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Abstract: Visually impaired people face numerous difficulties in their daily life, and technological
interventions may assist them to meet these challenges. This paper proposes an artificial
intelligence-based fully automatic assistive technology to recognize different objects, and auditory
inputs are provided to the user in real time, which gives better understanding to the visually impaired
person about their surroundings. A deep-learning model is trained with multiple images of objects
that are highly relevant to the visually impaired person. Training images are augmented and manually
annotated to bring more robustness to the trained model. In addition to computer vision-based
techniques for object recognition, a distance-measuring sensor is integrated to make the device more
comprehensive by recognizing obstacles while navigating from one place to another. The auditory
information that is conveyed to the user after scene segmentation and obstacle identification is
optimized to obtain more information in less time for faster processing of video frames. The average
accuracy of this proposed method is 95.19% and 99.69% for object detection and recognition,
respectively. The time complexity is low, allowing a user to perceive the surrounding scene in
real time.

Keywords: artificial intelligence; assistive systems; computer vision; deep learning; machine learning;
object recognition; visually impaired person; YOLO-v3

1. Introduction

Vision impairment is one of the major health problems in the world. Vision impairment or
vision loss reduces seeing or perceiving ability, which cannot be cured through wearing glasses.
Navigation becomes more difficult around places other than the visually impaired person’s own home
or places that are not familiar. Vision impairment is classified into near and distance vision impairment.
In near vision impairment, vision is poorer than M.08 or N6, even after correction. Distance vision
impairment is classified into mild, moderate, severe, and blindness based on visual acuteness, when it
is worse than 6/12, 6/18, 6/60, and 3/60, respectively [1]. About 80% of people who suffer from visual
impairment or blindness belong to middle- and low-income countries, where they cannot afford costly
assistive devices. The problem arises due to an increase in age or population [2]. Vision impairment
can be due to many reasons such as uncorrected refractive errors, age-related eye problems, glaucoma,
cataracts, diabetic retinopathy, trachoma, corneal opacity, or unaddressed presbyopia [3].

Apart from medical treatment, people use various aids for rehabilitation, education, social inclusion,
or work. A white cane is used by visually impaired people around the world. The length of the cane is
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directly proportional to the range of touch sensation or the detection of obstacles. Guide dogs are also
used as walking assistance, where the dog makes the user aware of obstacles or for stepping up and
down. However, guide dogs are unable to give directions in complex cases. People also make use of
GPS-equipped assistive devices, which help with navigation and orientation for a particular position.
These kinds of devices are accurate in terms of location, but are ineffective in case of obstacle avoidance
and object identification. Echolocation [4] is another technique used by blind people in which echoes
of sounds made by simple mouth clicks are used to detect silent objects in front of them.

Braille helps a visually impaired or blind person to obtain information, but it is limited to people
who have knowledge of it. Information in braille characters can be installed in most places, but it is not
practical to install it everywhere and convey full information. Currency notes also feature the tactile
marks with raised dots to allow the person to identify the banknote. However, these tactile marks
vanish after some time, and then it is not easy for a blind person to differentiate between banknotes.
Refreshable braille displays, screen magnifiers, and screen readers are also used to obtain information
while using computer or mobile systems.

Visually impaired people use Electronic Travel Aids (ETA) to detect obstacles and identify services
to provide safe and informative navigation. A hardware-based robotic cane is proposed for assistance
in walking. It has an omnidirectional wheel assisted with a high-speed processing controller using
a LAM-based linearization system with a non-linear disturbance observer. It maintains the balance
of the person and reduces the risk of falling. The length, cost, and weight are other parameters,
which can be optimized for better support [5]. An Electronic Mobility Cane (EMC) is designed for vision
rehabilitation of visually impaired people to provide assistance and detect obstacles [6], where a logical
map is constructed to obtain information about the surrounding environment. Output information
is conveyed in the form of audio, vibration, or voice. A haptic device such as a short cane with
smart sensors is proposed in [7] to provide information about obstacles. Different ultrasonic sensors
are associated with providing the same stimuli of a traditional stick without touching obstacles.
Another multi-sensor ETA device proposed in [8] has a pair of eyeglasses that guide people in a
safe and efficient manner using ultrasonic and depth sensors to provide a navigational guide to
the visually impaired person. A cane robot is proposed in [9] for assistance and fall prevention.
Some object-recognition techniques are based on Quick Response (QR) codes and barcodes to identify
different types of objects at various places such as in shopping malls, etc. [10,11], which requires an
advanced infrastructure.

