT(tk−1)F(tk−1)

TT3
s

≈ {[I + F(tk−1)Ts]G(tk−1)} · [Q(tk−1)Ts] · {[I + F(tk−1)Ts]G(tk−1)}T .

(20)

When F(tk−1)Ts << I is satisfied, the above equation can be further approximated:

E[(Γk|k−1Wk−1)(Γk|k−1Wk−1)
T ] ≈ G(tk−1) · [Q(tk−1)Ts] · GT(tk−1). (21)

Comparing the result with Equation (10):

Γk|k−1 ≈ [I + F(tk−1)Ts]G(tk−1) ≈ G(tk−1) (22)

E[WkWT
j ] = Qkδkj = [Q(tk)Ts]δkj. (23)

Notice that [29]:
Qk = Q(tk)Ts. (24)

The derivation of the equation relating to Rk and R is more subtle. In the continuous model, v(t) is
white, so simple sampling of Z(t) leads to measurement noise with infinite variance. Hence, in the
sampling process, we have to imagine averaging the continuous measurement over the Ts interval to
get an equivalent discrete sample. This is justified because x is not the Gaussian white noise and can
be approximately constant within the interval.

Zk =
1
Ts

∫ tk

tk−1

Z(t)dt =
1
Ts

∫ tk

tk−1

[H(t)x(t) + v(t)]dt = H(tk)xk +
1
Ts

∫ tk

tk−1

v(t)dt. (25)

Then, the discrete noise matrix and the continuous noise matrix are equivalent:

Vk =
1
Ts

∫ tk

tk−1

v(t)dt. (26)

From Equation (12), we have:

E[VkVT
j ] = Rkδkj =

1
T2

s

∫ tk

tk−1

∫ tj

tj−1

E[v(τ)v(s)]dτds

=
1

T2
s

∫ tk

tk−1

∫ tj

tj−1

R(τ)δ(s− τ)dτds =
1

T2
s

∫ tk

tk−1

R(τ)δkjdτ ≈ R(tk)

Ts
δkj.

(27)

Comparing it with Equation (6), we have [29]:

Rk =
R(tk)

Ts
. (28)

2.3. Derivation of the Kalman Filter

Assuming that the optimal state estimation at tk−1 is X̂k−1, the state estimation error is X̃k−1,
and the state estimation covariance matrix is Σk−1:

X̃k−1 = Xk−1 − X̂k−1 (29)

and
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Σk−1 = E[X̃k−1X̃T
k−1] = E[(Xk−1 − X̂k−1)(Xk−1 − X̂k−1)

T ]. (30)

If we take the expectation operator of both sides of Equation (8), we obtain the state one-step
prediction and the state one-step estimation error:

X−k|k−1 = E[Xk] = E[Φk|k−1Xk−1 + Γk|k−1Wk−1] = Φk|k−1E[Xk−1] = Φk|k−1X̂k−1, (31)

X̃k|k−1 = Xk − X−k|k−1. (32)

Substituting Equations (8) and (31) into Equation (32) leads to:

X̃k|k−1 = (Φk|k−1Xk−1 + Γk|k−1Wk−1)−Φk|k−1X̂k−1

= Φk|k−1(Xk−1 − X̂k−1) + Γk|k−1Wk−1 = Φk|k−1X̃k−1 + Γk|k−1Wk−1.
(33)

Since X̃k−1 is uncorrelated with Wk−1, we therefore obtain the covariance of the state one-step
estimation error X̃k|k−1 as follows:

Σk|k−1 = E[X̃k|k−1X̃T
k|k−1] = E[(Φk|k−1X̃k−1 + Γk|k−1Wk−1)(Φk|k−1X̃k−1 + Γk|k−1Wk−1)

T ]

= Φk|k−1E[X̃k−1X̃T
k−1]Φ

T
k|k−1 + Γk|k−1E[Wk−1WT

k−1]Γ
T
k|k−1

= Φk|k−1Σk−1ΦT
k|k−1 + Γk|k−1Qk−1ΓT

k|k−1.

