
entropy

Article

Improving Multi-Agent Generative Adversarial Nets
with Variational Latent Representation

Huan Zhao * , Tingting Li , Yufeng Xiao and Yu Wang

School of Information Science and Engineering, Hunan University, Changsha 410082, China;
tingting1225@hnu.edu.cn (T.L.); hnxiaoyf@hnu.edu.cn (Y.X.); yuwang18@hnu.edu.cn (Y.W.)
* Correspondence: hzhao@hnu.edu.cn; Tel.: +86-13507319499

Received: 30 June 2020; Accepted: 18 September 2020; Published: 21 September 2020
����������
�������

Abstract: Generative adversarial networks (GANs), which are a promising type of deep generative
network, have recently drawn considerable attention and made impressive progress. However,
GAN models suffer from the well-known problem of mode collapse. This study focuses on this
challenge and introduces a new model design, called the encoded multi-agent generative adversarial
network (E-MGAN), which tackles the mode collapse problem by introducing the variational latent
representations learned from a variable auto-encoder (VAE) to a multi-agent GAN. The variational
latent representations are extracted from training data to replace the random noise input of the general
multi-agent GANs. The generator in E-MGAN employs multiple generators and is penalized by
a classifier. This integration guarantees that the proposed model not only enhances the quality of
generated samples but also improves the diversity of generated samples to avoid the mode collapse
problem. Moreover, extensive experiments are conducted on both a synthetic dataset and two
large-scale real-world datasets. The generated samples are visualized for qualitative evaluation.
The inception score (IS) and Fréchet inception distance (FID) are adopted to measure the performance
of the model for quantitative assessment. The results confirmed that the proposed model achieves
outstanding performances compared to other state-of-the-art GAN variants.

Keywords: diversity; generative adversarial networks; mode collapsing; multi-agent generator;
quality; variable auto-encoder; variational latent representations

1. Introduction

Generative adversarial networks (GANs) [1], along with the rapid development of deep learning
in various fields [2–9], have attracted worldwide attention in the fields of image generation [10,11],
medical image analysis [12], natural language processing [13], speech emotion recognition [14,15],
and others [16–19]. A GAN consists of two networks: a generator and a discriminator. The generator
plays a "fraud" role by generating plausible samples from a random noise to simulate real samples,
while the discriminator plays a "police" role by trying to differentiate generated fake samples from real
samples [20]. These two networks compete with each other during training optimization. Thus, they
form a zero-sum game that continues until Nash equilibrium is reached, at which point the generated
samples are indistinguishable from real samples by the discriminator [21]. Based on this adversarial
learning process, GANs can capture a complex distribution that is highly similar to the real data from
a random distribution. The unique adversarial learning process causes GANs to produce sharper
and more plausible samples than do other generative models. This characteristic makes GANs one of
the most promising of the current deep generation models [20].

However, GAN models suffer from the well-known problem of mode collapse during
the adversarial training process. With the goal of deceiving the discriminator, the generator tends to
generate samples that the discriminator believes highly realistic [22]. During training, these generated

Entropy 2020, 22, 1055; doi:10.3390/e22091055 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-6286-5868
https://orcid.org/0000-0001-7433-9945
https://orcid.org/0000-0002-0199-1681
https://orcid.org/0000-0002-7780-6593
http://dx.doi.org/10.3390/e22091055
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/9/1055?type=check_update&version=2

Entropy 2020, 22, 1055 2 of 18

samples often become limited to only a few modes rather than all the modes of the dataset, which
leads to the mode collapse problem [22–24]. Many GAN variants have emerged to solve this problem.
These variants can be divided into the following three groups: standard GANs, the combination of a GAN
and a VAE, and multi-agent GANs.

The standard-GAN variants offer the most direct way to solve this problem. Among these variants,
the Wasserstein GAN (WGAN) [25] is a well-known model trained by adopting the Wasserstein
distance instead of the Jensen–Shannon divergence (JSD) used in typical GAN models. The Wasserstein
distance is weaker than JSD but it is more continuous; thus, WGAN overcomes the problem caused
by the gradient vanishing problem experienced by the JS divergence. The deep convolutional GAN
(DCGAN) [26] uses the batch normalization trick to prevent mode collapse in the generator. Metz et al.
proposed the unrolled GAN model [27] by defining a new objective for generator updates based
on the unrolled optimization updates of the discriminator; thus, the unrolled GAN model reduces
the tendency of the generator to fall into mode collapse. In [22], Salimans et al. introduced the minibatch
discrimination technique. Minibatch discrimination encourages the discriminator to examine multiple
generated samples in combination.

The GAN and VAE combination makes full use of the advantages of both a GAN and a VAE.
Inspired by this idea, the Adversarial Learned Inference (ALI) [28] introduces an inference machine
into a GAN to increase the number of generated sample modes. ALI learns an inverse mapping to
the abstract latent feature representations from the real data and then trains on the joint distributions
of data (either real or generated) and the corresponding latent variables. The mode-regularized
GAN (ModeGAN) [23] encourages sample diversity by training the generator jointly with an encoder.
The encoder in MDGAN serves as a regularizer that provides additional penalizing information to
revise the training objectives, thereby improving the training stability and alleviating the mode collapse
problem. Conditional VAE-GAN (CVAE-GAN) [29] prevents the problem via mean feature matching.
The VAE-GAN structure is based on a combination of a conditional VAE and a conditional GAN.

Multi-agent GAN variants offer more recent promising approaches for solving the mode collapse
problem. These approaches increase the diversity of the generated samples to overcome the problem
by training models using multiple discriminators or multiple generators. Nguyen et al. [30] proposed
a dual discriminator generative adversarial network (D2GAN) that has two discriminators and
a generator. It captures multiple data patterns by minimizing the Kullback–Leibler divergence and
the reverse KL divergence between the generated samples and the real data distributions using
two discriminators. The generative multi-adversarial network (GMAN) [31] extends GAN models
to have multiple discriminators, making this model robust to mode collapse. The mixture density
generative adversarial network (MD-GAN) [24] adjusts the discriminator output using a d-dimensional
embedding space to improve the mode discovery. Similarly to D2GAN, Ghosh et al. [32] proposed
a multi-agent GAN named the message passing multi-agent generative adversarial network (MPM
GAN), which tries to explore the generated sample modes more thoroughly based on message-passing
between two generators. The multi-agent diverse generative adversarial network (MAD-GAN) [10]
and mixture GAN (MGAN) [33] were used in an adversarial learning process using multiple generators
and one discriminator to encourage generated sample diversity.

Despite their advances, these three groups of GAN variants each have some shortcomings.
Variants based on standard GANs perform well on tiny or narrow-domain datasets (such as a mixture
of Gaussians datasets, MNIST, LSUN), but the generated samples they learn have an incorrect anatomy
on more diverse datasets (such as CIFAR-10 and STL-10) [22,27]. Variants based on a GAN and VAE
combination generate high-quality images and—except for CVAE-GAN—solving the mode collapse
problem is only incidental to these models [23,28]. CVAE-GAN uses a supervised training method
with fine-grained category labels [29]. Currently, it is more promising to train a GAN with multi-agent
architecture, because multi-agent GAN architectures increase the diversity of the generated samples by
breaking through the constraints imposed by single generator-discriminator networks [33]. However,

Entropy 2020, 22, 1055 3 of 18

the existing multi-agent GAN models simply generate samples from a random prior distribution
without exploiting the latent information contained in the real data.

