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Abstract: In this paper, we consider optimal trading processes in economic systems. The analysis is
based on accounting for irreversibility factors using the wealth function concept. The existence of
the welfare function is proved, the concept of capital dissipation is introduced as a measure of the
irreversibility of processes in the microeconomic system, and the economic balances are recorded,
including capital dissipation. Problems in the form of kinetic equations leading to given conditions
of minimal dissipation are considered.
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1. Introduction

Systems that include a large number individually unobservable and uncontrollable elements
which interact with each other are called macrosystems. The behavior of a component in such a system
can be stochastic and yet the behavior of the system on a macro level, when averaged processes
are observed, is deterministic. Thermodynamic systems of various nature with a large number of
molecules interacting with each other on a micro level are a classical example of a macrosystem.

When contact is established between inhomogeneous macrosystems the processes of stochastic
interaction occur. In thermodynamics these are, e.g., heat exchange, diffusion, and chemical
transformation processes. It is not possible to return the system, when stochastic interaction process
occurred, into its initial state without changing the system’s environment. This irreversibility of
spontaneous processes of stochastic interactions is the key feature of macrosystems.

Microeconomics studies interaction of economic agents (EAs). An EA is a group of individual
agents whose averaged characteristics determine the EAs’ characteristics. Sometimes we will use
an analogy between microeconomics and thermodynamics and refer to the economic system (ES),
where all economic agents are subsystems. The interaction between EAs leads to exchange of resources
between them and consumption and/or production of these resources by them. In the course of these
interactions each agent strives to increase its utility by choosing which kind of resource to exchange
with which other kind of resource and in which quantity. Economic systems can be isolated from the
environment. In this case all the exchange takes place inside the system. Economic systems can be open.
Then, exchange of all or some of the resources can also occur between the system and its environment.

The processes of stochastic interactions in economics are irreversible as they are in any
macrosystem. However, they are quite different from irreversible processes in thermodynamics
chiefly because each subsystem chooses to participate in an exchange if that does not lead to a “loss”.
Nevertheless, it is also possible to define an economic measure of irreversibility that attains maximum
for an isolated system in equilibrium (like entropy in thermodynamics). It is also possible to define a
non-negative function in economics similar to entropy production in thermodynamics and to formulate
economic balances that include this function.
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In the case when the duration of the processes is limited or the average intensity of the flows is
fixed in the economy, the situation is very similar to finite-time thermodynamics (FTT).

In this paper a macrosystem approach to economic systems modeling is described. A number of
economic problems that are similar to classical thermodynamic problems are solved.

2. Major Types of Economic Agents and Their Characteristics

The state of an economic agent is described by the vector of its stocks (amount of holdings)
of resources N = N1, N2, . . . , Nk and capital (cash) M. We assume that capital is measured by all
economic agents using a single common unit (e.g., gold or an international currency). N and M
are extensive variables, that is, when homogeneous economic systems merge/split, the values of
these variables change in the same proportion. An economic system is also described by a vector
of intensive variables—the estimates of how valuable these resources are for it given by the prices
p = (p1, ..., pk) and the estimate of how valuable capital is for this system p0. When economic systems
merge, these variables equalize. The new estimate pi for the resource i (its internal equilibrium price) is
equal to the minimal price, in units of capital, for which the economic agent is prepared to sell resource i and the
maximal price at which it is prepared to buy it.

When an economic agent is offering to buy and sell resources, it is described by its supply and
demand functions. The demand function shows the quantity of the i-th resource it is prepared to
purchase for the price ci. The higher this price is, the lower, as a rule, is this demand. Finally, at some
price ci = pi the economic agent stops buying. This is similar to the dependence of the heat flux on the
temperature of the source and the working fluid in a heat engine. If ci > pi, then it is prepared to sell
the i-th resource, and the higher ci is the larger quantity it is prepared to sell.

The unit of pi is the unit of M divided by unit of Ni. These estimates are related to amounts of
resources and capital of an economic agent in the same way intensive variable in thermodynamics are
related to extensive ones. The units of ci and pi are the same, but ci could be set manually by some
intermediary agent. The estimate p0 is the value of capital in units of some basic currency, for example,
gold. More detailed discussion of the relationship between estimate of some resource and capital is
given below.