(34)

In a similar way, the measurement at tk can be predicted by the state one-step estimation prediction
X−k|k−1 and system measurement Equation (9) as follows:

Z−k|k−1 = E[HkX−k|k−1 + Vk] = HkX−k|k−1. (35)

In fact, there is difference between the measurement one-step prediction Z−k|k−1 and the actual
measurement Zk. The difference is denoted as measurement one-step prediction error:

Z̃k|k−1 = Zk − Z−k|k−1. (36)

Substituting the measurement Equations (9) and (35) into Equation (36) yields:

Z̃k|k−1 = Zk − HkX−k|k−1 = HkXk + Vk − HkX−k|k−1 = HkX̃k|k−1 + Vk. (37)

In general, the measurement one-step prediction error Z̃k|k−1 is called innovation in the classical
Kalman filter theory, and it indicates the new information about the state estimate carried by the
measurement one-step prediction error.

On the one hand, if the estimation of Xk only includes the state one-step prediction X−k|k−1 of the
system state equation, the estimation accuracy will be low, as no information of the measurement
equation has been used. On the other hand, according to Equation (37), the measurement one-step
prediction error calculated using the system measurement equation contains the information of the
state one-step prediction of X−k|k−1. Consequently, it is natural to consider all the state information
that comes from the system state equation and the measurement equation, respectively, and correct
the state one-step prediction mean X−k|k−1 with the measurement one-step prediction error Z̃k|k−1.

Thereby, the optimal estimation of Xk can be calculated by the combination of X−k|k−1 and Z̃k|k−1
as follows:

X̂k = X−k|k−1 + KkZ̃k|k−1, (38)

where Kk is the undetermined correction factor matrix.
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Substituting Equations (31) and (37) into Equation (38) obtains:

X̂k = X−k|k−1 + Kk(Zk − HkX−k|k−1) = (I − Kk Hk)X−k|k−1 + KkZk

= (I − Kk Hk)Φk|k−1X̂k−1 + KkZk.
(39)

From Equation (39), the current state estimation X̂k is a linear combination of the last state
estimation X̂k−1 and the current measurement Zk, which considers the influence of the structural
parameters Φk|k−1 in the state equation and the structure parameters Hk in the measurement equation
with different types of construction.

The state estimation error at the current time tk is denoted as:

X̃k = Xk − X̂k, (40)

where Xk is the true values and X̂k is the posterior estimation of Xk.
Substituting Equation (39) into Equation (40) obtains:

X̃k = Xk − [X−k|k−1 + Kk(Zk − HkX−k|k−1)] = (Xk − X−k|k−1)− Kk(HkXk + Vk − HkX−k|k−1)

= X̃k|k−1 − Kk(HkX̃k|k−1 + Vk) = (I − Kk Hk)X̃k|k−1 − KkVk.
(41)

Then, the mean square error matrix of state estimation X̂k is given by:

Σk = E[X̃kX̃T
k ] = E{[(I − Kk Hk)X̃k|k−1 − KkVk][(I − Kk Hk)X̃k|k−1 − KkVk]

T}

= (I − Kk Hk)E[X̃k|k−1X̃T
k|k−1](I − Kk Hk)

T + KkE[VkVT
k ]KT

k

= (I − Kk Hk)Σk|k−1(I − Kk Hk)
T + KkRkKT

k .

(42)

Substituting Equation (34) into Equation (42) obtains:

Σk = (I − Kk Hk)[Φk|k−1Σk−1ΦT
k|k−1 + Γk|k−1Qk−1ΓT

k|k−1](I − Kk Hk)
T + KkRkKT

k

= Φk|k−1Σk−1ΦT
k|k−1 + Kk HkΦk|k−1Σk−1ΦT

k|k−1HT
k KT

k −Φk|k−1Σk−1ΦT
k|k−1HT

k KT
k

− Kk HkΦk|k−1Σk−1ΦT
k|k−1 + Γk|k−1Qk−1ΓT

k|k−1 − Kk HkΓk|k−1Qk−1ΓT
k|k−1

− Γk|k−1Qk−1ΓT
k|k−1HT

k KT
k + Kk HkΓk|k−1Qk−1ΓT

k|k−1HT
k KT

k + KkRkKT
k .

(43)

We now use the approximation Φk|k−1 ≈ I + F(tk−1)Ts as Equation (15). From Equation (22) with
Γk|k−1 ≈ G(tk−1), we have:

Σk = [I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]
T ] + Kk Hk[I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]

T HT
k KT

k

− [I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]
T HT

k KT
k − Kk Hk[I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]

T

+ G(tk−1)Qk−1GT(tk−1)− Kk HkG(tk−1)Qk−1GT(tk−1)− G(tk−1)Qk−1GT(tk−1)HT
k KT

k

+ Kk HkG(tk−1)Qk−1GT(tk−1)HT
k KT

k + KkRkKT
k .