In this paper, a novel GAN framework is proposed, named the encoded multi-agent generative
adversarial network (E-MGAN), which aims to generate higher quality and more diverse samples by
introducing the variational latent representations learned from a VAE training (as indicated by the red
box in Figure 1) to a multi-agent GAN. As shown in Figure 1, the proposed E-MGAN consists of four
modules: (1) an encoder, E (red module), which abstracts latent feature representations z̃ from real
samples x; (2) a multi-agent generator, Gm (green module), containing multiple generators that generate
samples in different modes; (3) a classifier network, C (orange module), which assigns penalties with
the goal of forcing the generator to discover scattered data modes; (4) and a discriminator, D (purple
module), which distinguishes generated fake samples from real samples to maintain the adversarial
learning process. Unlike the existing GAN variants, the proposed model not only makes good use
of the latent feature representation condensed from real data but also uses a multi-agent generator
during training to reconstruct synthetic samples in distinct modes.

real/generatedx
real sample

P

2V�

�

Classifier

DiscriminatorEncoder

Multi-agent
Generator

� �~ |enz P z x� �

KLD

� �0,1N

1G
2G

KG

� �1G z�
� �2G z�

� �KG z�

� �mG z�

recL

x

generated sample

from which
generator

Figure 1. An illustration of the E-MGAN’s architecture.

Experiments are conducted on both a synthetic dataset (a 2D mixture of 25 Gaussian distributions)
and two diverse, large-scale, real-world datasets (CIFAR-10 [34] and STL-10 [35]). The results are
evaluated by two widely used metrics, inception scores (IS) [22] and Fréchet inception distance
(FID) [36]. Note that the proposed model is an unsupervised learning method that does not require
any labeled data; thus, all the results discussed in this paper are learned in an unsupervised manner.
Nevertheless, the proposed model outperforms other state-of-the-art GAN variants. A detailed analysis
of the diversity and realism of the generated samples is shown in Section 4. A large number of
experiments demonstrate that the proposed model not only overcomes the model collapse problem
but also improves the quality of the generated samples.

The key contributions of this paper are as follows:

• A novel GAN architecture is proposed, named E-MGAN, which makes good use of the advantages
of both a VAE and a multi-agent GAN. The model capitalizes on the variational latent feature
representations learned by VAE from real data to improve the quality of the generated samples.

• The proposed E-MGAN model surmounts the mode collapse problem by incorporating a new
multi-agent generator that coordinates training with the encoder and classifier. Its input is
the latent variational feature representation learned by the encoder, and its output is constrained
by the classifier through maximizing the Shannon entropy. Therefore, the multi-agent generator
is encouraged to generate samples in discrete data modes.

• We conducted experiments to validate the effectiveness of our model on a synthetic dataset
(a 2D mixture of 25 Gaussian distributions) and two diverse, real-world datasets (CIFAR-10,
and STL-10). The results illustrate that the proposed model not only overcomes the problem of

Entropy 2020, 22, 1055 4 of 18

model collapse, but also improves the anatomical structure of samples generated on large-scale
diverse datasets.

The remainder of this paper is organized as follows. Section 2 introduces three preliminary models
related to the proposed model. An in-depth study of the proposed model is provided in Section 3.
Section 4 demonstrates the performance of the proposed model through a series of experiments. Finally,
Section 5 provides a conclusion and briefly suggests the future work.

2. Preliminaries

This section provides the background regarding the proposed E-MGAN. Since the proposed model
attempts to generate higher quality and more diverse samples by fully capitalizing on the advantages
of a VAE and a multi-agent GAN, there related models, the original GAN, VAE, and a typical MGAN,
are briefly introduced.

2.1. Generative Adversarial Networks (GANs)

A GAN consists of two networks that act as players in a game: a generator G and a discriminator
D. G produces fake samples G(z) from a noise vector z, which is sampled from a prior distribution
P(z). The generated fake samples G(z) imitate the real samples x ∼ Preal(x) by maximizing the output
of the discriminator D(G(z)). The output of the discriminator, which is denoted by D(x) ∈ [0, 1],
is the probability that the input samples x come from the real sample distribution Preal(x); however,
its input samples could also be generated samples G(z). The notation D(x) = 1 means that the input
sample x is a real sample. In contrast, D(x) = 0 means that the discriminator will view the input
sample x as a fake sample. The task of the discriminator D is to distinguish generated fake samples
G(z) from real samples x by minimizing the probability of fake samples (denoted as D(G(z))) while
maximizing that of real samples (denoted as D(x)). In this adversarial training process, the value
function of GAN can be described as follows:

V(G, D) = Ex∼Preal(x)[log D(x)] +Ez∼P(z)[log (1− D(G(z)))], (1)

where Preal(x) and P(z) are the real data distribution and a random prior distribution, respectively.
From the above analysis, the training objective of GAN is a minimax game, minG maxD V(G, D).
The parameters of the generator and those of the discriminator are alternately updated through
the minimax game until the discriminator can no longer distinguish whether an input sample x or
G(z) comes from the real data distribution or is a fake sample. Mathematically, this can be denoted as

Pge(G(z)) = Preal(x), D(G(z)) = D(x) =
1
2

,

where Pge(G(z)) is the distribution of generated samples. At this point, the GAN reaches Nash
equilibrium, V(G, D) = −2 log 2.

2.2. Variational Auto-Encoder (VAE)

A VAE consists of two members: an encoder network En and a decoder network De. The encoder
network En(x) compresses training data samples x into latent feature representation vectors z̃ with
a distribution Pen(z̃|x). Thus, the decoder network De(z̃) reconstructs synthetic samples x′ ∼ Pde(x′ |
z̃) from the abstracted latent representation vectors z̃. Mathematical explanations of those two
networks are:

En(x) = Pen(z̃ | x), x ∼ Preal(x),

De(z̃) = Pde(x′ | z̃), z̃ ∼ Pen(z̃ | x).

Entropy 2020, 22, 1055 5 of 18

The latent feature representation Pen(z̃ | x) learned from the encoder is constrained by the prior
distribution P(z) ∼ N(0, 1). Pen(z̃ | x) is the reconstructed sample distribution. Then, the training
objective of VAE is to maximize its variational lower bound or evidence lower bound (ELBO) function:

LVAE(x) =− DKL(Pen(z̃ | x)||P(z)) +Ez̃∼Pen(z̃|x) log Pde(x′ | z̃). (2)

On the right side of Equation (2), the first term is a regular term for θen that encourages the approximate
posterior distribution Pen(z̃ | x) to be close to the prior distribution P(z), where DKL(·||·) is the KL
divergence. The second term is a reconstruction error. It is the maximum likelihood of the sample
x′ ∼ De(z̃) reconstructed from the extracted features z̃ ∼ Pen(z̃ | x).