A smart cane and obstacle-detection system for visually impaired people with multiple sensors
has been designed with model-based state-feedback control [12]. A linear–quadratic regulator (LQR)
based controller is also integrated for the optimization of an actuator’s control actions along with
position tracking. A white-cane system that is composed of IC tags is designed in [13], which supports
independent walking of visually impaired people in indoor space. Colored lines on the floor for
navigation is sensed by the cane, and information to reach the destination is given with vibrations
and voice prompts. An intelligent system is proposed in [14] which contains map information for
independent navigation walking for visually impaired people while walking in indoor space. The color
on the floor is recognized through the one-chip microprocessor and Radio Frequency Identification
(RFID) system. Tactile zooming is discussed in [15] for graphics, which make it easy for visually
impaired people to obtain information by magnification. Navigation assistance for the visually impaired
(NAVI) is developed to assist through sound commands using an RGB-D camera [16]. Automatic
recognition of clothing patterns is done in [17] for visually impaired people, which can identify 11
colors of cloth. The system consists of a mounted camera on goggles, a microphone, a Bluetooth ear
piece, and a computer. A wearable device is designed using a haptic strap, sensor belt, and vibration
motors to detect different types of obstacles and allow for safe navigation [18]. An object-detection
method is proposed in [19], which is based on a deformable grid (DG), which depends upon the motion
of an object and can detect the risk of collision.
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In [20], an automatic quantization algorithm is developed for deep convolutional neural network
(DCNN)-based object detection that uses a smaller number of bits and reduces the hardware cost
compared to traditional methods. The main challenge in developing an assistive framework using a
CNN architecture is to increase the accuracy for the classification task while maintaining an acceptable
computational workload [21]. A DEEP-SEE FACE framework-based assistive device is introduced for
improving the cognition and communication of visually impaired people by recognizing known faces
and differentiating them from unknown faces [22]. A light detection and ranging (LIDAR)-assisted
system is proposed in [23] to obtain spatial information through the stereo sound of different pitches.
A tracking system for indoor and outdoor navigation using computer vision algorithms and dead
reckoning to help visually impaired people has been implemented in a smartphone [24]. An electronic
device for the automatic navigational assistance of a visually impaired person, named NavCane,
is developed in [25] for the obstacle detection of various types with different types of sensors at different
positions of a white cane. SUGAMAN [26] is a framework developed to describe floor plans using
proximity-based grammar and learning annotation. It utilizes the text information in floor plan images
to develop proper navigation and obstacle avoidance for visually impaired persons. A wearable deep
learning-based drug pill recognition system for the improvement in safety to visually impaired people
using medicines works by reducing the risk of taking incorrect drugs [27]. An assistive device to help
visually impaired people using partial visual information and machine learning techniques which
enables semantic categorization for the classification of obstacles in front of them achieves a highest
accuracy of 90.2% [28].

Science and engineering can make technical interventions to the lives of visually impaired people
in making them independent to navigate and perceive objects around them. Many devices have
been proposed to assist a visually challenged person, but most of the devices focus either on object
detection through computer vision or on obstacle detection through different sensors, such as GPS,
distance sensors, etc. However, the effective utilization of sensor-based technologies and computer
vision could result in a highly efficient and supportive device, to make them aware of the surroundings.

The main contribution of the proposed work is to design an artificial intelligent fully automated
assistive technique for visually impaired people to perceive the objects in the surrounding and provide
obstacle-aware navigation, where auditory inputs are given to users in real-time. Images of objects
that are highly relevant in the lives of the visually challenged are trained using deep learning neural
networks. Augmentation and manual annotation are performed on the dataset to make the system
robust and free from overfitting. Both sensors and computer-vision based techniques are integrated
to provide convenient a travel-aid to visually impaired people, through which a person can perceive
multiple objects, detect obstacles and avoid collisions.

The whole framework is standalone and designed for low-cost processors, so that the visually
impaired can use it properly without internet connectivity. The detected output is also optimized
to ensure faster frame processing and a greater extraction of information—i.e., count of objects—in
a shorter time period. The proposed system can easily differentiate between obstacles and known
objects. The proposed methodology can make a significant contribution to assist visually impaired
people compared to previously developed methods, which were only focused on obstacle detection
and location tracking with the help of basic sensors without use of deep learning. With the use
of the proposed methodology, users can interpret more about the things going around and receive
obstacle-aware navigation as well.