(44)

Note from Equation (24) that Qk is of the order of Ts and from Equation (28) that Rk = R(tk)
Ts

;
then, Equation (44) becomes:

Σk = [I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]
T ] + Kk Hk[I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]

T HT
k KT

k

− [I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]
T HT

k KT
k − Kk Hk[I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]

T

+ G(tk−1)Q(tk)TsGT(tk−1)− Kk HkG(tk−1)Q(tk)TsGT(tk−1)

− G(tk−1)Q(tk)TsGT(tk−1)HT
k KT

k + Kk HkG(tk−1)Q(tk)TsGT(tk−1)HT
k KT

k + Kk
R(tk)

Ts
KT

k .

(45)
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2.4. The Temporal Derivative of the Rényi Entropy and the Kalman Filter Gain

To obtain the continuous form of covariance matrix Σ, the limit will be taken. However, the relation
between the undetermined correction factor matrix Kk and its continuous form still remains unknown.
Therefore, we make the following assumption.

Assumption 1. Kk is of the order of Ts, that is:

K(tk) =
Kk
Ts

. (46)

From the conclusion, we can also derive this assumption conversely. We next draw the conclusion
as one theorem under the assumption, as follows:

Theorem 1. The discrete form of the undetermined correction factor matrix is the same as the continuous
form when the temporal derivative of Rényi entropy is minimized. This can be presented in a mathematical
form as follows:

{Kk = Σk HT
k Rk, K = ΣHT R−1|K∗ = arg min

K
Ḣ(α)

R (K)}. (47)

Proof of Theorem 1. We substitute the expression for Kk into Equation (45) and neglect higher-order
terms in Ts; Equation (45) becomes:

Σk = [I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]
T ] + TsK(tk)HkΣk−1[I + F(tk−1)Ts]Σk−1

[I + F(tk−1)Ts]
T HT

k TsKT(tk)− [I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]
T HT

k TsKT(tk)

− TsK(tk)Hk[I + F(tk−1)Ts]Σk−1[I + F(tk−1)Ts]
T + G(tk−1)Q(tk)TsGT(tk−1)

− TsK(tk)HkG(tk−1)Q(tk)TsGT(tk−1)− G(tk−1)Q(tk)TsGT(tk−1)HT
k TsKT(tk)

+ TsK(tk)HkG(tk−1)Q(tk)TsGT(tk−1)HT
k TsKT(tk) + TsK(tk)

Rk
Ts

TsKT(tk)

= Σk−1 + TsF(tk−1)Σk−1 + TsΣk−1FT(tk−1)− Σk−1HT
k TsK(tk)

T − TsK(tk)HkΣk−1

+ G(tk−1)Q(tk)TsGT(tk−1) + TsK(tk)
R(tk)

Ts
TsKT(tk).

(48)

Moving the first term of Equation (48) from right to left and dividing both sides by Ts to form the
finite difference expression:

Σk − Σk−1
Ts

= F(tk−1)Σk−1 + Σk−1FT(tk−1)− Σk−1HT
k K(tk)

T − K(tk)HkΣk−1

+ G(tk−1)Q(tk)GT(tk−1) + K(tk)R(tk)KT(tk).
(49)

Finally, passing to the limit as Ts → 0 and dropping of the subscripts lead to the matrix
differential equation:

Σ̇ = FΣ + ΣFT − ΣHTKT − KHΣ + GQGT + KRKT . (50)

Σ is invertible, as it is a positive matrix. Multiplying Σ−1 with Equation (50), we can consider the
temporal derivative of the Rényi entropy of the mean square error matrix Σ using Equation (2):
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Ḣ(α)
R =

1
2

Tr{Σ−1Σ̇}

=
1
2

Tr{Σ−1FΣ + FT − HTKT − Σ−1KHΣ + Σ−1GQGT + Σ−1KRKT}

=
1
2

Tr{F + FT − HTKT − KH + Σ−1GQGT + Σ−1KRKT}

=
1
2

Tr{2F− 2KH + Σ−1GQGT + Σ−1KRKT},

(51)

where the invariance under the cyclic permutation property of the trace operator has been used to
eliminate Σ−1 and Σ, as well as the truth that Tr(F) = Tr(FT) has been used to simplify the formula.