In many cases demand and supply functions relate the price not to the quantity but to the flow of
resource, ni(pi, ci). The function ni(pi, ci) determines the kinetics of resource exchange. If we define
positive flow directed toward the economic agent then

sign ni(ci, pi) = sign (pi − ci)

ni(ci, pi) = 0 when ci = pi and
∂ni
∂ci

< 0.
(1)

The dimension of the vector c is the unit of capital divided by the unit of resource.
We define three types of economic agents.

1. Economic agents whose resource estimates pi depend on the agent’s state (on its stocks of resources
and capital). Usually, but not always, when the stock of a resource is decreasing its estimate is
decreasing too, and when capital is increasing then the estimate is increasing. The economic agent
can also exchange capital M with the environment. Here, the minimal price of selling (maximal
price of buying) is the economic agent’s estimate of capital. We denote it as p0(N, M). We shall
call such systems economic systems with finite capacity.

2. Economic agents with estimates pi independent of stocks of the resource are similar to thermodynamic
systems with infinite capacity (reservoirs). We shall call them economic reservoirs. Economic
markets where prices do not depend on the rate of trading are examples of economic reservoirs.
The amount of resource that is sold/purchased here is so small in comparison with its stock that
in practice it does not effect its estimate.
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In the general case, a market’s demand/supply function n(c, p) depends on the prices of selling
(buying) and on the estimates, and it obeys the conditions (1) for resource exchange kinetics.
Such a market is called monopolistic. In the limit when for each flow n the difference between the
price and estimate is infinitesimal (prices for any rate of flow n are equal to the market estimates),
then the market is called a market with perfect competition. If this market is a reservoir then its
prices do not depend on the demand but change over time under the influence of the external
system factors.

3. Intermediaries (firms) are active economic agents which set the price or rate of resource selling
(buying) independently of its stock in such a way that they extract maximum amount of capital.
They are similar to a heat engine working fluid in thermodynamics. They can contact with a
number of economic agents simultaneously setting different prices and flows for each of them.
The intermediary’s prices and its function that describes when to establish/break contact with an
economic agent are controls.

A firm can be a manufacturing firm which buys resources (raw materials, labor, or equipment)
and sells its production, which is determined by its production function [1] and the price it sets.
We denote the price for the i-th resource set by a firm as ci.

2.1. Wealth Function and Capital Dissipation

Existence of a wealth function and its properties. During an exchange an economic agent sells and
buys resources which alters its stocks of resources and capital. Let us introduce the function U by
the differential

dU = dM + ∑
i

pidNi. (2)

We shall call it capitalization of an economic agent because its variation takes into account changes
of capital M as well as changes of illiquid capital (stocks) F = ∑i pi Ni. During equilibrium exchange
when prices of selling/buying are infinitesimally close to the estimates pi, U does not change, dU = 0,
as dM = −∑i pidNi. Such a process is reversible, because the economic agent can buy the same
amount of resource as it sold using the capital from the selling and return to the original state without
changing anything in its environment.

Suppose equilibrium exchange takes place between a firm and an economic agent when one
resource is exchanged for another. Exchange is carried out reversibly and therefore the initial and the
final states of the economic agent in the space with coordinates Ni coincide. If a firm can extract any
capital as a result of this process, then it would be possible to extract an unlimited amount of capital
using just one economic agent and not cause any changes in the environment. As this is not possible,
it follows that for p0 = const. ∮

∑
i

pi(N, M) dNi = 0. (3)

From this condition it follows that a function Z(N, p0) exists such that its partial derivatives w.r.t.
Ni are equal to pi and its differential has the form,

dZ = ∑
i

pi dNi +
∂Z
∂p0

dp0. (4)

The condition (2) can be rewritten in the following form,

dU = dM + dZ− ∂Z
∂p0

dp0 = d(M + Z)− ∂Z
∂p0

dp0. (5)
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After denoting M + Z = Y and − ∂Z
∂p0

= γ we get

dU = dY + γ dp0. (6)

Thus, this differential is a Pfaffian form with two variables which always has an integrating multiplier.
A Pfaffian form is a differential form of degree one, that is, the sum of the products of functions of

some variables and the differentials of these variables,

dK =
n

∑
i=1

Fi(x) dxi. (7)