The rest of the paper is organized as follows: First, the methodology is explored in Section 2,
followed by the experimental results presented in Section 3. Finally, our conclusions and ideas for
future work are discussed in Section 4.

2. Methodology

In this section, the whole process is explained to provide navigation assistance to visually
impaired people, which consists of the preparation and pre-processing of the dataset, augmentation,
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annotation and dataset training on the deep-learning model. The block diagram for proposed
methodology is represented in Figure 1.

Entropy 2020, 22, x  4 of 18 

 

annotation  and  dataset  training  on  the  deep‐learning model.  The  block  diagram  for  proposed 

methodology is represented in Figure 1. 

 

Figure 1. Block Diagram for proposed methodology. 

2.1. Dataset for Visual Impaired People 

Many  datasets  are  available  for  object  detection,  such  as  PASCAL  [29],  CIFAR  10  [30], 

IMAGENET [31], SUN [32] and MS COCO [33] but these contain limited classes from the perspective 

of assisting visually impaired persons. Thus, there is a need to add more objects in existing datasets 

so that they can help visually disabled persons to be socially independent. A survey was conducted 

in visually disabled  schools  and  colleges  to  select more  relevant objects  to  train  a deep‐learning 

model. The dataset was generated from multiple sources and devices, in different sizes and pixels. 

Various lighting conditions and capturing angles were used to make more variations in the collected 

dataset. The banknote/currency notes were also included in the dataset, to perform cash transactions 

with  ease. Thereafter,  those  images which  had  less  than  10%  area  of  the  targeted  object  or  any 

deformities—such as flickering, blur or noise to more than an acceptable extent—were eliminated. 

After that, augmentation variants were applied to the captured and collected images. 

2.2. Image Augmentation 

All collected images were then augmented to resist the trained model from overfitting and to 

perform  more  robust  and  accurate  object  detection  for  visually  impaired  persons.  Various 

augmentation  techniques,  such  as  rotation  at  different  angles,  skewing,  mirroring,  flipping, 

brightness levels, noise levels, and a combination of these techniques, was used to enrich the dataset 

to many folds, shown in Figure 2. As banknotes are also a part of daily life, various images of different 

denominations of banknotes were collected and augmented before  training  the neural network  to 

recognize banknotes efficiently and accurately. 

Figure 1. Block Diagram for proposed methodology.

2.1. Dataset for Visual Impaired People

Many datasets are available for object detection, such as PASCAL [29], CIFAR 10 [30],
IMAGENET [31], SUN [32] and MS COCO [33] but these contain limited classes from the perspective
of assisting visually impaired persons. Thus, there is a need to add more objects in existing datasets
so that they can help visually disabled persons to be socially independent. A survey was conducted
in visually disabled schools and colleges to select more relevant objects to train a deep-learning
model. The dataset was generated from multiple sources and devices, in different sizes and pixels.
Various lighting conditions and capturing angles were used to make more variations in the collected
dataset. The banknote/currency notes were also included in the dataset, to perform cash transactions
with ease. Thereafter, those images which had less than 10% area of the targeted object or any
deformities—such as flickering, blur or noise to more than an acceptable extent—were eliminated.
After that, augmentation variants were applied to the captured and collected images.

2.2. Image Augmentation

All collected images were then augmented to resist the trained model from overfitting and to
perform more robust and accurate object detection for visually impaired persons. Various augmentation
techniques, such as rotation at different angles, skewing, mirroring, flipping, brightness levels,
noise levels, and a combination of these techniques, was used to enrich the dataset to many folds,
shown in Figure 2. As banknotes are also a part of daily life, various images of different denominations
of banknotes were collected and augmented before training the neural network to recognize banknotes
efficiently and accurately.
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2.3. Image Annotation

All images were annotated manually with the LabelImg tool and the bounding box was made
around the object without taking extra unnecessary areas. The information about the images, such as
the size of the image, size, and position of the bounding box or bounding boxes (in case of multiple
instances or multiple objects in the same image), were recorded and saved into the “.xml” format.
Once the images were annotated, the respective annotation files were also generated. The final dataset,
that consists of annotated images and respective annotation files, was divided into two sets—training
and validation. Then, the YOLO-v3 model is trained with the generated dataset either through transfer
learning or with direct training.

The transfer learning method requires a pre-trained model and it will be beneficial when a similar
dataset is already trained over this model and respective generated trained model files will be used for
transfer learning. Due to this, weight adjustment takes less time compared to the case when training
the dataset for the first time. As weight adjustment and loss in each convolving layer reduce in a
shorter time, the transfer learning method can also be used to retrain the dataset when the training got
abrupt due to any reasons.