It is obvious that Equation (51) is a quadratic function of the undetermined correction factor
matrix K. Thereby, there must be a minimum of Ḣ(α)

R (x) in a probabilistic sense. Taking the derivative
of both sides of Equation (51) with respect to matrix K obtains:

∂

∂K
Ḣ(α)

R = −2
∂Tr(KH)

∂K
+

∂Tr(Σ−1KRKT)

∂K

= −2HT +
Tr(Σ−1KR(∂K)T)

∂K
+

Tr(Σ−1(∂K)RKT)

∂K
= −2HT + Σ−1KR + (RKTΣ−1)T .

(52)

In addition, since Σ−1 and Rk are symmetric matrices, the result is:

∂

∂K
Ḣ(α)

R = −2HT + 2Σ−1KR. (53)

Rk is invertible, as it is a positive matrix. According to the extreme value principle of the function,
when the above are equal to zero, then we have:

K = ΣHT R−1. (54)

So far, we have found the analytic solution to the undetermined correction factor matrix K, which is
called the continuous-time Kalman filter gain in the classical Kalman filter. Then, the recursive formulations
of the Kalman filter can be established through the Kalman filter gain K. Most importantly, this implies the
connection between the temporal derivative of Rényi entropy and the classical Kalman filter: The temporal
derivative of the Rényi entropy is minimized when the Kalman filter gain satisfies Equation (54).

Looking back to Assumption 1 and substituting Equation (28) into Equation (54), we obtain:

K(tk) =
Kk
Ts

= K = ΣHT R−1 = Σk HT
k Rk(Ts) =

Σk HT
k Rk

Ts
. (55)

Therefore, the discrete-time Kalman filter gain can be expressed as follows:

Kk = Σk HT
k Rk. (56)

Remark 1. The discrete-time Kalman filter gain has the same form as the continuous-time filter gain, as shown
in the Equation (54). In principle, this is consistent with our intuition and proves the correctness and rationality
of Assumption 1, in turn.

Remark 2. The Kalman filter gain is equivalent to the minimization of the temporal derivative of the Rényi
entropy, although it has the same result as the original Kalman filter, which is deduced under the minimum mean
square error criterion.
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Substituting Equation (54) into Equation (50), we have:

Σ̇ = FΣ + ΣFT − ΣHTKT − ΣHT R−1HΣ + GQGT + ΣHT R−1RKT

= FΣ + ΣFT − ΣHT R−1HΣ + GQGT .
(57)

This is a second-order nonlinear differential equation with respect to the mean square error
matrix Σ, and it is commonly called the Riccati equation. This is the same result as that of the
Bucy–Kalman filter [7].

If the system equation, Equation (3), and the measurement equation, Equation (4), form a linear
time-invariant system with constant noise covariance, the mean square error matrix Σ may reach a
steady-state value, and Σ̇ may eventually reach zero. So, we have the continuous algebraic Riccati
equation as follows:

Σ̇ = FΣ + ΣFT − ΣHT R−1HΣ + GQGT = 0. (58)

As we can see, the time derivative of covariance at the steady state is zero; then, the temporal
derivative of the Rényi entropy should also be zero:

Ḣ(α)
R = 0. (59)

This implies that when the system approaches a stable state, the Rényi entropy approaches a
steady value so that the temporal derivative of the Rényi entropy is zero. This is reasonable when the
steady system owns a constant Rényi entropy, as uncertainty is stable, which follows our intuitive
understanding. Consequently, it is worth noting that whether the value of the Rényi entropy is stable
or not can be a validated indicator of whether the system is approaching the steady state.

3. Simulations and Analysis

In this section, we give two experiments to show that when the nonlinear filter system approaches
the steady state, the Rényi entropy of the system approaches stability. The first experiment is
a numerical example of a falling body in noisy conditions, tracked by radar [30] using the UKF.
The second experiment is a practical experiment of loosely coupled integration [29]. The simulations
were carried out on MATLAB 2018a running on a computer with i5-5200U, 2.20 GHz CPU, and the
graphs were plotted by MATLAB.