2.3. Mixture Generative Adversarial Nets (MGAN)

MGAN is one typical multi-agent GAN that employs multiple generators to enhance mode
recovery. Assuming that there are K generators, each generator Gk maps the prior z to a generated
sample x′ = Gk(z), which represents a generated distribution. Then, K generators can generate a mixed
distribution covering K generated data distributions, denoted as Pge. An MGAN includes another
new member, the classifier C. Ck(x′) represents which generator Gk the fake sample x′ comes from.
Therefore, MGAN is a game composed of three members: a set of generators G1:K(z), a discriminator
D(x), and a classifier C1:K(x′). The value function of MGAN is formulated as follows:

V(G1:K, C, D) = Ex∼preal(x)[log D(x)] +Ex′∼Pge(z)[log (1− D(x′))]− β
K

∑
k=1

Ex′∼Pge(z)[log Ck(x′)], (3)

where β is the diversity hyperparameter which is positive. MGAN training is a maximin game,
minG1:K ,C maxD V(G1:K, C, D).

3. Proposed Encoded Multi-agent GAN

This section introduces the proposed model, encoded multi-agent GAN (E-MGAN). Differently
from the existing multi-agent GAN architectures, the proposed model contains a new member,
an encoder network E, that abstracts variational latent feature representations from real data for
the generator. As shown in Figure 1, the proposed model has four members: (1) an encoder network;
(2) a multi-agent generator network; (3) a classifier network; and (4) a discriminator network.

As indicated by the red box in the E-MGAN structure shown in Figure 1, the combination of
the encoder network E and the multi-agent generator Gm is similar to a VAE, when the multi-agent
generator is considered as a decoder. First, the encoder E extracts the variational latent representation
distribution N(µ, σ2) from the real samples x and provides this distribution to the generator. Then,
the multi-agent generator Gm generates a fake sample Gm(z̃) from the variational latent representation z̃
sampled from the posterior distribution N(µ, σ2). However, unlike the decoder in VAE, our multi-agent
generator Gm consists of K generators; thus, a generated fake sample Gm(z̃) is combined with K
generated samples from K generators. After that, the generated sample Gm(z̃) is put into the classifier
C that recognizes which generator the fake sample comes from. The classifier encourages the generator
to discover different data modes by maximizing the information entropy. Finally, the function
of the multi-agent generator Gm and the discriminator D is the same as that in a standard GAN.
The generator Gm tries to capture the data distribution through the gradients of discriminator D,
while the discriminator D tries to distinguish the generated fake samples Gm(z̃) from real samples x.

The remainder of this section presents the details of the proposed model in two parts. First,
the formulation of the model is introduced in Section 3.1. Second, the training objective for the proposed
model and the algorithm of the training process are provided in Section 3.2. Table 1 provides
the notation and corresponding definitions used in the proposed model.

Entropy 2020, 22, 1055 6 of 18

Table 1. Notation used in the model of E-MGAN.

Notation Definition Notation Definition

x Real samples Preal(x) Real data distribution
z Random prior variable P(z) Random prior distribution

µ, σ2 Mean and variance of latent feature representations Pen(z̃|x) Latent feature distribution
z̃ Latent feature representations Gm(z̃) Output of the multi-agent generator
K Number of generators in multi-agent generator. DKL(·||·) Kullback–Leibler (KL) divergence

LKL Loss of Kullback–Leibler (KL) divergence H(·) Shannon entropy
Lrec Reconstruction error H(·, ·) Cross–entropy
x′ Reconstructed (generated) samples sum(·) Sum function of vector elements

PGi Generated data mode of i-th generator Pge Generated sample distribution
λi Weight of Gi(z̃) CGi (x′) Probability that x′ comes from Gi
LC Value function of the classifier JSD(·) Jensen–Shannon divergence
LD Value function of the discriminator D(x) Probability that x is a real sample
LGm Value function of the multi-agent generator

3.1. Formulation of E-MGAN

Differently from the existing multi-agent GANs, the proposed model samples from the latent
feature distribution rather than from a random distribution. Recent work [37] argues that the encoder
E of VAE can extract latent feature representations from the real data, while the extracted latent feature
representations capture the semantic attributes of the training samples. Thus, E-MGAN makes good
use of the advantage of a VAE that learns the variational latent feature representations from real data
to improve the multi-agent GAN.

Our encoder and the selected generator form a VAE, as shown in the red box of Figure 1.
The encoder E learns latent feature variables, the mean µ, and the covariance σ2, from real data
x. The posterior distribution Pen(z̃|x) = N(µ, σ2) is obtained through the reparameterization trick:
z̃ = µ + σ � z, where z ∼ N(0, 1). Then, the multi-agent generator Gm generates fake samples
x′ = Gm(z̃) from the latent feature representations z̃ ∼ Pen(z̃|x).

As a special VAE variant, we adopt the KL divergence and the reconstruction error in the objective
function of VAE to train our encoder E and multi-agent Gm. The KL divergence aims to encourage
the extracted feature distribution N(µ, σ2) to be close to the random prior distribution P(z). We set
the random prior distribution P(z) to a Gaussian distribution N(0, 1). The analysis of the KL
divergence is shown in Equation (4). The reconstruction error is used to make the reconstructed
image x′ more similar to the real image x. We calculate the reconstruction error Lrec with the mean
squared error (MSE) [38]. Therefore, the KL divergence and the reconstruction error in our model are
as follows:

LKL =DKL(Pen(z̃|x) ‖ P(z)) = Ez̃∼Pen(z̃|x)

[
log

Pen(z̃ | x)
P(z)

]
=Ez̃∼Pen(z̃|x)

[
log Pen(z̃ | x)

]
−Ez̃∼Pen(z̃|x)

[
log P(z)

]
=− H

(
Pen(z̃ | x)

)
+ H

(
Pen(z̃ | x), P(z)

)
=

1
2

[
µTµ + sum(σ2 − log σ2 − 1)

]
,

(4)

Lrec =−Ez̃∼Pen(z̃|x)

[
log Pge(z̃)

]
' 1

2
‖x′ − x‖2

2. (5)

The last equality of Equation (4) holds, because of P(z) = N(0, 1).
The multi-agent generator Gm consists of K generators, as shown in Figure 2, which is inspired

from MGAN [33]. However, they are different; our multi-agent generator Gm samples from the latent
feature distribution Pen(z̃|x) learned by the encoder E, while the MGAN generator samples from
a random prior distribution P(z). This change not only encourages our generator to capture
the data distribution more quickly but also helps it generate more realistic samples that can fool

Entropy 2020, 22, 1055 7 of 18

the discriminator. As described in Figure 2, the generators in the multi-agent generator share their
parameters except for the input layer and output layer, which helps reduce redundant computations
while ensuring that the generated samples of each generator differ. Assuming that each generator Gi
captures one mode PGi from the learned latent feature representations z̃, then the multi-agent generator
Gm can theoretically capture K data modes, named Pge(z̃). However, it cannot guarantee that those
data modes will overlap with each other.

� �

�

�

�

Shared
parametors �

z�

� �1G z�

� �2G z�
� �mG z�

� �kG z�

1O

2O

kO

Figure 2. An inside view of the multi-agent generator Gm.