2.4. Dataset Training on Deep-Learning Model

In the YOLO-based object detection [34], the given image was divided into grids of S × S where
S = a number of grid cells in each of the axes. There, each unit of the grid was accountable to detect the
targets which were getting into it. Then, a corresponding confidence score was predicted for the B
number of bounding boxes by each of the grid units. The confidence score represents the similarity with
the desired object and maximum likelihood represents a higher confidence score of the corresponding
object. In other words, it defines the presence and absence of any object class in the image. In the
same way, if the object did not contain the desired object, the confidence score would be zero. If the
object was contained by the predicted bounding box, then the confidence score would be calculated
by the interaction in between both bounding boxes, i.e., predicted and ground truth represented by
the Interaction over Union (IOU). Equation (1) is used to calculate the confidence score in the given
input image.

CS = Pr(Obj) ∗ IOUPredicted
Groundtruth (1)

where, CS = Confidence Score, Pr(Obj) represents the probability of the object and IOUPredicted
Groundtruth

represents the IOU of predicted and ground truth bounding boxes.
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Loss function for YOLO architecture is given by Equation (2).

Loss = λcoord
S2∑

i=0

B∑
j=0
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YOLO-v3 [35] is an upgraded version of YOLO and YOLOv2 [36] for object detection in real-time
and accurately. YOLO-v3 uses logistic regression is utilized instead of Softmax to predict the objectness
score for each bounding box. Thus, multi-label classification and class prediction can be performed
using YOLO-v3. Feature Pyramid Networks (FPN) in YOLO-v3 makes three predictions for each
location of the input frame and features are extracted from each prediction, which include boundary
box and objectness scores.
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In the training neural network, the predictions were made through the following Equations (3)–(6):

bx = σ(tx) + cx· · · (3)

by = σ(ty) + cy (4)

bw = pw etw (5)

bh = ph eth (6)

where (tx, ty, tw, th) are four coordinates that were predicted for each of the bounding boxes. (cx, cy) is
the cell offset from the top left image corner, and (pw, ph) are the width and height of the bounding
box prior. The diagrams for bounding box prediction and object detection with the training model are
shown in Figure 4.
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Once the CNN was trained with the dataset, the final trained model was equipped in the object
detection framework. A live video feed was associated to the framework and image frames were
subsequently captured. Captured frames were pre-processed and fed into the trained model, and if
any object which was trained with the model was detected, a bounding box was drawn around that
object and a respective label was generated for that object. Once all objects were detected, the text
label was converted into speech, or a respective audio label recording was played, and subsequently,
the next frame was processed. The Algorithm 1 elaborates the steps of object detection for a visually
impaired person after the training of the dataset is as follows:
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Algorithm 1. Object detection for visually impaired person after training of dataset.

Input: Captured image from the Camera
Output: Audio for the label of the detected object
Step 1: Save the captured image, I
Step 2: Pre-processing of the image

Resize the image in dimensions w*h
where, w = number of pixels in the x-axis

h = number of pixels in the y-axis
Increase the contrast value for I

Step 3: Load the trained deep-learning model and its parameters
Step 4: Image I is processed with the deep-learning model

detections = detectObjectsFromImage(input_image = I)
Step 5: Save processed output image, O

for detections
Bounding Box prediction (bx, by, bw, bh)
Percentage probability of the object
Label, l = name of the detected object

Text to speech conversion for l
end

The proposed module consists of a DSP processor with a distance sensor, camera, and power
supply. Speakers or headphones are associated with the DSP processor to perceive predictions as an
audio prompt.

Output information optimization was further performed to increase the robustness of the system.
If an object is detected in the captured image frame, equivalent audio is played after the detection of an
object to convey information to the user. Thus, the information transmission time will increase with
an increase in the number of the objects in current image frame and cause a delay to processing the
next frame. This problem is not discussed in many research articles where such work is conducted.
Frame processing time in blind assistive devices is different for a normal human and visually impaired
persons. In the case of assistance for visually impaired people, the frame processing time also includes
the time necessary to convey detection information as audio or vibrations. Thus, even though the
machine learning model processes the frames in real-time, it takes a lot of time to process the next
frame, as it has a dependency on the number of the objects present in the current frame and the length
of the name of object. For example, the time taken to pronounce “car” is less than that required to
pronounce “fire extinguisher”. Thus, three steps have been taken to deal with these kinds of problems.
First, all audio files for the name of objects label are optimized such that there is no silence in recording,
except the space in between two words. Recording playback speed is increased to the extent that it still
sounds clear and understandable.