3.1. Falling Body Tracking

In the example of a falling body being tracked by radar, the body falls vertically. The radar is
placed at a vertical distance L from the body, and the radar measures the distance y from the radar to
the body. The state-space equation of the body is given by:

ẋ1 = x2

ẋ2 = d + g

ẋ3 = 0,

(60)

where x1 is the height, x2 is the velocity, x3 is the ballistic coefficient, g = −9.81 m/s2 is the gravity
acceleration, and d is the air drag, which could be approximated as:

d =
ρx2

2
2x3

= ρ0 exp(− x1

k
)

x2
2

2x3
, (61)

where ρ is the air density with an initial value of ρ0 = 1.225; ρ0 = 1.225 and k = 6705.6 are constants.
The measurement equation is:

y =
√

L2 + x2
1. (62)
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It is worth noting that the drag and the square root cause severely nonlinearity in the state-space
function and measurement function, respectively.

The discrete-time nonlinear system can be given by the Euler discretization method. Combining
the additive process with Gaussian white noises for measurement, we can obtain:

x1(n + 1) = x1(n) + x2(n) · T + w1(n)

x2(n + 1) = x2(n) + (d + g) · T + w2(n)

x3(n + 1) = x3(n) + w3(n)

(63)

y(n) =
√

L2 + x2
1(n) + v(n). (64)

In the UKF numerical experiment, we set the sampling period to T = 0.4 s, the horizontal
distance to L = 100 m, the maximum number of samples to N = 100, the process
noise to Sw = diag(105, 103, 102), the measurement noise to Sv = 106, and the initial state to
x = [105;−5000; 400]. The results are shown as follows:

Figure 1 shows the evolution of covariance matrix Σ. Figures 2 and 3 show the Rényi entropy of
covariance matrix Σ and its change in adjacent time, respectively. Notice that the uncertainty increases
near the middle of the plots, which is coincident with the drag peak. However, the Rényi entropy
fluctuates around 15; even the fourth element of Σ changes dramatically. Of course, the entropy changes
are closely accompanied by the drag peak, which means the change of the entropy of covariance reflects
the evolution of matrix Σ. Consequently, the Rényi entropy can be viewed as the indicator of whether
the system is approaching the steady state or not.
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Figure 1. Evolution of matrix Σ.
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Figure 2. Simulation results for the entropy.
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Figure 3. Simulation results for the change of entropy.

3.2. Practical Integrated Navigation

In the loosely integrated navigation system, the system state parameter x is composed of inertial
navigation system (INS) error states in the North–East–Down (NED) local-level navigation frame,
and can be expressed as follows:

x = [(δrn)T (δvn)T (ψ)T (bg)
T (ba)

T ]T , (65)

where δrn, δvn, and ψ represent the position error, the velocity error, and the attitude error, respectively;
bg and ba are modeled as first-order Gauss–Markov processes, representing the gyroscope bias and the
accelerometer bias, respectively.

The discrete-time state update equation is used to update state parameters as follows:

xk = Φk|k−1xk−1 + Gk|k−1wk−1, (66)

where Gk|k−1 is the system noise matrix, wk−1 is the system noise, and Φk|k−1 is the state transition
matrix from tk−1 to tk; this is determined by the dynamic model of the state parameter.
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In the loosely coupled integration, the measurement equation can be simply expressed as:

δz = Hkxk + vk, (67)

where vk is the measurement noise, Hk is the measurement matrix, and zk is the measurement vector
calculated by subtracting the global navigation satellite system (GNSS) observation with the inertial
navigation system (INS) mechanism.

The experiments reported in this section were carried out by processing the data from an
unmanned ground vehicle test. The gyroscope random walk was set to 0.03 deg/

√
h and the velocity

random walk was set to 0.05 m/s/
√

h. The sampling rates of the inertial measurement unit (IMU) and
the GNSS are 200 Hz and 1 Hz, respectively. The test lasts 48 min.

The position error curve, velocity error curve, and attitude error curve of the loosely coupled
integration are shown in Figures 4–6. The root mean squares (RMSs) of the position errors in the
north, east, and earth directions are 0.0057 m, 0.0024 m, and 0.0134 m, respectively. The RMS of the
velocity errors in the north, east, and earth directions are 0.0023 m/s, 0.0021 m/s, and 0.0038 m/s,
respectively. The RMSs of the attitude errors in the roll, pitch, and yaw directions are 0.0034 deg,
0.0030 deg, and 0.0178 deg, respectively.