If n = 2 and the functions Fi are differentiable, then it is always possible to a find multiplier r(x)

such that dS = r(x)dK is a complete differential, that is, S depends on x and
∮

dS = 0. We denote this

multiplier for our system p0(N, M).
Thus, we proved that there exists a function of state variables (extensive variables), S(N, M), such that

its differential has the form

dS = p0(N, M)dU = p0(N, M)

[
dM + ∑

i
pi(N, M)dNi

]
. (8)

In a reversible cycle of resource exchange (that is, when the prices of resources coincide with their
estimates) the function S does not change, ∮

dS = 0. (9)

In cyclic processes the amounts of resources and capital are the same both for initial and final
state. The condition (9) is satisfied if the price of some resource and its estimate are equal at each point
of the cycle, so resource’s flows are negligible.

The resource estimates can be expressed in terms of the function S as

p0 =
∂S
∂M

, pi =
∂S
∂Ni

/ ∂S
∂M

, i = 1, 2, ... (10)

Here, the capital estimate p0 > 0 for all economic agents, but pi could be negative if the resource
requires reprocessing or storage costs.

S(N, M) is called the wealth function. The above-described proof of its existence is derived as the
consequence of the impossibility to profit indefinitely from trading with one economic agent is an
exact copy of the proof of the existence of entropy in thermodynamics. It was obtained by Rozonoer in
Appendix of [2]. More general proof is given in [3].

In microeconomics the preferences of an economic agent are often described by its indifference
curves (surfaces). Each such curve singles out the set of equally preferred states. If stocks of all
resources of an economic agent except one remain constant and this one stock (which could be
capital, the basic resource) is increased, then its state is transferred to the higher indifference curve.
The existence of S was proven in [4] using the Ville axiom [5], which uses the notion of preferred
states of an economic agent: it is not possible to find a sequence of states X1, X2, ..., Xm in the state space
X = (N, M) such that Xi is preferred to Xi−1 for i = 2, . . . , m, and the initial and final states coincide
X1 = Xm.

During resource exchange between economic agents the voluntary condition, that the wealth
functions Sν of any participant cannot decrease, must be met (the only exception is exchange associated
with charity). The voluntary condition precludes direct exchange of one resource unless its estimates
for contacting agents are different. Such exchange becomes possible only if there is an intermediary.
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If the wealth function is measured in units of local currency, then p0 > 0 characterizes the value of
foreign currency for an agent. Its unit is [unit of local currency/unit of foreign currency]. For currency
exchange the estimate p0 plays the same role as the estimate p for resource exchange.

The description of economic systems becomes similar to thermodynamic equations if we formally
introduce an “economic temperature” as

T =
1
p0

(11)

as was done in [2,3].
When the properties of an economic agent do not change but its “scale” changes, its stocks of

resources and capital are changed proportionally. It is natural to assume that the wealth function
changes in the same way here, that is, that it is an extensive function just like N and M are. In this case,
S is a uniform function of first degree and its derivatives on N and M are uniform functions of zero
degree. From Euler’s Theorem it follows that it can be written as

S(N, M) = p0(M, N)

(
∑

i
pi(M, N)Ni + M

)
. (12)

The dependence p(N, M) can be found from experimental data.
If the existence of the wealth function S is postulated, then the estimates may be determined by

solving the extremal problem

S(N, M)→ max
/(

∑
i

pi Ni + M

)
= V, (13)

where V is fixed. In this case, the solution of the problem (13) and the values of p and p0 are linked via

pi(N, M) =
∂S
∂Ni

/ ∂S
∂M

. (14)

It is assumed that function S is continuously differentiable and strictly concave.
Therefore, the solution of the problem (13) exists and is unique and each pi decreases when Ni increases.
Thus, an economic agent is similar to a finite capacity subsystem in thermodynamics. For an economic
reservoir resource and capital estimates are constant and S is linear.

Despite the similarity of the welfare function to thermodynamic entropy, there are differences
between them. In the general case the wealth function is not additive, and the sum of wealth functions
for the subsystems is not equal to the wealth function of the entire system. Furthermore, the units
of the wealth functions for different subsystems could be different. Unlike the wealth function,
the capitalization, the capital, and invested capital have the same unit and are additive.

