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Abstract: Based on conditional past–future (CPF) correlations, we study the non-Markovianity of a
central spin coupled to an isotropic Lipkin–Meshkov–Glick (LMG) bath. Although the dynamics of a
system is always non-Markovian, it is found that some measurement time intervals considering a
specific process, with respect to a particular set of CPF measurement operators, can be zero, which
means that in this case the non-Markovianity of the system could not be detected. Furthermore,
the initial system–bath correlations only slightly influence the non-Markovianity of the system
in our model. Significantly, it is also found that the dynamics of the system for LMG baths,
initially in the ground states corresponding to the symmetric phase and symmetry broken phase,
exhibit different properties, and the maximal value of the CPF at the critical point is the smallest,
independent of the measurement operator, which means that the criticality can manifest itself by the
CPF. Moreover, the effect of bath temperature on the quantum criticality of the CPF depends on the
measurement operator.

Keywords: non-Markovianity; Lipkin–Meshkov–Glick (LMG) model; conditional past–future
(CPF) correlation

1. Introduction

As is known, realistic quantum systems inevitably interact with their surrounding environments,
and the dynamics of such open quantum systems [1–5] have attracted a lot of attention. The time
evolution of open quantum systems is usually characterized by a quantum master equation through
Markovian approximations [6], where the environment is assumed to be memoryless leading to a
monotonic information flow from the system of interest to the environment. However, the Markovian
approximation or master equation breaks down in systems with a strong coupling to their environments
and structured environment spectral densities. In these cases, usually the environment exhibits memory
effects, and so a backflow of information from the environment to the system occurs, namely, the system
experiences non-Markovian dynamics [7,8]. Researchers have found that many relevant physical
systems could not be described simply by Markovian dynamics, such as quantum dots [9], quantum
optical systems [10,11], color-core spin in semiconductors [12], as well as biological systems [13], and
quantum chemistry [14].

In recent years, more and more attention has been paid to the study of non-Markovian processes
of open quantum systems [15–44]. Several review articles on quantum non-Markovianity are
available [7,8,45]. The measure of the non-Markovianity of quantum evolution is a fundamental
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problem which aims to detect whether a quantum process is non-Markovian and how much it deviates
from a Markovian one. Various definitions and measures of non-Markovianity have been introduced
based on different physical concepts. Most of these definitions and measures for non-Markovianity
were based on the following two main ideas: completely positive (CP) divisibility and information
back flow. Based on CP divisibility, several measures of non-Markovianity have been proposed
in [16–21]. Following the idea of information back flow, different measures were considered, such as
measures based on the distinguishability of states in [22], on quantum entanglement in [16], on the
quantum Fisher information flow in [23,24], on the fidelity in [25], on the mutual information in [26,27],
on the channel capacity in [28], on the geometry of a set of accessible states in [29], on the channel
distinguishability in [30], and on the two-time correlation functions in [31]. It is worthwhile to notice
that different measures of non-Markovianity agree neither on the degree of non-Markovianity of a
given process nor even on whether it is Markovian [27,32].

In fact, memory effects developed in open quantum systems can also be defined by alternative
methods. For example, the well-established notion of classical Markovianity [46] can be extended
to a quantum regime by subjecting the system to extra control operations (measurements). Recently,
an operational definition of quantum Markovianity based on a “process tensor” framework was
introduced in [41,42], which relies on the usual definition of classical Markovianity in terms of
conditional probability distributions [46]. The main theoretical component of this definition is the
statistical independence of past and future events when conditioned on a given state at the present
time [47]. Then, Budini extended this formulation of classical Markovianity to quantum regime and
proposed an operational definition of quantum non-Markovianity, which is based on a minimal set of
three time-ordered successive measurements performed solely on the quantum system [43,44]. Hence,
conditional past–future (CPF) independence indicates a Markovian regime, while memory effects will
break CPF independence, and a hierarchical set of CPF correlations arises in non-Markovian regime.
Its definition involves both predictive and retrodicted quantum probabilities [48,49]. It should be noted
that the experimental implementation has been recently realized [50,51].