The classifier C is a penalty to the generator, encouraging the generator to discover diverse data
modes. It calculates the probability (CGi (x′)) that the input artificial samples x′ come from the generator
Gi. We denote the output of our generator as Gm(z̃) = ∑K

i=1 λiGi (z̃), where Gi(z̃) ∼ PGi (z̃) is
the output of the i-th generator and λi is the weight of Gi(z̃). Therefore, maximizing the information
entropy of the classifier output is organized as the objective function of the classifier LC:

LC =
K

∑
i=1

λiEx′∼PGi

[
logCGi (x′)

]
=

K

∑
i=1

λiEx′∼PGi

[
log

λiPGi

∑K
i=1 λiPGi

]

=
K

∑
i=1

λiEx′∼PGi

[
log

PGi

∑K
i=1 λiPGi

]
+Eλi log λi

=
K

∑
i=1

λiEx′∼PGi

[
log PGi

]
−

K

∑
i=1

λiEx′∼PGi

[
log

K

∑
i=1

λiPGi

]
+Eλi log λi

=−
K

∑
i=1

λi H(PGi) + H
(K

∑
i=1

λiPGi

)
+ H (λi)

=JSD(PG1 , ..., PGm) + H (λi) .

(6)

The Jensen-Shannon divergence (JSD) of multiple distributions that JSD(P1, ..., Pm) = H
(

∑K
i=1 λiPi

)
−

∑K
i=1 λi H(Pi) is given in [39]. According to the above analysis, maximizing LC implies maximizing

the JSD among PG1 , PG2 , · · · , PGK and the information entropy of λi. The greater the JSD is, the more
dispersed the generated sample modes are. Therefore, maximizing LC encourages our multi-agent
generator to generate samples in relatively dispersed data modes. H(λi) reaches its maximum value
when λi = 1/K; thus, we set λi = 1/K in our model. Clearly, the classifier functions as a penalty term
to the generator.

The role of our discriminator D is the same as that in a classical GAN; its task is to distinguish
the generated samples Gm(z̃) from real samples x. It calculates the probability D(x) ∈ [0, 1] that
an input sample x (a real sample x or a generated sample x′) is sampled from the real data distribution
Preal(x). It accomplishes this task by maximizing the probability of real samples while reducing
the probability of generated samples. Therefore, the objective function of the discriminator is to
maximize the following function:

Entropy 2020, 22, 1055 8 of 18

LD =Ex∼Preal [log D(x)] +Ex′∼Pge [log (1− D(x′)]. (7)

This process motivates the generator to generate more realistic samples with the latent feature
representation, thereby improving its ability to generate samples.

According to the above analysis, the goal of our multi-agent generator Gm is not only to generate
more realistic samples that fool the discriminator but also to improve the mode recovery of generated
samples to avoid the mode collapse problem. First, our multi-agent generator Gm samples from
the latent feature representation z̃ ∼ Pen(z̃|x) provided by the encoder. Second, its generated samples
x′ = Gm(z̃) are penalized by the reconstruction error Lrec and the value function of the classifier
Lc. Finally, the generated samples x′ must maximize the probability D(x′) to fool the discriminator.
Therefore, the training objective function of the multi-agent generator is described as minimizing
the value function LGm :

LGm =Ex′∼Pge [log (1− D(x′)] + Lrec − LC. (8)

3.2. Objective of E-MGAN

The latent representation distribution Pen(z̃|x) extracted by the proposed model from real samples
x needs to minimize the KL distance LKL. The proposed model samples from the learned distribution
Pen(z̃|x) to generate samples. To encourage the generated samples x′ to be more plausible and realist
samples, they are subject to reconstruction error Lrec by minimizing Equation (5). The generated
samples aim to deceive the discriminator by minimizing LD. Simultaneously, the discriminator tells
the generated samples from real samples by maximizing LD. Therefore, the total training objective of
E-MGAN can be summarized as follows:

min
E,Gm ,C

max
D

V(E, Gm, C, D) =Ex∼Preal [log D(x)] +Ex′∼Pge [log (1− D(x′)] + LKL + Lrec − LC

=Ex∼Preal [log D(x)] +Ex′∼Pge [log (1− D(x′)]

+ DKL(Pen(z̃|x) ‖ P(z))− 1
2
‖x′ − x‖2

2−
K

∑
i=1

λiEx′∼PGi
[log C(x′)],

(9)

where the calculation formulas for the 3rd and 4th terms in Equation (9) are shown by Equation (4)
and Equation (5), respectively.

Algorithm 1 describes the training process of the proposed E-MGAN model. First, the K
generators in the multi-agent generator, λi (i = 0, 1, . . . , K), are initialized with the weights of the ith
generator; and the parameters of the encoder network, multi-agent generator network, classifier
network, and discriminator network are initialized with θE, θG, θG, and θD. Then, the encoder
extracts the latent feature distribution at Step 4. The two parts of encoder loss LE, the KL divergence
DKL(Pen(z̃|x) ‖ P(z)) between the learned latent feature distribution Pen(z̃|x) and the random prior
distribution P(z), and the reconstruction error Lrec, are calculated at Step 5 and Step 8, respectively.
Thus, the encoder loss LE is obtained in Step 9. In addition, the loss functions of the classifier, generator,
and discriminator are calculated at Steps 11, 13, and 14, respectively. Finally, Steps 15–18 update
the parameters of the four networks.

Entropy 2020, 22, 1055 9 of 18

Algorithm 1 The training process of the proposed E-MGAN algorithm.
Require: K, the number of generators in multi-agent generator; λi, the i-th generator weight; Preal(x),

the real data distribution; P(z) ∼ N(0, 1), the random prior distribution.

1: Initialize:θE, θG, θG, and θD, the parameters of the encoder network, generator network, classifier

network and discriminator network, respectively.
2: while not converged do
3: Sample x ∼ Preal(x) a batch from the real dataset;
4: Pen(z̃|x)← Enc(x);
5: LKL ← DKL(Pen(z̃|x) ‖ P(z));
6: Sample a minibatch of z̃ ∼ Pen(z̃|x); put into multi-agent generator;
7: x′ ← Gm(z̃);
8: Lrec ← ‖x′ − x‖2

2;
9: LE ← LKL + Lrec;

10: Put a minibatch of reconstruction samples x′ into the classifier and obtain C(x′);
11: LC ← −∑K

i=1 λiEx′∼PGi

[
logCGi (x′)

]
;

12: Put a minibatch of training samples x and reconstruction samples x′ the discriminator and

obtain D(x) and D(x′);
13: LG ← log(1− D(x′)) + LKL + Lrec − LC;
14: LD ← −(log(D(x)) + log(1− D(x′));
15: θE

+←− −∇θE(LE);
16: θG

+←− −∇θG (LG);
17: θD

+←− −∇θD (LD);
18: θC

+←− −∇θC (LC);
19: end while

4. Experiments

In this section, comprehensive experiments on both a synthetic dataset and two real-world
datasets are described; they are done to validate the performance of the proposed E-MGAN model.
The generated samples are shown for evaluation via visual inspection for qualitative assessment.
Meanwhile, for quantitative assessment, the generated samples are evaluated by two of the currently
most widely adopted metrics, namely, IS and FID. The experimental details and results are reported
in the remainder of this section.