2.2. Differential Links between Estimates—Economic Analogue of the Gibbs–Duhem Relation

Let us write the differential of S

dS = p0

(
dM +

n

∑
i=1

pidNi

)
= p0dU. (15)

From (15) we get

dM =
dS
p0
−

n

∑
i=1

pidNi. (16)

From (12) it follows that

M =
S
p0
−

n

∑
i=1

pi Ni (17)
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dM =
dS
p0

+ S d
(

1
p0

)
−

n

∑
i=1

(pidNi + Nidpi). (18)

The comparison of (18) and (16) yields the relation between capital estimate and resource estimate,

S d
(

1
p0

)
−

n

∑
i=1

Nidpi = 0. (19)

Similarly, comparison of the differential of S found using (12) with the expression (15) yields

Mdp0 +
n

∑
i=1

Nid(p0 pi) = 0. (20)

The conditions (19) and (20) follow from the existence of the homogeneous function S. They are
economic analogues of the Gibbs–Duhem equation in thermodynamics. One of their consequences
when the state of the system is changed in such a way that the resource estimates are constant is that
the capital estimate is also constant.

As the matrix of second derivatives for a twice differentiable function is symmetric,
the sensitivity of the resource and capital estimates with respect to stock variations are linked by
the following equations,

∂(p0 pi)

∂Nj
=

∂(p0 pj)

∂Ni
=

∂2S
∂Ni∂Nj

(21)

∂p0

∂Nj
=

∂(p0 pj)

∂M
=

∂2S
∂M∂Nj

. (22)

It is easy to show using (21) and (22) that

∂pi
∂Nj

+ pi
∂pj

∂M
=

∂pj

∂Ni
+ pj

∂pi
∂M

, i, j = 1, ..., n. (23)

The Equations (21) and (22) are economic analogs of the Maxwell relations.

2.3. Capital Dissipation

Let us again consider the cyclic process of interaction between one economic agent and one
intermediary. We now require that the average rate of exchange is fixed. Then, the intermediary has
to increase the price above the estimate pi when it is buying and decrease it below estimates when
selling. The economic agent’s capitalization here increases because

∆U =
∮

∑(pi(N, M)− ci) dNi > 0, (24)

and the intermediary suffers losses of ∆U in comparison with the reversible process.
The change of capitalization is positive, as p0(N, M) > 0.
The rate of the intermediary’s losses due to irreversibility is non-negative,

σ(t) = ∑
i

ni(pi, ci)(pi − ci) ≥ 0. (25)

We shall call it the capital dissipation due to resource exchange irreversibility. It can be interpreted
as trading costs.

The condition (24) of capitalization is non-decreasing (and therefore wealth is non-decreasing)
during an economic exchange is analogy to the Clausius integral. The law that during a contact
between two economic agents where a resource is transferred from the agent with lower estimate to
the agent with higher estimate and that the net invested capital is not decreasing (∆(F1 + F2) ≥ 0)
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is the analogue of of the second law of thermodynamics. It allows us to construct an irreversible
microeconomic theory similar to finite-time thermodynamics.

2.4. The Second Law of Microeconomics

The resource conservation laws in microeconomics are analogs of conservation of mass and energy
in thermodynamics.

Let us consider the economic analogue of the other fundamental law of thermodynamics,
the Second Law. Clausius’ statement of the Second Law is “Heat cannot of itself pass from a colder to a hotter
body without some other change, connected herewith, occurring at the same time.” Leontovich’s formulation
is “It is not possible to build a device which would produce positive work only by cooling one body without any
other effects.”

In microeconomics these formulations correspond to the following statements. (i) The flux of a
scalar resource cannot flow from an economic agent with a higher estimate to an economic agent with a lower
estimate without other changes taking place. (ii) It is not possible to produce profit by carrying out exchange
with one economic agent without any other changes.

Planck’s statement says “The entropy of an isolated thermodynamic system during an irreversible process
can only increase and its exergy can only decrease. The equilibrium state of such a system has maximum entropy
subject to imposed constraints.”

Similarly, resource exchange processes in isolated microeconomic systems occur in such a direction that the
net capitalization of the economic agents increases and attains a maximum subject to constraints imposed on the
system, including the voluntary principle. At the same time, the potential ability to extract profit (profitability)
decreases and attains a minimum under the same conditions.

As the net amount of capital in an isolated system is constant (dM = 0), the maximum of
capitalization corresponds to maximum of invested capital.