In [43], the authors considered a central spin model and a spin in the classical noise and studied
their non-Markovian dynamics based on CPF correlations. The bath in the latter was approximated as
a big qubit. In general, it is very difficult to consider the change of the bath state after a measurement
on the system, which strongly influences the subsequent dynamics of the system. So the quantum
regression theorem was often used which approximately supposes the bath state being unchanged [52],
while in a non-Markovian regime for CPF correlations, the change of the bath state after measurement
could not be ignored, leading to a violation of the quantum regression theorem. Because the change
of the bath state is a major factor influencing the non-Markovianity, an exactly solvable model
will be significant. As is known, interacting many-body spin environments are the representative
non-Markovian environments which present many interesting non-Markovian behaviors [39,40,53–56].
The Lipkin–Meshkov–Glick (LMG) model [57], which is exactly solvable, consists of N spins distributed
in two degenerate levels and each spin interacts with others. This model, which was first introduced to
describe the tunneling of bosons between two degenerate levels in nuclei, has been proven to have a
quantum phase transition (QPT) [58–60]. By adjusting the coupling constant, the LMG model will
show two different phases, i.e., a symmetric phase and symmetry broken phase. Thus, the ground
states corresponding to the two phases exhibit different properties. In [40], the authors have studied
the non-Markovianity of a central spin coupled to a LMG model in the case of the bath initially
being in the ground state by the trace distance definition of non-Markovianity. They found that the
non-Markovianity is stronger for the bath in the symmetric phase than that in the symmetry broken
phase. In fact, the trace distance between quantum states has been extensively applied to investigate
non-Markovianity, which is not considered for a particular physical process, but the CPF correlation
is. In this paper, based on a CPF correlation, we will study the non-Markovianity of a central spin
coupled to the LMG bath, especially the effects of different particular physical processes, different
initial system–bath correlations and the states of the bath on the non-Markovian dynamics. Firstly,
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we discuss the effect of the measurement operator on the non-Markovianity of the system. It is found
that the non-Markovianity of the system could not be detected by a particular measurement operator
for some measurement time intervals. In a quantum regime, the system dynamics are Markovian if the
CPF correlation vanishes for arbitrary measurement operators. Equivalently, the system dynamics are
non-Markovian if there exists at least one set of measurement operators such that the CPF correlation
does not vanishes. It is noted that even for a non-Markovian process the value of the CPF may or
may not be null for different measurement operators and different measurement time intervals. Then,
we consider the role of the initial system–bath correlations on the non-Markovianity. Three types of
initial system–bath correlations are considered: the first has a quantum correlation, the second has a
classical correlation, and the third has no correlation. It is shown that initial system–bath correlations
only slightly influence the non-Markovianity of the system in our model. At last, we discuss how
the state of the bath influences the non-Markovianity of the system. It is found that with LMG being
initially prepared in the ground state, the behaviors of the CPF are quite different for the two different
phases, and a notable discontinuity of the sudden transition for the CPF occurs at the QPT point. In the
symmetric broken phase, the maximal magnitude of the CPF increases with the increase in the coupling
strength between the spins in the bath, while in the symmetric phase, it decreases with the increase in
the coupling strength between the spins in the bath. At the QPT point, the maximal magnitude of the
CPF is the minimum. The non-Markovianity shows critical characteristics near the QPT point in the
LMG bath, which is independent of the measurement operator, and thus, this quantum criticality can
manifest itself by the CPF. Moreover, the initial bath state has a significant influence on the dynamics
of the system, and the effect of the bath temperature on the critical characteristics of the CPF depends
on the measurement operator. For some particular measurements, although the bath slightly deviates
from zero (in terms of temperature), the critical behavior of the CPF will be broken, while for other
measurement operators, a higher temperature can be maintained before being destroyed.

This paper is organized as follows: In Section 2, we first introduce the physical model and three
types of initial system–bath correlations. Then, we briefly review the operational definition of quantum
non-Markovianity based on the CPF correlation. In Section 3, we study the dynamics of the system
for different particular processes and initial system–bath correlations through the CPF correlation,
as well as the effects the different states of the bath has on the dynamics of the system. Section 4 is
the conclusion.

2. Model and Methods

2.1. Model

We consider a central spin- 1
2 system coupled to the isotropic LMG bath and the total Hamiltonian

can be written as
H = HS + HB + HSB (1)

with
HS = −σz

HB = − λ
N

N∑
i< j

(σi
xσ

j
x + σi

yσ
j
y) −

N∑
i=1

σi
z

HSB = −λ′
N∑

i=1
(σi

xσx + σi
yσy)

(2)

Here, HS is the Hamiltonian of the central spin and HB is the Hamiltonian of the isotropic LMG
bath, with λ, N denoting the coupling strength between the spins and the number of spins in the
bath. HSB represents the interacting Hamiltonian between the central spin and its surrounding bath,
with λ′ being their coupling strength. σk and σi

k, k = x, y, z(i = 1, 2, . . . . . .N) are the Pauli matrices of
the central spin and the i-th spin in the bath, respectively.
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Since the N spins in the LMG bath are identical and indistinguishable, the dynamics of the bath
can be described by collective operators as

J± =
N∑

i=1

σi
±, Jz =

1
2

N∑
i=1

σi
z (3)

where Jz and J± are the z component of the total spin operator and the ladder operators of the LMG
bath. By means of the ladder operators of the LMG bath and the central spin, we can rewrite the total
Hamiltonian as

H = −
λ

N
[J+ J− + J− J+ −N] − 2Jz − 2λ′ [s+ J− + s− J+] − 2sz (4)

where sz = 1
2σz and s± = sx ± isy are the spin operator and the ladder operator of the central spin,

respectively.
Any N spin- 1

2 state invariant by atom permutation is described by the Dicke state |J, M〉with J = N
2 ,

where |J, M〉 is obtained by the repeated action of the symmetrical collective deexcitation operator J−
on state |↑, ↑ . . . . . . ↑〉:

|J, M〉 =

√
(J + M)!

N!(J −M)!
JJ−M
−
|↑, ↑ . . . . . . ↑〉 (5)

In Equation (5), M = −J,−J + 1, . . . . . . J − 1, J, and |↑, ↑ . . . . . . ↑〉 are the full polarized states with
all spins up. |J, M〉 represents the state in which the J + M spins are in the upper level |↑〉, and J −M in
the lower level |↓〉. |J, M〉 is the eigenstate of J2 and Jz with the corresponding eigenvalues N

2 (
N
2 + 1)

and M, respectively. Hence, we can choose |J, M〉 as the basis vector, and the Hamiltonian of the LMG
bath would be expressed as a diagonal matrix in the Dicke representation. For convenience, we write
|M〉 instead of |J, M〉 for J = N

2 in the following. In terms of the LMG model, λ = 1 is the QPT point.
When 0 < λ < 1, the bath is in the symmetry broken phase, and the ground state is |G〉 =

∣∣∣N
2

〉
. When

λ > 1, the bath is in the symmetry phase, and the ground state is |G〉 = |M〉, where M is an integer
nearest to N/2λ.