4.1. Datasets

A 2D synthetic dataset and two widely used large-scale real-world datasets, CIFAR-10 [34] and
STL-10 [35] are adopted to demonstrate the performance of the proposed model through a series of
experiments.

• 2D synthetic dataset adopted in these experiments consisted of 25 isotropic Gaussian
distributions with a fixed standard deviation of 0.05. These 25 Gaussian distributions are arranged
in a 5× 5 grid, as shown by the red points in Figure 3.

• CIFAE-10 [34] contains 60,000 32× 32 color natural images and was collected by Alex Krizhevsky,
Vinod Nair, and Geoffrey Hinton. These images are balanced across the following 10 categories:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. There are 6000 images
in each category.

• STL-10 [35] consists of 100,000 unlabeled natural color images balanced across the following
10 categories: airplane, car, bird, cat, dog, deer, horse, monkey, ship, and struck. STL-10 is more
diverse than the CIFAR-10 dataset, and it contains images with a resolution of 96× 96. To ensure
a fair comparison with other models, we compressed the images from 96× 96 resolution to
48× 48 resolution.

Entropy 2020, 22, 1055 10 of 18

4.2. Evaluation Metrics

The evaluation of generated images is still a notoriously challenging issue, and there is no uniform
standard. Among current metrics, IS [22] and FID [36] are the two most widely adopted evaluation
metrics in various GAN variants. In this paper, for quantitative assessment, these two different
and widely used metrics are adopted to estimate the quality and diversity of generated samples
in the experiments.

• Inception score (IS) [22] is widely used to measure sample qualities. It is wonderfully designed
and based on Google’s inception deep learning model. The IS is adopted to evaluate the results
in the experiments because it assesses the generated images based on two image aspects: realism
and diversity. The score is computed as follows:

IS = exp
(
Ex′∼Pge DKL(P(y|x′)||P(y))

)
. (10)

As shown in Equation (10), IS consists of two parts: p(y|x) and p(y). The former is a conditional
label distribution for each given generated image x′. Lower entropy means the generated sample
x′ is closer to a certain category that contains meaningful objects. The latter p(y) =

∫
x p(y|x)dx,

a marginal distribution, is the label distribution of all generated samples. Higher entropy implies
the generated samples are scattered among different categories. In these experiments, the IS is
adopted to evaluate the realism and diversity of generated samples using the code available from
https://github.com/openai/improved-gan/tree/master/inception_score.

• Fréchet inception distance (FID) [36] is another reasonable way to quantify the quality of
generated images. FID is more consistent than IS because it evaluates the generated samples by
calculating the Fréchet distance between the real samples and generated samples in the feature
space, where the Fréchet distance is a Wasserstein-2 distance. Therefore, FID is better than IS at
capturing the level of similarity between the generated samples and real samples. If the feature
distribution of real samples and that of generated samples are respectively denoted as N(µr, Σr)

and N(µg, Σg), the FID value between them can be calculated by

FID =d2(N(µr, Σr), N(µg, Σg))

=‖µr − µg‖2
2 + Tr(Σr + Σg − 2(ΣrΣg)

1
2).

In addition, FID is proven sensitive to mode dropping, particularly in respect to intraclass mode
dropping [40]. We supplemented the experiments with FID to evaluate the diversity of generated
data modes. The pertinent code is abstracted from https://github.com/bioinf-jku/TTUR .

4.3. Experimental Settings

To ensure a fair comparison, we followed the experimental settings of previous works.
All the experiments are implemented using Python 3.7 and TensorFlow [41] with two GT2080Ti
GPUs and CUDA 10.0.

There are four networks in the proposed model. First, the encoder network E is designed by
adopting a multi-layer perceptron, a simple neural network that extracts data characteristics. Second,
as described in Figure 2, the multi-agent generator consists of K generators that shares all their
parameters except for the input and output layers. Therefore, in fact, they share the same hidden
layer of a single network except for their input and output layers. In addition, for fair comparison
with previous works, we adopted DCGAN [42] to construct both our multi-agent generator Gm

and our discriminator D networks, allowing us to use the same network architecture and training
procedure. DCGAN is a widely adopted modeling architecture that has been used in various GAN

https://github.com/openai/improved-gan/tree/master/inception_score
https://github.com/bioinf-jku/TTUR

Entropy 2020, 22, 1055 11 of 18

variants due to its stability during adversarial training using convolutional neural networks. Finally,
because the classifier C and the discriminator D are essentially both classifiers, to reduce redundant
calculations, they are designed to share parameters except in the last output layer, as shown in Figure 1.
The difference between them is that the latter is a binary classifier, while the former is a multi-class
classifier that calculates the probability that a particular generator generated a given sample; the goal
is to identify which generator was the originator of each synthetic sample.

4.4. Experimental Results

The experiments are divided into two parts to validate the proposed model. On one hand,
the experiments demonstrate that our model improves the quality of the generated samples with
respect to the precision of synthetic data and the correct anatomy of real images. On the other
hand, the experiments demonstrate that the proposed model effectively improves the diversity of
the generated samples. The samples generated by the proposed model are more diverse not only
among the categories but also within the categories. It is worth noting that our model requires no
data labels. The proposed model is a completely unsupervised method. Therefore, all the results are
generated in an unsupervised manner.

4.4.1. Quality Analysis of the Generated Samples

Results on Synthetic Samples

A Gaussian mixture distribution with 25 isotropic data modes is selected to validate the accuracy
of the proposed model. The proposed E-MGAN model is compared with a typical multi-agent GAN,
MGAN. The experimental results are shown in Figure 3. Each model is trained for 50, 000 epochs and
the results of the different methods are presented (MGAN in the upper row and E-MGAN in the bottom
row) at different epochs: 2k, 5k, 25k, and 50k.

As shown in Figure 3, both E-MGAN and MGAN [33] capture all 25 modes. However,
E-MGAN converges much faster than does MGAN; it covers nearly all the modes as early as step 2k,
while the generated points of MGAN display more freedom. Furthermore, E-MGAN captures the data
modes more precisely than does MGAN from Epoch 25k to the end, while there are several modes that
MGAN cannot exactly cover. This comparison between MGAN and E-MGAN on the 2D synthetic
dataset demonstrates that E-MGAN captures data modes more accurately.

M
G

A
N

E-
M

G
A

N

(a) Epoch=2k (b) Epoch=100k (c) Epoch=250k (d) Epoch=500k

Figure 3. Samples generated by MGAN (in the upper row) and our proposed E-MGAN (in the bottom
row) trained on the 2D synthetic dataset. The red points are real samples, while the blue points are
generated samples.