The Rényi entropy of the covariance P is shown in Figure 7. As we can see, the Rényi entropy
fluctuates around −100 once the filter converges, which is consistent with the conclusion from the
entropy perspective.
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4. Conclusions and Final Remarks

We have considered the original Kalman filter by taking the minimization of the temporal
derivative of the Rényi entropy. In particular, we show that the temporal derivative of Rényi entropy is
equal to zero when the Kalman filter system approaches the steady state, which means that the Rényi
entropy approaches a stable value. Finally, simulation experiments and practical experiments show
the Rényi entropy truly stays stable when the system becomes steady.

Future work includes calculating the Rényi entropy of the innovation term when the
measurements and the noise are non-Gaussian [14] in order to evaluate the effectiveness of
measurements and adjust the noise covariance matrix. Meanwhile, we can also calculate the Rényi
entropy of the nonlinear dynamical equation to measure the nonlinearity in the propagation step.

Author Contributions: Conceptualization, Y.L. and C.G.; Funding acquisition, C.G. and J.L.; Investigation,
Y.L.; Methodology, Y.L., C.G., and S.Y.; Project administration, J.L.; Resources, C.G.; Software, Y.L. and S.Y.;
Supervision, J.L.; Validation, S.Y.; Visualization, S.Y.; Writing—original draft, Y.L.; Writing—review and editing,
C.G., S.Y., and J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by a grant from the National Key Research and Development Program of
China (2018YFB1305001).

Acknowledgments: In this section you can acknowledge any support given which is not covered by the author
contribution or funding sections. This may include administrative and technical support, or donations in kind
(e.g., materials used for experiments).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
2. Principe, J.C. Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives; Springer Science &

Business Media: Berlin, Germany, 2010.
3. He, R.; Hu, B.; Yuan, X.; Wang, L. Robust Recognition via Information Theoretic Learning; Springer International

Publishing: Berlin, Germany, 2014.
4. Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on

Mathematical Statistics and Probability, Berkeley, CA, USA, 20 June–30 July 1961.
5. Liang, X.S. Entropy evolution and uncertainty estimation with dynamical systems. Entropy 2014, 16,

3605–3634. [CrossRef]
6. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
7. Kalman, R.E.; Bucy, R.S. New results in linear filtering and prediction theory. J. Basic Eng. 1961, 83, 95–108.

[CrossRef]
8. DeMars, K.J. Nonlinear Orbit Uncertainty Prediction and Rectification for Space Situational Awareness.

Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 2010.
9. DeMars, K.J.; Bishop, R.H.; Jah, M.K. Entropy-based approach for uncertainty propagation of nonlinear

dynamical systems. J. Guid. Control. Dyn. 2013, 36, 1047–1057. [CrossRef]
10. Kim, H.; Liu, B.; Goh, C.Y.; Lee, S.; Myung, H. Robust vehicle localization using entropy-weighted particle

filter-based data fusion of vertical and road intensity information for a large scale urban area. IEEE Robot.
Autom. Lett. 2017, 2, 1518–1524. [CrossRef]

11. Zhang, J.; Du, L.; Ren, M.; Hou, G. Minimum error entropy filter for fault detection of networked control
systems. Entropy 2012, 14, 505–516. [CrossRef]

12. Liu, Y.; Wang, H.; Hou, C. UKF based nonlinear filtering using minimum entropy criterion. IEEE Trans.
Signal Process. 2013, 61, 4988–4999. [CrossRef]

13. Julier, S.; Uhlmann, J.; Durrant-Whyte, H.F. A new method for the nonlinear transformation of means and
covariances in filters and estimators. IEEE Trans. Autom. Control 2000, 45, 477–482. [CrossRef]

14. Contreras-Reyes, J.E.; Cortés, D.D. Bounds on rényi and shannon entropies for finite mixtures of multivariate
skew-normal distributions: Application to swordfish (xiphias gladius linnaeus). Entropy 2016, 18, 382.
[CrossRef]

http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.3390/e16073605
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1115/1.3658902
http://dx.doi.org/10.2514/1.58987
http://dx.doi.org/10.1109/LRA.2017.2673868
http://dx.doi.org/10.3390/e14030505
http://dx.doi.org/10.1109/TSP.2013.2274956
http://dx.doi.org/10.1109/9.847726
http://dx.doi.org/10.3390/e18110382


Entropy 2020, 22, 982 16 of 16

15. Ren, M.; Zhang, J.; Fang, F.; Hou, G.; Xu, J. Improved minimum entropy filtering for continuous nonlinear
non-Gaussian systems using a generalized density evolution equation. Entropy 2013, 15, 2510–2523.
[CrossRef]