By means of an invariant subspace, HM of H spanned by the basis vectors {|M〉 ⊗ |↑〉, |M + 1〉 ⊗ |↓〉}
(|↑〉, |↓〉 are the eigenstates of HS), the total Hamiltonian can be expressed as a quasidiagonal matrix
with the diagonal blocks:

HM =

[
ε ξ
ξ χ

]
(6)

where ε = −
λ

2N [N2
− 4M2] − 2M − 1, χ = −

λ
2N [N2

− 4(M + 1)2] − 2(M + 1) + 1, ξ =

−λ′
√

N(N + 2) − 4M(M + 1). Through a straightforward calculation, the system–bath unitary time
evolution operator U(t) = exp(−iHt) can also be expressed in the invariant subspace HM of H as

UM(t) =
[

g2e−ix1t + h2e−ix2t gh(e−ix1t
− e−ix2t)

gh(e−ix1t
− e−ix2t) h2e−ix1t + g2e−ix2t

]
(7)

where x1 and x2 are the eigenvalues of HM, written as

x1 =
1
2

[
(ε+ χ) +

√
(ε− χ)2 + 4ξ2

]
, x2 =

1
2

[
(ε+ χ) −

√
(ε− χ)2 + 4ξ2

]
.

In Equation (7), g = ξ√
(ε−x1)

2+ξ2
, h = x1−ε√

(ε−x1)
2+ξ2

. It is noticed that the above equation is valid

only when −N
2 ≤ M < N

2 . M = N
2 ,

∣∣∣N
2

〉
⊗ |↑〉 is an eigenstate of the total Hamiltonian which is a

one-dimensional invariant subspace, and its corresponding eigenenergy is −(N + 1).
∣∣∣−N

2

〉
⊗ |↓〉 is also

an eigenstate of the total Hamiltonian, and its eigenenergy is (N + 1).
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Now, assuming the initial system–bath state is ρtot(0), we can obtain the time evolution of the
density matrix for the composite system by solving the following Liouville equation,

ρtot(t) = U(t)ρtot(0)U†(t) (8)

and the reduced density matrix of system can be obtained by tracing over the bath degrees of freedom,
ρs(t)= TrB[ρtot(t)] .

In general, system–bath initial correlations can play a significant role in the dynamics of quantum
systems. In order to investigate the effects of different initial system–bath correlations on the dynamics
of central spin, in this paper we will consider the following three types of initial states for the
composite system,

ρ1
tot(0) = (α

∣∣∣µ〉|0〉+ β|ν〉

∣∣∣∣∣N2 〉
) × (α∗

〈
µ
∣∣∣〈0|+ β∗〈ν|

〈N
2

∣∣∣∣∣)
ρB(0) ⊗

(
sin2 γ|↑〉〈↑|+ cos2 γ|↓〉〈↓|

)
− P0 cos2 γ|0 ↓〉〈0 ↓| − P0sin2γ|0 ↑〉〈0 ↑|

− PN/2 sin2 γ

∣∣∣∣∣N2 ↓〉〈N
2
↓

∣∣∣∣∣− PN/2 cos2 γ

∣∣∣∣∣N2 ↑〉〈N
2
↑

∣∣∣∣∣ (9)

ρ2
tot(0) = |α|

2
∣∣∣µ〉〈µ∣∣∣⊗ |0〉〈0|+ ∣∣∣β∣∣∣2|ν〉〈ν| ⊗ ∣∣∣∣∣N2 〉〈N

2

∣∣∣∣∣
+ ρB(0) ⊗

(
sin2 γ|↑〉〈↑|+ cos2 γ|↓〉〈↓|

)
− P0 cos2 γ|0 ↓〉〈0 ↓| − P0 sin2 γ|0 ↑〉〈0 ↑|

− PN/2 sin2 γ

∣∣∣∣∣N2 ↓〉〈N
2
↓

∣∣∣∣∣− PN/2 cos2 γ

∣∣∣∣∣N2 ↑〉〈N
2
↑

∣∣∣∣∣ (10)

ρ3
tot(0) = ρS(0) ⊗ ρB(0) (11)

where
∣∣∣µ〉 = cosγ|↓〉+ sinγ|↑〉, |ν〉 = sinγ|↓〉 − cosγ|↑〉 (γ ∈ [0,π]). ρS(0) and ρB(0) are given by

ρS(0) = cos2 γ|↓〉〈↓|+ (P0 − P N
2
) cosγ sinγ|↓〉〈↑|

+ (P0 − P N
2
) cosγ sinγ|↑〉〈↓|+ sin2 γ|↑〉〈↑| (12)

ρB(0) =

N
2∑

M=−N
2

PM|M〉〈M| (13)

In Equations (9)–(13), ρB(0) is chosen to be a thermal state with PM = e−EM/TB /Z. Here,
Z =

∑
M e−EM/TB is the partition function, EM is the eigenenergy of HB corresponding to the eigenstate

|M〉, and TB is the bath temperature. P0 and P N
2

are the populations of the states |0〉 and
∣∣∣N

2

〉
, respectively.