Entropy 2020, 22, 1055 12 of 18

Results on Real-world Samples

Figure 4 shows the samples generated by the proposed E-MGAN and those generated by MGAN
trained on the CIFAR-10 dataset. We adopted 10 generators to train these two multi-agent GAN
models and present the generated samples of different generators in the rows, as shown in Figure 4.
The samples generated by MGAN are displayed in Figure 4a, while the samples generated by E-MGAN
are displayed in Figure 4b. In the left-hand image, MGAN can identify horses, ships, cars or trucks,
flying objects (birds or airplanes), and other unclear animals. However, there is clearly a generator
collapse in MGAN. In the right-hand image, E-MGAN clearly identifies the outlines of horses, ships,
birds, and automobiles. It can also roughly identify the cats and dogs, trucks, and even frogs. More
importantly, no generator suffers from the mode collapse problem, although the deer could not be
clearly identified.

(a) MGAN (b) E-MGAN

Figure 4. Generated samples of proposed E-MGAN and MGAN trained on CIFAE-10.

To quantitatively analyze the quality of the generated samples, Table 2 shows the IS results of
samples generated by E-MGAN and other benchmark methods on both the CIFAR-10 and STL-10
datasets. It also lists the IS results of the real data, which act as the baseline for all the generated
samples from the different models. The models compared on the CIFAR-10 dataset include several
classic GAN variants (such as WGAN [25], MIX+WGAN [43], improved-GAN [22], DCGAN [26],
and MAGAN [44]); models that combine a GAN and VAE (such as ALI [28] and BEGAN [45]); and
several multi-agent GANs (such as GMAN [31], D2GAN [30], and MGAN [33]). Among the compared
models, we chose the best performing MGAN for recovery. We obtained an IS of 8.12± 0.10 for
MGAN through 500 epochs of 5000 samples in the tested implementation, which is slightly lower than
the results published in [33], as shown in Table 2. By adopting 10 generators as in MGAN, we completed
the experiment with the proposed E-MGAN model. The samples generated by E-MGAN achieved
a slightly higher IS of 8.42± 0.09, which is closest to the real data, indicating that E-MGAN outperforms
other models.

Table 2 also presents the IS results of E-MGAN compared with other models on STL-10. The STL-10
dataset is more diverse than CIFAR-10 because it is a subset of the full ImageNet dataset. The compared
models include DCGAN [26], D2GAN [30], and MGAN [33]. The images in the STL-10 dataset have
a resolution of 96 × 96; however, DCGAN, D2GAN, and MGAN are all trained on images with
a resolution of 48 × 48. To ensure a fair comparison with these previous works, we compressed
the images of the STL-10 dataset from 96× 96 to 48× 48. We reproduced the experimental results of
the MGAN model on the STL-10 dataset and obtained an IS score of 9.12± 0.10, which is somewhat
lower than the experimental result of 9.22 reported in [33]. In the same experimental environment,
the proposed model obtained an IS score of 9.35± 0.10, outperforming the other baselines (DCGAN

Entropy 2020, 22, 1055 13 of 18

and D2GAN). Similarly, on the STL-10 dataset, the E-MGAN model achieved an IS value as high
as 9.35 ± 0.12. Obtaining the highest IS score indicates that the quality of samples generated by
the proposed E-MGAN model is superior to that of the other models.

Table 2. Inception scores on CIFAR-10 and STL-10 datasets. All the results are made in an unsupervised
manner. The higher the IS value, the better the quality of generated samples is. A dash (“–”) indicates
unavailable data.

Model CIFAR-10 STL-10

Real data 11.24± 0.16 26.08± 0.26
WGAN[25] 3.82± 0.06 –
MIX+WGAN[43] 4.04± 0.07 –
mproved-GAN [22] 4.36± 0.04 –
ALI[28] 5.34± 0.05 –
BEGAN[45] 5.62 –
MAGAN[44] 6.40± 0.03 –
GMAN[31] 6.00± 0.19 –
DCGAN[26] 6.40± 0.05 7.54
DFM[46] 7.72± 0.13 8.51± 0.13
D2GAN[30] 7.15± 0.07 7.98
MGAN[33] 8.33± 0.10 9.22± 0.11
E-MGAN 8.42± 0.13 9.35± 0.12

4.4.2. Diversity Analysis of the Generated Samples

Results on Synthetic Samples

Figure 5 compares the experimental results of E-MGAN and WGAN trained on 25 independent
Gaussian mixture distribution datasets (WGAN is in the upper row and E-MGAN is in the lower
row). E-MGAN converges much faster than WGAN because it achieves an even distribution around
all the targets (red points) and nearly covers most of the targets as early as epoch 2k. By epoch
10k, E-MGAN recognizes all modes. However, at epoch 2k, the points generated by WGAN are
distributed around merely a few target modes, and multiple target modes in the middle are not
found. Until the end, at epoch 50k, several targets are still not discovered (such as col 1, row 5; col 3,
row 5; col 4, row 2 and 3; and col 5, row 4). Additionally, during the entire WGAN training process,
most of the generated points wander between two adjacent target modes. The wandering points
among the points generated by E-MGAN gradually decrease and gather around the target points.
Finally, at epoch 50k, only a few points are floating between two adjacent target points. Experiments
on the synthetic dataset of WGAN and E-MGAN proved that the proposed E-MGAN model generates
more diverse data to discover all modes and thus overcomes the mode collapse problem.

W
G

A
N

E-
M

G
A

N

(a) Epoch=2k (b) Epoch=100k (c) Epoch=250k (d) Epoch=500k

Figure 5. Samples generated by WGAN (in the upper row) and our proposed E-MGAN (in the bottom row)
trained on the 2D synthetic dataset. The red points are real samples, while the blue points are generated samples.

Entropy 2020, 22, 1055 14 of 18

Results on Real-world Samples

To qualitatively illustrate the performance of the proposed model regarding the diversity of
the generated samples, we intuitively evaluated the image quality by exhibiting the generated samples
trained on different real-word datasets. Figure 6 presents images generated by our model trained
on the CIFAR-10 32× 32 dataset. Some generated samples trained on the STL-10 48× 48 dataset are
shown in Figure 7.

automobile

deer

frog

dog

ship

cat

bird

airplane

horse

truck

(a) Real (b) E-MGAN

Figure 6. Samples on the CIFAR-10 dataset. On the left are real data sampled from the CIFAR-10
dataset, and on the right are samples generated by E-MGAN trained on CIFAR-10 dataset.

Figure 6 shows the real samples (in Figure 6a) and the generated samples of the E-MGAN
model (in Figure 6b) on the CIFAR-10 dataset. Figure 6a shows 10 examples of each category among
the 10 categories of the real dataset. Figure 6b shows 10 samples of each of the categories generated by
the E-MGAN model. On one hand, the generated samples of E-MGAN cover all modes; cars, deer,
frogs, dogs, ships, birds, airplanes, horses, and trucks can be clearly identified. The cats are fuzzy
because the samples in the real dataset are insufficient to be clearly identified. On the other hand,
the generated samples in each category are different. The generated samples of cars, ships, dogs,
horses, and trucks are viewed from different perspectives and appear in diverse colors. The generated
data on the CIFAR-10 dataset demonstrate that E-MGAN achieves diversity both among classes and
within classes.