Second is the case where the same kind of objects exist multiple times in the captured frame.
For example, in a case where 5 people are present in the scene, the conventional system will take the
equivalent of five times to prompt the word “person”, or more (because of a time gap in between
pronouncing two words). To optimize this, the object counter is added with a trained model that
counts the number of objects of same category in current image frame, processes it, and conveys a piece
of audio information with both “number of objects” and “name/label of an object”. Thus, the time
taken to prompt “person” five times is reduced to “5 person”. Consequently, the time taken to process
the next frame is reduced, which results in a smaller instant of time to convey information.

Third is the case in which a number of multiple objects of various categories are present in the
captured scene, which can require a considerably longer time to convey audio information to the
user. To deal with this issue, the number of object categories is limited to three, but can be extended
to five object classes for indoor circumstances. This means that even though the number of objects
which were detected is higher, the system will convey the information of all objects of only the first
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three categories and then process the next frame. With these three improvements in information
transmission, the processing time between two frames is reduced. A flow chart diagram for the
optimized information transmission with the object counter is shown in Figure 5.
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If none of the trained objects are detected in the captured frame, then it will calculate the distance
through the ultrasonic sensors. If the calculated distance is less than the threshold, then it will be
considered as an obstacle. Otherwise, if the calculated distance is more than the threshold, then the
next image frame will be captured and processed.

All previous inventions and research works for blind or visually impaired people which use
ultrasonic sensors to detect obstacles define their range and play a warning sound whenever an obstacle
comes across the sensor. When the calculated distance through the ultrasonic sensor is below the
threshold value, the device makes an acoustic warning or vibrates, but it can be irritating for a visually
impaired person who is standing in a crowd and repeatedly listening same prompt or continuous
vibrations. So, one of the objectives of the proposed system is to differentiate between trained objects
and obstacles.

The system first analyses the current frame for object detection—if an object is detected which
means the object is in front of the device, then there is no need for searching another obstacle. If no
objects are identified in present frame, then it takes input from an ultrasonic sensor regarding the
distance from the object, and if the calculated distance is less than the threshold, then it treats object as
an obstacle and warns the person through an auditory message, as shown in flow chart in Figure 5.
A vibration motor can also be associated so that it can vibrate at that instance. However, an auditory
response is good in many respects, as it does not annoy a person unlike vibrations, and the power
requirement is less compared to a vibration motor.

Different modes are designed in the device to provide wider assistance such as indoor, outdoor or
text-reader mode. The activity diagram for the working of the assistive framework is illustrated in
Figure 6.
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The indoor mode has a smaller threshold value for the distance of obstacle compared to the
outdoor mode. Outdoor mode also has an image enlarge function, so that far objects can be detected
early. For example, a car at far distance can be easily detected when enlarged, because after enlarging
the image, the number of pixels is increased, and it becomes an easy task to detect that car. This feature
provides an audio prompt when the object is at distance, and helps user to be alert to their surroundings,
as early detection is crucial in case the user is outside and especially in those scenarios such as when a
car is coming towards the person. The text reader mode can be used efficiently where the user has a
necessity to read, such as when reading a book, a restaurant menu, etc. To read text, Optical Character
Recognizer (OCR) is used after preprocessing the input image frame. Face recognizer can also be
associated with the device, where users can identify known persons and family members, which will
help in them to be social and secure.

3. Experiments and Results

The hardware specifications of training device are i-9 processor, NVIDIA Tesla K80 GPU,
having 2496 CUDA cores, 12 GB GDDR5 VRAM. The system is made for hundred objects of different
classes. The model is also trained to perform banknote detection and recognition to help in daily
business transaction-related activities along with other object detection and navigation assistance for
visually impaired people. The whole set-up is implemented in the single board DSP processor and has
specifications of 64-bit, quad-core, and 1.5 GHz, as well as 4 GB SDRAM. The 8-megapixel camera
used can capture images of 3280 × 2464 pixels with a fixed focus lens.