The initial states ρ1
tot(0), ρ

2
tot(0) and ρ3

tot(0) have a quantum correlation, classical correlation, and no
correlation, respectively. It is noticed that since our focus is on the correlations in the composite system,

we set |α|2 = P0 and
∣∣∣β∣∣∣2 = P N

2
, and thus the three initial states will have the same reduced density

matrices for both the system and the bath, i.e., Equations (12) and (13). For simplicity, N is supposed to
be an even number.

2.2. Methods

In this section, we will review the CPF definition of quantum non-Markovianity based on a
minimal set of three time-ordered successive measurements in [43]. Considering an observation of a
classical stochastic system at three successive times tx < ty < tz, with the outcomes of x, y, z, the Bayes
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rule allows us to write the conditional probability P(z, x
∣∣∣y) of past (x) and future events (z) given the

present state (y), as
P(z, x

∣∣∣y) = P(z
∣∣∣y, x)P(x

∣∣∣y) (14)

where, in general, P(x
∣∣∣y) stands for the conditional probability of x given y. For a classical Markovian

process, from the fact that past and future events become statistically independent when conditioned on
a given intermediate state, we can obtain P(z, x

∣∣∣y) = P(z
∣∣∣y)P(x∣∣∣y) . This property can be corroborated

with the CPF, which is defined as

Cp f = 〈OzOx〉y − 〈Oz〉y〈Ox〉y (15)

where O corresponds to a property or quantity related to each system state. Cp f can be expressed in
the form of probability distributions as

Cp f =
∑
zx

[P(z, x
∣∣∣y) − P(z

∣∣∣y)P(x∣∣∣y)]OzOx (16)

where the sum indexes z and x run over all possible outcomes occurring at times tz and tx, respectively,
while y is a fixed particular possible value at time ty. The property of P(z, x

∣∣∣y) = P(z
∣∣∣y)P(x∣∣∣y) for a

Markovian process leads to Cp f = 0, whatever the conditional state y is. In contrast, for non-Markovian
process, it is expected that Cp f , 0.

The definition of Cp f mentioned above can also be extended to a quantum regime, where the
sequence x, y, z is altered by the outcomes of three successive quantum measurements performed
on the system of interest. The corresponding measurement operators are Ωx, Ωy, Ωz, and satisfy∑

x Ω†xΩx=
∑

y Ω†yΩy=
∑

z Ω†zΩz = I, where I is the identity matrix in the system Hilbert space and the
sum indexes run over all possible outcomes at each stage. It is noticed that given x in the past of y,
P(x

∣∣∣y) is a retrodicted probability which can be read from a “past quantum state ” formalism. In a
quantum regime, the system dynamics are Markovian if, for arbitrary measurement operators, the
CPF correlation vanishes, i.e., Cp f = 0. Equivalently, the system dynamics are non-Markovian if there
exists at least one set of measurement operators such that the CPF correlation does not vanish, i.e.,
Cp f , 0 [50]. Hence, this property of Cp f guarantees its application as a measure of non-Markovianity.

With the help of Cp f , we investigate the non-Markovianity of a central spin with LMG bath.
In this paper, the three measurement operators are chosen as the arbitrary projective ones, and all
of them are the same, which can be expressed through the Bloch vectors, as Ω± =

∣∣∣ψ±〉〈ψ±∣∣∣, with∣∣∣ψ+
〉
= cos θ2 |↑〉+ eiϕ sin θ

2 |↓〉 and
∣∣∣ψ−〉 = sin θ

2 |↑〉 − eiϕ cos θ2 |↓〉. Here, θ ∈ [0,π] and ϕ ∈ [0, 2π]. Firstly,
we perform the first measurement Ωx on the central spin at tx = 0. After the measurement, the density

matrix of the composite system suffers a transformation ρ(0)→ ρx(0) = Ωxρ(0)Ω†x
tr[ΩxΩ†xρ(0)]

, where x = ±1 is

the outcome of the measurement. The probabilities of both outcomes are P(x = 1) = tr[Ω+Ω†+ρ(0)]
and P(x = −1) = tr[Ω−Ω†

−
ρ(0)], respectively. In the next step, during a time interval t = ty − tx (after

the first measurement and before the second measurement), the composite system evolves unitarily as

ρx(0)→ ρx(t) = U(t)ρx(0)U†(t) (17)

Next, the second measurement My with outcomes being y = ±1, is performed at time ty. The whole

composite system state changes as ρx(t)→ ρyx(t) =
Ωyρx(t)Ω†y

tr[ΩyΩ†yρx(t)]
after the second measurement. Given

that the previous outcome was x, the probability of each result is P(y
∣∣∣x) = tr[ΩyΩ†yρx(t)] . Then, the

composite system evolves during a time interval τ = tz − ty (after the second measurement and before
the last measurement) unitarily once more which can be obtained as

ρ(yx)(t)→ ρ(yx)(t + τ) =U(τ)ρ(yx)(t)U†(τ) (18)
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The probability of the last measurement Mz is P(z
∣∣∣y, x) = tr[ΩzΩ†zρ(yx)(t + τ)] . From P(x), P(y

∣∣∣x)
and P(z

∣∣∣y, x) mentioned above, we can obtain the probabilities P(x
∣∣∣y) , P(z, x

∣∣∣y) and P(z
∣∣∣y) , as

P(x
∣∣∣y) = P(y, x)/P(y) (19)

P(z, x
∣∣∣y) = P(z

∣∣∣y, x)P(x
∣∣∣y) (20)

P(z

∣∣∣∣∣∣∣y) = ∑
x=±1

P(z, x
∣∣∣y) (21)

where P(y, x) = P(y
∣∣∣x)P(x) and P(y) =

∑
x=±1

P(y, x). Then, substituting Equations (19)–(21) into

Equation (16), the exact expression for Cp f can be obtained. It is noticed that we choose both
measurement time-intervals t and τ to be equal in this paper.