Figure 7 represents generated samples of the proposed E-MGAN model trained on STL-10 at
different epochs. Recognizing all the objects in the generated images on STL-10 is somewhat difficult,
but it is relatively easy to recognize the shapes of objects such as cars, trucks, ships, airplanes, birds,
horses, and other animals. Furthermore, the colors and backgrounds (such as the sky, sea, and land) of
the generated images become increasingly diverse as the number of training iterations increases.

(a) Epoch=25. (b) Epoch=50. (c) Epoch=150.

Figure 7. Samples generated by the proposed E-MGAN at different epochs trained on STL-10.

Entropy 2020, 22, 1055 15 of 18

To quantitatively evaluate the performance of the E-MGAN model regarding diversity, FID is
a good measurement method [40]. The FID values are compared with previous works, including
DCGAN [26], DCGAN + TTUR [36], WGAN-GP, WGAN-GP-TTUR [36], and MGAN, on the CIFAR-10
dataset to validate the ability of the proposed model to solve the mode collapse problem. The FID
values of E-MGAN and MGAN are obtained through experiments and the FID results of other models
are quoted as reported in [36]. As shown in Table 3, the proposed E-MGAN obtained the lowest FID
value (24.4) among all models. Obtaining the lowest FID value means that E-MGAN is the model least
affected by the mode collapse problem and that it can recover different modes. The samples generated
by the proposed E-MGAN model are shown in Figure 6b.

Table 3. FIDs of different models on CIFAR-10. The lower the FID value, the better the diversity of
generated samples is.

Model FID

DCGAN[26] 37.7
DCGAN + TTUR[36] 36.9
WGAN-GP[47] 29.3
WGAN-GP + TTUR[36] 24.8
MGAN[33] 26.7
E-MGAN 24.4

5. Conclusions

This paper proposes a novel multi-agent GAN architecture E-MGAN. Differently from existing
multi-agent GANs, the proposed model aims to generate higher quality and more diverse samples by
making full use of the advantages of a VAE and a multi-agent GAN. The E-MGAN learns the variational
latent representations from real data to improve the quality of the generated samples. Meanwhile,
E-MGAN increases the diversity of generated samples via the coordinated training of a multi-agent
generator with the encoder, the classifier, and the discriminator. Extensive experiments on both
a synthetic dataset and two large-scale real-world datasets, (CIFAR-10 and STL-10), demonstrated
that the proposed E-MGAN model not only improves the quality of the generated samples but also
recovers diverse data modes. Future work should consider employing labeled data information or
utilizing the statistical information of generated samples to increase the diversity of generative models.

Author Contributions: H.Z. and T.L. conceived the idea for the paper; T.L. and Y.X. implemented the algorithm
and performed the experiments; Y.W. analyzed the results; H.Z. provided funding acquisition; T.L. wrote
the manuscript; and H.Z., Y.X. and Y.W. revised the paper. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported by the National Science Foundation of China under Grant 61772188 and
the National Key R&D Program of China Grant 2018YFC0831800.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative Adversarial Nets. In Proceedings of the Advances in Neural Information Processing Systems,
Montreal, QC, Canada, 8–13 December 2014.

2. Diasse, A.; Li, Z. Multi-view Deep Unsupervised Transfer Leaning via Joint Auto-encoder Coupled with
Dictionary Learning. Intell. Data Anal. 2019, 23, 555–571. [CrossRef]

3. Taghanaki, S.A.; Havaei, M.; Berthier, T.; Dutil, F.; Dijorio, L.; Hamarneh, G.; Bengio, Y. InfoMask:
Masked Variational Latent Representation to Localize Chest Disease. In Medical Image Computing and
Computer Assisted Intervention—MICCAI 2019: Proceedings of the 22nd International Conference, Shenzhen, China,
13–17 October 2019; Springer International Publishing: Cham, Switzerland, 2019; pp. 739–747.

4. Zhu, X.; Xiao, Y.; Zheng, Y. 2D freehand sketch labeling using CNN and CRF. Multimed. Tools Appl. 2020,
79, 1585–1602. [CrossRef]

http://dx.doi.org/10.3233/IDA-183914
http://dx.doi.org/10.1007/s11042-019-08158-z

Entropy 2020, 22, 1055 16 of 18

5. Xiao, Y.; Zhao, H.; Li, T. Learning Class-Aligned and Generalized Domain-Invariant Representations for
Speech Emotion Recognition. IEEE Trans. Emerg. Top. Comput. Intell. 2020, 4, 480–489. [CrossRef]

6. Chen, W.e.a. A Novel Fuzzy Deep-learning Approach to Traffic Flow Prediction with Uncertain
Spatial–Temporal Data Features. Future Gen. Comput. Syst. 2018, 89, 78–88. [CrossRef]

7. Njikam, A.N.S.; Zhao, H. A Novel Activation Function for Multilayer Feed-forward Neural Networks.
Appl. Intell. 2016, 45, 75–82. [CrossRef]

8. Zhu, X.; Yuan, J.; Xiao, Y.; Zheng, Y.; Qin, Z. Stroke classification for sketch segmentation by fine-tuning
a developmental VGGNet16. Multimed. Tools Appl. 2020, 1–16. [CrossRef]

9. Zhao, H.; Wang, S.; She, X.; Su, C. Supervised Matrix Factorization Hashing With Quantitative Loss for
Image-Text Search. IEEE Access 2020, 8, 102051–102064. [CrossRef]

10. Ghosh, A.; Kulharia, V.; Namboodiri, V.P.; Torr, P.H.; Dokania, P.K. Multi-agent Diverse Generative
Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018.

11. Cai, L.; Chen, Y.; Cai, N.; Cheng, W.; Wang, H. Utilizing Amari-Alpha Divergence to Stabilize the Training of
Generative Adversarial Networks. Entropy 2020, 22, 410. [CrossRef]

12. Wang, J.; Li, R.; Li, R.; Li, K.; Zeng, H.; Xie, G.; Liu, L. Adversarial De-noising of Electrocardiogram.
Neurocomputing 2019, 349, 212–224. [CrossRef]

13. Huang, C.; Kairouz, P.; Chen, X.; Sankar, L.; Rajagopal, R. Context-Aware Generative Adversarial Privacy.
Entropy 2017, 19, 656. [CrossRef]

14. Yi, L.; Mak, M. Adversarial Data Augmentation Network for Speech Emotion Recognition. In Proceedings
of the Asia Pacific Signal and Information Processing Association Annual Summit and Conference,
Lanzhou, China, 18–21 November 2019.

15. Zhao, H.; Xiao, Y.; Zhang, Z. Robust Semisupervised Generative Adversarial Networks for Speech Emotion
Recognition via Distribution Smoothness. IEEE Access 2020, 8, 106889–106900. [CrossRef]

16. Dai, B.; Fidler, S.; Urtasun, R.; Lin, D. Towards Diverse and Natural Image Descriptions via a Conditional
GAN. In Proceedings of the International Conference on Computer Vision, Venice, Italy, 22–29 October 2017;
pp. 2989–2998.