In total, 650 images of each class were collected and, out of those, 150 images were kept separated
for the testing set. The remaining 500 images from each training class were divided into a ratio of 7:3
for training and validation set, respectively. After completing augmentation, the dataset in the training
and validation set was increased by 10 times the initial set of images, which resulted in a wide variety
of images. The number of images in the given dataset is given in Table 1. Augmentation induces the
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robustness in the training model. The Deep Learning model is trained with the dataset at an initial
learning rate of 10−3. Training is performed until the loss is reduced and becomes saturated at a certain
epoch. In between the training processes, the trained model files for lower loss can be used to test the
detection and recognition performance of the system to conduct a subsequent analysis of the trained
system. If a trained model performs poorly with lower loss model files, either the dataset should be
increased, or various augmentations should be performed on an existing dataset.

Table 1. Number of images in each class of the collected dataset.

Total Images in Each Object Class
Original Dataset After Augmentation

Test Set
Training Set Validation Set Training Set Validation Set

650 350 150 3500 1500 150

The model file after training on different object classes is tested on a real-time live video feed
along with images left for the testing dataset. Table 2 is prepared for the analysis of object detection
and recognition accuracy of proposed system. An average accuracy of 95.19% is achieved for object
detection and the average recognition accuracy is 99.69%. The results signify that once the object is
detected it will be classified properly among the list of object classes, which were trained on a prepared
dataset. As objects are trained regressively, the high threshold will also withstand with the accuracy.

Table 2. Performance analysis of proposed model on most relevant objects.

Objects Total Testing Images Correctly Detected Detection Accuracy (%) Correctly Recognized Recognition Accuracy (%)

Person 150 148 98.67 148 100.00
Car 150 146 97.33 145 99.32
Bus 150 144 96.00 144 100.00

Truck 150 143 95.33 141 98.60
Chair 150 147 98.00 146 99.32

TV 150 140 93.33 140 100.00
Bottle 150 148 98.67 148 100.00
Dog 150 145 96.67 144 99.31

Fire hydrant 150 146 97.33 146 100.00
Stop Sign 150 149 99.33 147 98.66

Socket 150 143 95.33 143 100.00
Pothole 150 129 86.00 128 99.22

Pharmacy 150 141 94.00 139 98.58
Stairs 150 139 92.67 139 100.00

Washroom 150 145 96.67 145 100.00
Wrist Watch 150 140 93.33 139 99.29
Eye glasses 150 141 94.00 141 100.00

Cylinder 150 131 87.33 131 100.00
10
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Table 2. Performance analysis of proposed model on most relevant objects. 

Objects 

Total 

Testing 

Images 

Correctly 

Detected 

Detection 

Accuracy (%) 

Correctly 

Recognized 

Recognition 

Accuracy (%) 

Person 150 148 98.67 148 100.00 

Car 150 146 97.33 145 99.32 

Bus 150 144 96.00 144 100.00 

Truck 150 143 95.33 141 98.60 

Chair 150 147 98.00 146 99.32 

TV 150 140 93.33 140 100.00 

Bottle 150 148 98.67 148 100.00 

Dog 150 145 96.67 144 99.31 

Fire 

hydrant 
150 146 97.33 146 100.00 

Stop Sign 150 149 99.33 147 98.66 

Socket 150 143 95.33 143 100.00 

Pothole 150 129 86.00 128 99.22 

Pharmacy 150 141 94.00 139 98.58 

Stairs 150 139 92.67 139 100.00 

Washroom 150 145 96.67 145 100.00 

Wrist 

Watch 
150 140 93.33 139 99.29 

Eye glasses 150 141 94.00 141 100.00 

Cylinder 150 131 87.33 131 100.00 

10 ₹ Note 150 141 94.00 141 100.00 

20 ₹ Note 150 148 98.67 148 100.00 

50 ₹ Note 150 143 95.33 143 100.00 

100 ₹ Note 150 140 93.33 140 100.00 

200 ₹ Note 150 144 96.00 144 100.00 

500 ₹ Note 150 140 93.33 140 100.00 

Note 150 149 99.33 149 100.00

Average 95.19% 99.69%

Confusion matrix is another parameter that can be utilized to check the performance of object
detection and recognition on a set of test data whose true values are known. It checks whether the
system is capable of differentiating between the two classes of objects after the detection. The higher
values in the respective classes show the high differentiation between the two classes. As the similarity
in banknotes is greater, confusion matrix for currency notes is shown in Figure 7, taking the highest
percentage prediction into consideration. Differentiation between two classes is tougher when two
classes are almost similar in appearance. For example, if a banknote of INR 2000 is tested in a folded
position and digits are focused, then there could be confusion between INR 20, 200 or 2000. In such
cases, the model trained using the dataset predicts the banknote denomination for the captured picture,
but it will give a higher value of detection percentage to true value of banknote as it is also trained with
the texture of notes. Thus, the overall resemblance with the true value of banknotes will be higher,
which can be concluded from the confusion matrix.
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The confusion matrix is prepared for a threshold of 0.5; because of this, if the captured image is
not proper, there may be chances that image shows some similarity with other banknotes along with
the actual currency note. This issue can be easily eliminated by increasing the threshold value or by
considering only the highest label prediction probability. Thus, if there is a currency detection mode in
the device, that mode must have a higher object detection threshold value than other modes to avoid
such ambiguity.