3. Effects of Different Factors on Cp f

3.1. Effect of Measurement Operators on Cp f

As is known, the behavior of Cp f depends on the measurement operators and the measurement
time intervals, and thus Cp f may be equal to or not equal to zero for the same dynamical process. When
we perform a measurement on the system at the initial time, the system will collapse into the state
corresponding to the measurement operator used. For different measurement operators, the system
will collapse into different states, and thus the behavior of Cp f will be different. To show this, we plot
Cp f for two different measurement operators in Figure 1a for the measurement in the ẑ-direction in the
Bloch sphere of the qubit Ωẑ=±1 (θ = 0) and Figure 1b for the measurement in the x̂- direction in the
Bloch sphere of the qubit Ωẑ=±1 (θ = π/2), with the intermediate y-outcome being 1. Ωẑ=±1 performing
on the system makes the system collapse into the state |↑〉 with an outcome of 1, and the state |↓〉
with an outcome of −1. Ωx̂=±1 performing on the system makes the system collapse into the state

1
√

2
(|↑〉+ |↓〉) with an outcome of 1, and the state 1

√
2
(|↑〉 − |↓〉) with an outcome of −1. For simplicity,

we choose the initial state without any correlation, i.e., Equation (11), for both cases in Figure 1, and
other parameters are chosen as N = 300, λ = 0.98, λ′ = 0.002, TB = 0.01 and γ = π

3 . Cpf displays the
periodic oscillations for both measurement operators, but the oscillatory behaviors in these two cases
are obviously different.

Figure 1. For two different measurement operators, (a) for Ωẑ=±1 and (b) for Ωx̂=±1. In both cases, the
initial states are chosen to be the same as ρ3

tot(0) and the parameters are N = 300, γ = 0.98, γ′ = 0.002, TB

= 0.01, =/3, γ = π
3 .

The amplitude of Cp f for Ωẑ=±1 remains almost unchanged which can be seen in Figure 1a, while
Ωx̂=±1 exhibits periodic collapses and revivals in Figure 1b. The amplitude in Figure 1a being almost
without decay means that the maximum deviation from Markovianity almost does not decrease for
Ωx̂=±1, while the amplitude in Figure 1b can decay nearly to zero for quite a long time, which indicates
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that the non-Markovianity of the system could not be detected by the measurement operator Ωx̂=±1

for some measurement time intervals. In general, the time interval where the non-Markovianity of
the system could not be detected gradually becomes longer with θ varying from 0 to π/2, while it
gradually becomes shorter when θ increases from π/2 to π. When θ reaches π, the behavior of Cp f is
similar to that of Ωẑ=±1. The different behaviors of Cp f for different measurement operators imply that
Cp f depends on the specific implementation process, and it may be equal to or not equal to zero for
different measurement operators and different measurement time intervals. It is worth noting that
though the dynamics of the system are non-Markovian, Cp f = 0 implies that the non-Markovianity
could not be detected by a particular measurement operator for some measurement time intervals,
such as a particular process with respect to a measurement Ωx̂=±1.

3.2. Effect of the Initial Correlation on Cp f

In general, non-Markovianity is influenced by both an information backflow and the initial
system–bath correlation. We will show in this subsection how the behavior of Cp f is affected by the
initial system–bath correlations. Since our focus is on the correlations in the composite system, we
choose the same measurement operator for these three different initial states. Different from the part
in Section 3.1, when we perform the same measurement on the system at the initial time, due to the
different types of initial system–bath correlations, the bath may collapse into different states. Thus, the
behavior of Cp f will be different. After the first measurement Mx, the density matrix ρx

tot(0) can be
obtained and the system collapses into the same state corresponding to the measurement operator
used. In contrast, the bath may collapse into different states due to the different initial system–bath
correlations. After the first measurement Mx with x = 1, the ρx

B(0) for three different initial system–bath
correlations are, respectively,

ρ
(1)x
B (0) =

1
P1(x = 1)

{P0[cos2γ|c|2 + cosγsinγ(b∗ + b) + sin2γ|a|2 + |b|2]|0〉〈0|

+ P N
2
[cos2 γ|c|2 − cosγ sinγ(b∗ + b) + sin2γ|a|2 + |b|2]

∣∣∣∣∣N2 〉〈N
2

∣∣∣∣∣
+ [

−1∑
M=−N/2

PM(sin2γ|a|2 + cos2γ|c|2) +
N/2−1∑
M=1

PM(sin2γ|a|2 + cos2γ|c|2)]|M〉〈M|} (22)

ρ
(2)x
B (0) =

1
P2(x = 1)

{P0[cos2γ|c|2 + cosγsinγ(b∗ + b) + sin2γ|a|2 + |b|2]|0〉〈0|

+ P N
2
[cos2γ|c|2 − cosγsinγ(b∗ + b) + sin2 γ|a|2 + |b|2]

∣∣∣∣∣N2 〉〈N
2

∣∣∣∣∣
+ [

−1∑
M=−N/2

PM(sin2γ|a|2 + cos2γ|c|2) +
N/2−1∑
M=1

PM(sin2γ|a|2 + cos2γ|c|2)]|M〉〈M|} (23)