16. Zhang, Q. Performance enhanced Kalman filter design for non-Gaussian stochastic systems with data-based
minimum entropy optimisation. AIMS Electron. Electr. Eng. 2019, 3, 382. [CrossRef]

17. Chen, B.; Dang, L.; Gu, Y.; Zheng, N.; Príncipe, J.C. Minimum error entropy Kalman filter. IEEE Trans. Syst.
Man Cybern. Syst. 2019. [CrossRef]

18. Gultekin, S.; Paisley, J. Nonlinear Kalman filtering with divergence minimization. IEEE Trans. Signal Process.
2017, 65, 6319–6331. [CrossRef]

19. Darling, J.E.; DeMars, K.J. Minimization of the kullback–leibler divergence for nonlinear estimation. J. Guid.
Control Dyn. 2017, 40, 1739–1748. [CrossRef]

20. Morelande, M.R.; Garcia-Fernandez, A.F. Analysis of Kalman filter approximations for nonlinear
measurements. IEEE Trans. Signal Process. 2013, 61, 5477–5484. [CrossRef]

21. Raitoharju, M.; García-Fernández, Á.F.; Piché, R. Kullback–Leibler divergence approach to partitioned
update Kalman filter. Signal Process. 2017, 130, 289–298. [CrossRef]

22. Hu, E.; Deng, Z.; Xu, Q.; Yin, L.; Liu, W. Relative entropy-based Kalman filter for seamless indoor/outdoor
multi-source fusion positioning with INS/TC-OFDM/GNSS. Clust. Comput. 2019, 22, 8351–8361. [CrossRef]

23. Yu, W.; Peng, J.; Zhang, X.; Li, S.; Liu, W. An adaptive unscented particle filter algorithm through relative
entropy for mobile robot self-localization. Math. Probl. Eng. 2013. [CrossRef]

24. Arasaratnam, I.; Haykin, S. Cubature kalman filters. IEEE Trans. Autom. Control 2009, 54, 1254–1269.
[CrossRef]

25. Kiani, M.; Barzegar, A.; Pourtakdoust, S.H. Entropy-based adaptive attitude estimation. Acta Astronaut.
2018, 144, 271–282. [CrossRef]

26. Giffin, A.; Urniezius, R. The Kalman filter revisited using maximum relative entropy. Entropy 2014, 16,
1047–1069. [CrossRef]

27. Chen, B.; Liu, X.; Zhao, H.; Principe, J.C. Maximum correntropy Kalman filter. Automatica 2017, 76, 70–77.
[CrossRef]

28. Chen, B.; Xing, L.; Liang, J.; Zheng, N.; Principe, J.C. Steady-state mean-square error analysis for adaptive
filtering under the maximum correntropy criterion. IEEE Signal Process. Lett. 2014, 21, 880–884.

29. Gongmin, Y.; Jun, W. Lectures on Strapdown Inertial Navigation Algorithm and Integrated Navigation Principles;
Northwestern Polytechnical University Press: Xi’an, China, 2019.

30. Kumari, L.; Padma Raju, K. Application of Extended Kalman filter for a Free Falling body towards Earth.
IJACSA Ed. 2011, 2, 4. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/e15072510
http://dx.doi.org/10.3934/ElectrEng.2019.4.382
http://dx.doi.org/10.1109/TSMC.2019.2957269
http://dx.doi.org/10.1109/TSP.2017.2752729
http://dx.doi.org/10.2514/1.G002282
http://dx.doi.org/10.1109/TSP.2013.2279367
http://dx.doi.org/10.1016/j.sigpro.2016.07.007
http://dx.doi.org/10.1007/s10586-018-1803-1
http://dx.doi.org/10.1155/2013/567373
http://dx.doi.org/10.1109/TAC.2009.2019800
http://dx.doi.org/10.1016/j.actaastro.2017.12.044
http://dx.doi.org/10.3390/e16021047
http://dx.doi.org/10.1016/j.automatica.2016.10.004
http://dx.doi.org/10.14569/IJACSA.2011.020420
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Connection between the Kalman Filter and the Temporal Derivative of the Rényi Entropy
	Rényi Entropy
	Kalman Filter
	Derivation of the Kalman Filter
	The Temporal Derivative of the Rényi Entropy and the Kalman Filter Gain

	Simulations and Analysis
	Falling Body Tracking
	Practical Integrated Navigation

	Conclusions and Final Remarks
	References