Once the performance testing is complete, the trained model is loaded onto a small DSP processor
and equipped with ultrasonic sensors to detect the obstacles. Results for different object classes in
different scenarios are shown below in Figure 8. Trained deep-learning models can detect and recognize
the object correctly, which proves the accuracy and robustness of the proposed system.Entropy 2020, 22, x  13 of 18 
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Different approaches for object classification and object detection were also tested in given datasets,
such as VGG-16, VGG-19 and Alexnet. The testing accuracy and processing time for a single image
frame are given in Table 3.

Table 3. Testing accuracy and frame processing time for proposed and other methods.

Methods Testing Accuracy Frame Processing Time

AlexNet [38] 83.39 0.275 s
VGG-16 [39] 86.80 0.53 s
VGG-19 [40] 90.21 0.39 s

YOLO-v3 95.19 0.1 s
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Information optimization is performed to get more information in a shorter time duration.
The time-domain analysis of the proposed system is given in Tables 4 and 5. Table 4 explains the
parameters and average time taken to perform each step, whereas Table 5 explains object detection in
different scenarios, such as single object single instances, single object multiple instances, multiple object
single instances, and multiple object multiple instances. All the time parameters are given for a single
board DSP processor without GPU support.

Table 4. Average time taken for different parameters.

Parameters Average Time Taken (s)

Object Detection in single frame with GPU 0.1
Object Detection in single frame in single board DSP

processor without GPU 0.3

Average time of Audio for name of object 0.4
Average time of Audio for count of object 0.2

Average time of Audio for name of object with count 0.6

Table 5. Processing time of each frame in different condition in single board computer.

Number of Object
Class

Number of Instances
of Each Object

Total Number of
Objects in Frame

Average Time Taken for
Object Detection (s)

Average Time of Audio
Prompt (s)

Total Time to Process
Single Frame (s)

0 0 0 0.3 0 0.3
1 1 1 0.3 0.4 0.7
1 2 2 0.3 0.6 0.9
1 5 5 0.3 0.6 0.9
2 1 2 0.3 0.4 + 0.4 1.1
2 2 4 0.3 0.6 + 0.6 1.5
3 5 15 0.3 0.6 + 0.6 + 0.6 2.1
4 1 4 0.3 0.4 + 0.4 + 0.4 + 0.4 1.9
4 5 20 0.3 0.6 + 0.6 + 0.6 + 0.6 2.7
5 1 5 0.3 0.4 + 0.4 + 0.4 + 0.4 + 0.4 2.3
5 3 15 0.3 0.6 + 0.6 + 0.6 2.1
5 5 25 0.3 0.6 + 0.6 + 0.6 + 0.6 + 0.6 3.3
5 10 50 0.3 0.6 + 0.6 + 0.6 + 0.6 + 0.6 3.3

Resources are used in an optimized way to reduce energy consumption. Ultrasonic sensors derive
power only when the objects are not present in a captured scene. As the model is trained with most
of those objects that it comes across in daily life, there is a smaller probability that the ultrasonic
sensor will be used, apart from a case where the user is within a closed space with a distance less than
the threshold.

The device is programmed to work in a fully automatic manner to perform object recognition and
obstacle detection. For switching in between different modes, a person must swipe their hand in front of
the device, which can be sensed by ultrasonic sensors to perform mode-switching. Device instructions
can also be made multi-lingual by just recording the instructions in other languages. As it does not
depend on a computer language interpreter, instructions can also be made for local dialect or language
for which proper recordings are not yet available. The device can work in real-time scenarios, as the
processing time for object detection is a few milliseconds. The higher the processor, the greater the
number of frames per seconds that can be processed.

If a user wants to record image frames, which came across the device, it can be stored in subsequent
frames. These frames can also help to construct a proper dataset and to approach the challenging
scenario, which can be dealt with to develop much more robust devices. Above all, the whole system
is standalone and needs no internet connection to perform object detection and safe navigation.