ρ
(3)x
B (0) =

N/2∑
M=−N/2

PM|M〉〈M| (24)

with
P1(x = 1) = P0[cos2γ|c|2 + cosγsinγ(b∗ + b) + sin2γ|a|2 + |b|2]

+ P N
2
[cos2 γ|c|2 − cosγ sinγ(b∗ + b) + sin2γ|a|2 + |b|2]

+ [
−1∑

M=−N/2

PM(sin2γ|a|2 + cos2γ|c|2) +
N/2−1∑
M=1

PM(sin2γ|a|2 + cos2γ|c|2)] (25)
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P2(x = 1)2 = P0[cos2γ|c|2 + cosγsinγ(b∗ + b) + sin2γ|a|2 + |b|2]

+ P N
2
[cos2γ|c|2 − cosγsinγ(b∗ + b) + sin2 γ|a|2 + |b|2]

+ [
−1∑

M=−N/2

PM(sin2γ|a|2 + cos2γ|c|2) +
N/2−1∑
M=1

PM(sin2γ|a|2 + cos2γ|c|2)] (26)

ρ
(1)x
B (0), ρ(2)xB (0) and ρ

(3)x
B (0) are the density matrices of the bath after the first measurement

for three different initial states with a quantum correlation, classical correlation, and no correlation,
respectively. It is noticed that ρ(3)xB (0) is obviously the same as the initial bath state. P1(x = 1)
and P2(x = 1) are the probabilities for outcome x = 1 when we choose the initial states with
quantum correlations and classical correlations, respectively. In Equations (22)–(26), a = cos2 θ

2 ,
b = eiϕ cos θ2 sin θ

2 and c = sin2 θ
2 . When we take Ωẑ=±1 as the measurement operator, the bath

collapses into the same state for all these three correlations, and thus the behaviors of Cp f for ρ(1)tot (0)

and ρ(2)tot (0) will be the same for ρ(3)tot (0). In contrast, for Ωx̂=±1, we find that ρ(1)xB (0) and ρ(2)xB (0) are

the same, while ρ(3)xB (0) is different. Thus, the behaviors of Cp f are the same for ρ(1)tot (0) and ρ(2)tot (0),

and Figure 2 plots Cp f for ρ(2)tot (0) only.

Figure 2. For ρ2
tot(0) with Ωx̂=±1. The parameters are the same as those in Figure 1.

The parameters in Figure 2 are the same as those in Figure 1. The same behavior of Cp f for

ρ
(1)
tot (0) and ρ(2)tot (0) means that the maximum deviation from Markovianity in these two cases is the

same. While the behaviors of Cp f for ρ(1)tot (0) and ρ(2)tot (0) are slightly different from that for ρ(3)tot (0).
The maximal amplitude of Cp f in Figure 2 is smaller than that in Figure 1b, which means that the

maximum deviation from Markovianity for ρ(1)tot (0) and ρ(2)tot (0) (see Figure 2) is smaller than that for

ρ
(3)
tot (0) (see Figure 1b). Though the amplitudes of Cp f are different, the time interval for Cp f = 0 in

Figure 2 is almost the same as that in Figure 1b, which indicates that the time interval where the
non-Markovianity of the system could not be detected in these particular processes, with respect to a
measurement Ωx̂=±1, for some measurement time intervals under three different initial correlations
was similar. Overall, the behaviors of Cp f are similar for these three types of initial states for an
arbitrary measurement operator. This phenomenon can be understood as follows: the reasons behind
a non-Markovian process, revealed in [54], consist of two different contributions. One is the presence
and evolution of initial system–bath correlation and the other is the effect of the bath state. Moreover,
it has been found that the limit t→ 0 , Cp f allows for the detection of initial correlations [50] in the same
way the initial system–bath correlations can also be detected for our model. However, Cp f contains
three measurements, and the initial system–bath correlations werebroken at the first measurement, and
thus the influence of the initial system–bath correlations on a non-Markovian process disappeared for
this specific process. It implies that the correlations themselves could not affect the non-Markovianity
for a specific measurement operator. However, the evolution of the bath state still relies on the initial
system–bath correlation, and thus the initial system–bath correlations can have some influence on the
evolution of the system state through the bath state indirectly. On the other hand, different collapsing
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bath states after measurements can lead to different values of Cp f . So, the initial states with different
types of correlations can have some influence on Cp f in our model. If the collapsing bath states are
quite different, the influence of different types of correlations will be remarkable.

3.3. Effect of λ′ on Cp f

In the following, we will discuss the effects of λ′ on Cp f for Ωx̂=±1 and Ωẑ=±1, respectively. Figure 3
plots Cp f for the initial state with no correlation and different λ′ with Ωx̂=±1.

Figure 3. For Ωx̂=±1 and different λ′ ; (a) λ′ = 0.001; (b) λ′ = 0.005 and (c) λ′ = 0.01. The initial state is
ρ3

tot(0) and the other parameters are the same as those in Figure 1.