17. Gao, F.; Ma, F.; Wang, J.; Sun, J.; Yang, E.; Zhou, H. Semi-Supervised Generative Adversarial Nets with
Multiple Generators for SAR Image Recognition. Sensors 2018, 18, 2706, doi:10.3390/s18082706. [CrossRef]
[PubMed]

18. Tan, D.S.; Lin, J.; Lai, Y.; Ilao, J.; Hua, K. Depth Map Upsampling via Multi-Modal Generative Adversarial
Network. Sensors 2019, 19, 1587. [CrossRef] [PubMed]

19. Kim, J.; Jung, S.; Lee, H.; Zhang, B.T. Encoder-Powered Generative Adversarial Networks. arXiv 2019,
arXiv:1906.00541.

20. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. In Proceedings of the International Conference
on Learning Representations, Banff, AB, Canada, 14–16 April 2014.

21. Goodfellow, I. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv 2016, arXiv:1701.00160.
22. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved Techniques for

Training GANs. In Proceedings of the 30th International Conference on Neural Information Processing
Systems (NIPS’16), Barcelona, Spain, 5–10 December 2011.

23. Che, T.; Li, Y.; Jacob, A.P.; Bengio, Y.; Li, W. Mode Regularized Generative Adversarial Networks. In Proceedings
of the 5th International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

24. Eghbal-zadeh, H.; Zellinger, W.; Widmer, G. Mixture Density Generative Adversarial Networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–20 June 2019; pp. 5820–5829.

25. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein Generative Adversarial Networks. In Proceedings of
the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017, pp. 214–223.

26. Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks. In Proceedings of the 4th International Conference on Learning
Representations, San Juan, Puerto Rico, 2–4 May 2016.

27. Metz, L.; Poole, B.; Pfau, D.; Sohl-Dickstein, J. Unrolled Generative Adversarial Networks. arXiv 2016,
arXiv:1611.02163.

http://dx.doi.org/10.1109/TETCI.2020.2972926
http://dx.doi.org/10.1016/j.future.2018.06.021
http://dx.doi.org/10.1007/s10489-015-0744-0
http://dx.doi.org/10.1007/s11042-020-08706-y
http://dx.doi.org/10.1109/ACCESS.2020.2998524
http://dx.doi.org/10.3390/e22040410
http://dx.doi.org/10.1016/j.neucom.2019.03.083
http://dx.doi.org/10.3390/e19120656
http://dx.doi.org/10.1109/ACCESS.2020.3000751
https://doi.org/10.3390/s18082706
http://dx.doi.org/10.3390/s18082706
http://www.ncbi.nlm.nih.gov/pubmed/30126120
http://dx.doi.org/10.3390/s19071587
http://www.ncbi.nlm.nih.gov/pubmed/30986925

Entropy 2020, 22, 1055 17 of 18

28. Dumoulin, V.; Belghazi, I.; Poole, B.; Lamb, A.; Arjovsky, M.; Mastropietro, O.; Courville, A.C. Adversarially
Learned Inference. In Proceedings of the 5th International Conference on Learning Representations,
Toulon, France, 24–26 April 2017.

29. Bao, J.; Chen, D.; Wen, F.; Li, H.; Hua, G. CVAE-GAN: Fine-Grained Image Generation through
Asymmetric Training. In Proceedings of the International Conference on Computer Vision, Venice, Italy,
22–29 October 2017; pp. 2764–2773.

30. Nguyen, T.; Le, T.; Vu, H.; Phung, D. Dual Discriminator Generative Adversarial Nets. In Proceedings of the
31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA,
4–9 December 2017.

31. Durugkar, I.; Gemp, I.; Mahadevan, S. Generative Multi-adversarial Networks. In Proceedings of the 5th
International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

32. Ghosh, A.; Kulharia, V.; Namboodiri, V. Message Passing Multi-agent GANs. arXiv 2016, arXiv:1612.01294.
33. Hoang, Q.; Nguyen, T.D.; Le, T.; Phung, D. MGAN: Training Generative Adversarial Nets with Multiple

Generators. In Proceedings of the 6th International Conference on Learning Representations, Vancouver, BC,
Canada, 30 April–3 May 2018.

34. Krizhevsky, A.; Hinton, G.; others. Learning Multiple Layers of Features from Tiny Images; Technical Report
TR-2009; University of Toronto: Toronto, ON, USA, 2009.

35. Coates, A.; Ng, A.; Lee, H. An Analysis of Single-layer Networks in Unsupervised Feature Learning.
In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale,
FL, USA, 11–13 April 2011; pp. 215–223.

36. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs Trained by a Two Time-scale
Update Rule Converge to a Local Nash Equilibrium. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA, 4–9 December 2017.

37. Donahue, J.; Krahenbuhl, P.; Darrell, T. Adversarial Feature Learning. In Proceedings of the 5th International
Conference on Learning Representations, Toulon, France, 24–26 April 2017.

38. Huang, H.; Li, Z.; He, R.; Sun, Z.; Tan, T. IntroVAE: Introspective Variational Autoencoders for Photographic
Image Synthesis. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems (NIPS’18), Montréal, QC, Canada, 3–8 December 2018.

39. Lin, J. Divergence Measures Based on The Shannon Entropy. IEEE Trans. Inf. Theory 1991, 37, 145–151.
[CrossRef]

40. Lucic, M.; Kurach, K.; Michalski, M.; Gelly, S.; Bousquet, O. Are GANs Created Equal? A Large-scale Study.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS’18),
Montréal, QC, Canada, 3–8 December 2018.

41. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin,
M.; et al . Tensorflow: Large-scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016,
arXiv:1603.04467.

42. Hong, Y.; Hwang, U.; Yoo, J.; Yoon, S. How Generative Adversarial Networks and Their Variants Work:
An Overview. ACM Comput. Surv. 2019, 52, 1–43. [CrossRef]

43. Arora, S.; Ge, R.; Liang, Y.; Ma, T.; Zhang, Y. Generalization and Equilibrium in Generative Adversarial
Nets (GANs). In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia,
6–11 August 2017; Volume 70, pp. 224–232.

44. Wang, R.; Cully, A.; Chang, H.J.; Demiris, Y. Magan: Margin Adaptation for Generative Adversarial
Networks. arXiv 2017, arXiv:1704.03817.

45. Berthelot, D.; Schumm, T.; Metz, L. Began: Boundary Equilibrium Generative Adversarial Networks.
arXiv 2017, arXiv:1703.10717.

http://dx.doi.org/10.1109/18.61115
http://dx.doi.org/10.1145/3301282

Entropy 2020, 22, 1055 18 of 18

46. Warde-Farley, D.; Bengio, Y. Improving Generative Adversarial Networks With Denoising Feature Matching.
In Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

47. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved Training of Wasserstein GANs.
In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17),
Long Beach, CA, USA, 4–9 December 2017.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Generative Adversarial Networks (GANs)
	Variational Auto-Encoder (VAE)
	Mixture Generative Adversarial Nets (MGAN)

	Proposed Encoded Multi-agent GAN
	Formulation of E-MGAN
	Objective of E-MGAN

	Experiments
	Datasets
	Evaluation Metrics
	Experimental Settings
	Experimental Results
	Quality Analysis of the Generated Samples
	Diversity Analysis of the Generated Samples

	Conclusions
	References