After training the collected dataset with various image augmentation techniques and multi-scale
detection functionality of trained deep neural network, the proposed framework is able to detect
objects in different scenarios, such as low illumination, different viewing angles, and various scale
objects. The proposed system can work universally in the existing infrastructure which has been used
before by visually impaired people.
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Proposed work is also compared with the other works in the domain of assistance for the visually
impaired and is shown in Table 6.

Table 6. Comparison with state-of-the-art methods.

Method Components Dataset Result Coverage Area Connection Cost

Hoang et al. [41]
Mobile Kinect, laptop Electrode

matrix, headphone and RF
transmitter

Local dataset Detect obstacle and
generate audio warning Indoor Offline High

Bai et al. [8] Depth camera, glasses, CPU,
headphone and ultrasonic sensor Not included Obstacle Recognition and

audio output Indoor Offline High

Yang et al. [42] Depth Camera on Smart glass,
Laptop, and headphone

ADE20,
PASCAL, and

COCO

Obstacle Recognition and
generate clarinet sound as

warning
Indoor, Outdoor Internet Required High

Mancini et al.
[43] Camera, PCB, and vibration motor Not included

Obstacle recognition and
vibration feedback for the

direction
Outdoor Offline Low

Bauer et al. [44] Camera, smartwatch, and
smartphone

PASCAL VOC
Dataset

Object detection with
direction of object into

audio output
Outdoor Internet Required High

Patil et al. [45] Sensors, vibration motors, No Dataset Obstacle detection with
audio output Indoor, Outdoor Offline Low

Eckert et al. [46] RGB-D camera and IMU sensors PASCAL VOC
dataset

Object detection with audio
output Indoor Internet Required High

Parikh et al. [47] Smartphone, server, and headphone Local dataset of
11 objects

Object detection with audio
output Outdoor Internet Required High

AL-Madani et al.
[48] BLE fingerprint, fuzzy logic Not included Localization of the person

in the building Indoor Offline
(Choice Wi-Fi or BLE) Low

Proposed
Method

RGB Camera, Distance Sensor, DSP
processor, Headphone

Local dataset of
highly relevant
objects for VIP

Object detection, Count of
objects, obstacle warnings,

read text, and works in
different modes

Indoor, Outdoor Offline Low

The performance of the proposed device has been tested on 36 people, including 20 visually
impaired and 16 blind-folded people belonging to different age groups. The test is conducted for
both indoor and outdoor environments. All were given sticks and a supporting person while using
the proposed framework. Various rehabilitation workers and teachers working in this field were
also involved to help to conduct the experiments smoothly. Before the trials, all those involved were
briefly informed about the device so that users were aware about the experimentation steps. Different
obstacles were used in an indoor environment, such as a chair, stairs, humans, walls, etc. While in
outdoor environments, trained objects such as cars, humans, and vehicles were used. The visually
impaired people previously used blind sticks, which give alerts for objects coming in front of the
stick by means of vibrations. It takes a lot of mental effort and attention when walking only with the
help of a stick. They experienced lots of problems while using the stick in crowed areas. After using
this device, the proposed framework was found to be comfortable and easy to use in crowded areas.
The developed technology is found to be highly useful, with which users can also understand the
surrounding scenario easily while navigating without putting in too much effort. The proposed aid
for visually impaired seems good in the sense that it does not need any prior knowledge about the
position, shape and size of object and obstacles.

4. Conclusions and Future Scope

An assistive system is proposed for visually impaired persons through which they can perceive
their surroundings and objects in real-time and navigate independently. Deep learning-based object
detection, in assistance with various distance sensors, is used to make the user aware of obstacles,
to provide safe navigation where all information is provided to the user in the form of audio. A list of
highly relevant objects to visually impaired people is collected, and the dataset is prepared manually
and is used to train the deep learning model for multiple epochs. Images are augmented and manually
annotated to achieve more robustness. The results demonstrate 95.19% object detection accuracy and
99.69% object recognition accuracy in real-time. The proposed work uses 0.3 s for multi-instance and
multi-object detection from the captured image, which is less than a non-visually impaired person
in certain scenarios. The proposed assistive system gives more information with higher accuracy in
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real time for visually challenged people. It can also easily differentiate between objects and obstacles
coming in front of the camera.

Future work will focus on the inclusion of more objects in the dataset, which can make the dataset
more efficient for the assistance of visually impaired people. More sensors will be associated with
it to detect, for example, downstairs and other trajectories, giving a wider range of assistance to the
visually impaired.
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