The value of λ′ was chosen to be λ′ = 0.001 for Figure 3a, λ′ = 0.005 for Figure 3b, and λ′ = 0.01
for Figure 3c, respectively, and the other parameters are the same as those in Figure 1. As shown in
Figure 3, the maximal amplitude of Cp f for Ωx̂=±1 increased with the increase in λ′ . It indicates that
with the increase in λ′ , the maximum deviation from Markovianity gets larger. Moreover, the time
interval where the non-Markovianity of the system could not be detected, with respect to measurement
Ωx̂=±1, for some measurement time intervals is extremely sensitive to λ′ . With the increase in λ′ , this
time interval became shorter and even vanished. Figure 3 demonstrates that the coupling strength
λ′ between the system and the bath had a remarkable influence on the time interval where the
non-Markovianity of the system could not be detected with respect to a measurement Ωx̂=±1 for
some measurement time intervals. Only when λ′ is small enough does the time interval where the
non-Markovianity of the system could not be detected become quite long. Figure 4 plots Cp f for Ωẑ=±1,
and the value of λ′ as well as the other parameters shown in Figure 3, specifically, a for λ′ = 0.001,
b for λ′ = 0.005, and c for λ′ = 0.01.

Figure 4. For Ωẑ=±1 and different λ′ ; (a) λ′ = 0.001; (b) λ′ = 0.005and (c) λ′ = 0.01. The initial state is
ρ3

tot(0) and the other parameters are the same as those in Figure 1.

From Figure 4, it can be seen that with the increase in λ′ , the maximal amplitude of Cp f increases.
This indicates that, with the increase in λ′ , the maximum deviation from Markovianity also gets larger
for Ωẑ=±1, which is similar to that of Ωx̂=±1. It is noted that in the limit λ′ → 0 , the system dynamics
become unitary and then Cp f vanishes. It was expected that by increasing λ′ , the maximal amplitude
of Cp f would increase, and thus the maximum deviation from the Markovianity would also increase.
However, λ′ for Ωẑ=±1 has a greater impact on the maximal magnitude of Cp f than it does for Ωx̂=±1.
The maximal value of Cp f for Ωẑ=±1 is in different orders of magnitude, while for Ωx̂=±1 it is in the
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same order of magnitude when λ′ changes, which can be seen from Figures 3 and 4. The maximal
value of Cp f changes more dramatically with different λ′ for Ωẑ=±1 than for Ωx̂=±1.

3.4. Effects of the Bath on Cp f

In this subsection, we will consider the influence of the coupling strength between the spins in the
bath λ and the bath temperature TB on the behavior of Cp f with two different measurement operators,
Ωx̂=±1 and Ωẑ=±1, respectively, in the following.

First of all, in order to display the effect of λ near the QPT point of the dynamics of the system,
we plotted Cp f for two different measurement operators, Ωx̂=±1 and Ωẑ=±1, in two different phases.
We chose the initial system state asρs(0) = |↑〉〈↑| for Ωx̂=±1 andρs(0) = |+〉〈+|, with |+〉 = 1

√
2
(|↑〉+ |↓〉)

for Ωẑ=±1, respectively. The initial bath state was chosen to be the ground state. We plotted Cp f for
Ωx̂=±1 and different λ in Figure 5, with λ = 0.97 for Figure 5a, λ = 0.98 for Figure 5b, λ = 0.99 for
Figure 5c, λ = 1.01 for Figure 5d, λ = 1.02 for Figure 5e, and λ = 1.03 for Figure 5f.

Figure 5. For Ωx̂=±1 and different λ near the quantum phase transition (QPT) point in the case of
N = 500, λ′ = 0.002; (a) λ = 0.97; (b) λ = 0.98; (c) λ = 0.99; (d) λ = 1.01; (e) λ = 1.02; (f) λ = 1.03.

The other parameters were chosen as N = 500, λ′ = 0.002. It was found that the behaviors of
Cp f were quite different in these two phases, and a notable discontinuity of sudden transitions for Cp f
occurred at the QPT point (λ = 1). In the symmetric broken phase, we observed the phenomenon of
beats as shown in Figure 5a–c. From Figure 5a–c, it can be seen that with the increase in λ, the maximal
amplitude of Cp f decreases. However, compared with Figure 5a–c, in the symmetric phase, Figure 5d–f
demonstrates the periodic collapses and revivals, and that the amplitude of Cp f can decay nearly to zero
for quite a long time, which indicates that the non-Markovianity of the system could not be detected by
this measurement operator Ωx̂=±1 for some measurement time intervals. This phenomenon is similar to
that for Ωx̂=±1 with the initial state ρ3

tot(0) (see Figure 1b). When λ increases, the maximal amplitude of
Cp f increases. The critical behavior of Cp f shows that with the increase in λ, the maximum magnitude
of Cp f decreased when λ < 1, while the opposite situation will happen when λ > 1. It implies that the
maximum magnitude of Cp f at λ = 1 is the smallest. Then, we plotted Cp f for Ωẑ=±1 and different λ in
Figure 6, with a, b, and c in the symmetric broken phase, and d, e, and f in the symmetric phase.
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Figure 6. For Ωẑ=±1 and different λ near the QPT point in the case of N = 500; λ′ = 0.002; (a) λ = 0.97;
(b) λ = 0.98; (c) λ = 0.99; (d) λ = 1.01; (e) λ = 1.02; (f) λ = 1.03.

The value of λ was chosen to be the same as those in Figure 5. The behaviors of Cp f in Figure 6 are
also obviously different in these two phases, and show some notable critical characteristics near the
QPT point, which is similar to that for Ωx̂=±1 in Figure 5. Cp f presents the oscillatory dynamics with
equal amplitude in the symmetric broken phase as shown in Figure 6a–c, while, Cp f in the symmetric
phase, as shown in Figure 6d–f, is quite different from those in the symmetric broken phase. On the
other hand, from Figure 6a–c, it can be seen that with the increase in λ, the maximal amplitude of Cp f
decreases, while, it increases (as shown in Figure 6d–f). Overall, near the QPT point, the behaviors
of Cp f shows similar critical characteristics for Ωx̂=±1 and Ωẑ=±1, and thus the critical behaviors of
non-Markovianity are also similar. For other arbitrary measurement operators, with the varying of θ
from 0 to π, the critical property of Cp f is also the same as above. Therefore, there is an obvious abrupt
transition for Cp f which is independent of the measurement operator. Thus, this quantum criticality
can be manifested by Cp f . Then, in order to show the effect of bath temperature TB on the dynamics of
the system for two different measurement operators, Ωx̂=±1 and Ωẑ=±1, we choose the thermal state
as the initial bath state for both cases, which is given in Equation (13). The initial system states were
chosen to be the same as those for Ωx̂=±1 in Figure 5 and Ωẑ=±1 in Figure 6, respectively. We plot Cp f
for Ωx̂=±1 and Ωẑ=±1 near the QPT point for TB = 0.001in Figures 7 and 8, respectively, with a, b, and c
in the symmetric broken phase, and d, e, and f in the symmetric phase.

The value of λ and the other parameters were chosen to be the same as those in Figure 5.
From Figure 7, we can see that although the behaviors of Cp f on both sides of the QPT point in the
LMG bath are still different, the critical characteristic of the maximal amplitude of Cp f is broken.
The maximal value of Cp f at the QPT point is not the minimum. It means that the influence of the bath
temperature is remarkable. Although the bath slightly deviates from zero temperature, the critical
behavior of Cp f for Ωx̂=±1 will be broken. Comparing to the case of Ωx̂=±1, the behaviors of Cp f for
Ωẑ=±1 in Figure 8 were also obviously different in the two different phases, and there was still a
notable discontinuity of sudden transition for Cp f at the QPT point (λ = 1). The maximal value of
Cp f at the QPT point is still the minimum, which means that the critical characteristics of Cp f shows
the same result as that when TB = 0 in Figure 6. Moreover, it is found that this critical behavior of
Cp f for Ωẑ=±1 can be preserved even when TB = 0.01, which is quite different from that for Ωx̂=±1 (see
Figure 7). Above all, we can conclude that the effects of bath temperature TB on Cp f are quite different
for different measurement operators. The critical characteristics of Cp f for Ωx̂=±1 are more sensitive to
bath temperature and can be destroyed even at very low temperatures.
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Figure 7. For Ωx̂=±1 and different λ near the QPT point in the case of TB = 0.001; (a) λ = 0.97;
(b) λ = 0.98; (c) λ = 0.99; (d) λ = 1.01; (e) λ = 1.02; (f) λ = 1.03. The other parameters are the same as
those in Figure 5.

Figure 8. For Ωẑ=±1 and different λ near the QPT point in the case of TB = 0.001; (a) λ = 0.97;
(b) λ = 0.98; (c) λ = 0.99; (d) λ = 1.01; (e) λ = 1.02; (f) λ = 1.03. The other parameters are the same as
those in Figure 5.

4. Conclusions

In this paper, we have studied the quantum non-Markovian dynamics of a central spin interacting
with an isotropic Lipkin–Meshkov–Glick (LMG) bath through a conditional past–future (CPF)
correlation. It has been found that the influence of different measurement operators on the CPF
is remarkable. In particular, obvious collapses and revivals for the CPF appear when Ωx̂=±1 is
performed on the system, and thus the non-Markovianity of the system could not be detected for some
measurement time intervals in this particular process with respect to a measurement in the x̂-direction
in the Bloch sphere. Then, three types of initial states with different correlations between the system
and the bath have been considered, i.e., a quantum correlation, classical correlation and no-correlation.
However, the dynamics of the system for these three types of initial correlations are similar. It implies
that the correlations themselves can have only a little influence on the CPF in our model. Although the
correlations themselves could not affect the non-Markovianity, the evolution of the bath state still relies
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on the initial system–bath correlation, and thus the initial system–bath correlations can have some
influence on the evolution of the system state through the bath state indirectly. Different collapsing bath
states after measurements can lead to a different CPF. If the collapsing bath states are quite different,
the influence of different types of correlations will be remarkable. Significantly, we have studied the
effect of the bath on the CPF and a notable discontinuity of sudden transitions for the CPF occurs at the
QPT point. In the symmetric broken phase, the maximal value of the CPF increases with the increase
in λ, and in the symmetric phase, it decreases with the increase in λ. At the QPT point, the maximal
value of the CPF is the minimum. The CPF shows critical characteristics near the QPT point in the
LMG bath, which is independent of the measurement operator, and thus, this quantum criticality can
be manifested by the CPF. Moreover, the effect of bath temperature on the critical characteristics of the
CPF depends on measurement operator. The critical characteristic of the CPF is more sensitive to the
bath temperature for Ωx̂=±1 than that for Ωẑ=±1. For Ωx̂=±1, although the bath slightly deviates from
zero temperature, the critical behavior of the CPF will be broken, while for Ωẑ=±1 it can be maintained
to a higher temperature before being destroyed.

Different from other definitions of quantum non-Markovianity, the CPF correlation provides us
an operational correlation based on a minimal set of three time-ordered successive measurements
performed solely on the quantum system. For the CPF correlation, the change of the bath state after
a measurement generally could not be ignored, which makes it difficult to cope with. In this paper
we have considered a LMG bath, and found that the CPF can witness quantum phase transitions.
We expect that it can also manifest a quantum phase transition for other spin chain baths.
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