Table 1 shows major analogies between thermodynamic and economic systems. The following
notations are used in Table 1. T− and T are temperatures of the reservoir and contacting system,
respectively; p− is resource estimate on the perfect competition market; c is the resource price set by
an intermediary; N is the stock of resources; U is internal energy; and q and n are the flows of heat and
resource, respectively.

Table 1. Analogies between thermodynamic and economic systems.

Thermodynamic System Economic System

Name Notation Name Notation

Temperature of a system
with finite capacity

T The reciprocal of
capital estimate for EA

1/p0

Reservoir (irreversible
heat exchange)

q = α(T − T−) Monopolistic market n = α(p− p−)

Mass N Resource stock N

Finite-capacity system,
chemical potential

µ(N) Economic agent,
resource estimate

p(N)

Temperature of the
working fluid for heat
engine

T(t) Intermediary, price c(t)

Free energy A Capital M

Internal energy E Capitalization U
Entropy S Wealth function S

Entropy production σ Capital dissipation σ
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3. Economic Balances and Capital Dissipation

3.1. Open Systems

Consider an open economic system that exchanges resources and capital with an environment.
The subscript i denotes the i-th resource and j denotes j-th subsystem. We assume that external flows
entering the system are positive and leaving are negative. These flows can be divided into two group.
First there are flows caused and effected by external factors. The flows from the second group depend
on the prices set by external sellers and buyers and on the estimates of resources in the corresponding
subsystem. Similarly to thermodynamics, we shall call the former flows convective and denote them
by subscript k and the latter diffusive and denote them by subscript d. Note that a subsystem can
produce some resources by using others.

The balance for the i-th resource is

Ṅi = ∑
j

(
nk

ij(t) + nd
ij(pj, cj) + Wj(pj)αij

)
, i = 1, 2, . . . (26)

The sum here is over all subsystems, Wj(pj) is the production rate in the j-th subsystem, and the
coefficients αij > 0 if the i-th resource is produced in the j-th subsystem and αij < 0 if it is consumed
there. The α’s determine the rate at which the i-th resource is produced (consumed); cj is the price
vector for the exchange between the j-th subsystem and its environment.

The balance on capital is

Ṁ = ∑
j

(
mk

j (t)−∑
i

cijnd
ij(pj, cj)

)
. (27)

The balance on the invested capital is

U̇ = Ṁ + Ḟ = Ṁ + ∑
i,j

pij(Nj, Mj)(nk
ij + nd

ij(pj, cj)) + σ, (28)

where the capital dissipation σ is

σ =
1
2 ∑

j
∑
ν

njν(pj, pν)(pj − pν) + ∑
j

Wj(pj)Aj. (29)

Here pj and pν are vectors of resource estimates for the j-th and ν-th subsystems with the
components pij and piν. Correspondingly, Aj = ∑i αij pi and njν = −nνj is the vector-function of flow
of resources.

The dissipation of capital, similar to the production of entropy in thermodynamics, is calculated
as the product of the flow and the driving force, and it is always non-negative. It makes sense of capital
losses associated with the creation of a flow of a given intensity. If ∆pjν = pj − pν is small and the
kinetic function njν is differentiable, then σ is a positive-definite quadratic form.

Just as in the theory of FTT, in economics problems arise about the choice of exchange process
parameters when we desire that a given average intensity of exchange flows with a minimum average
capital dissipation.

The balance on capitalization is (28) with the capital dissipation σ defined by (29). Here, the first
term is due to resource-exchange variation in the amount of illiquid capital and the second is due
to production. For profitable production, the dependencies Wi(pi) are such that Wi(pi)∑j pijαij =

Wi(pi)Ai(pi, αi) are non-negative. pj and pν are vectors of resource estimates for contacting subsystems
with components pji and pνi, and njν = −nνj.

In a stationary regime the rhs of Equations (26)–(28) are equal to zero. In a cyclic regime when

N(0) = N(τ), M(0) = M(τ), U(0) = U(τ), (30)
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the integrals of the rhs of these equations are equal zero.

3.2. Isolated Systems

Consider an isolated economic system with no external flows entering or leaving it. Then,
the balance Equations (26)–(28) take the form

Ṅi = ∑
j

Wj(pj)αij, Ni(0) = ∑
j

Nij(0) (31)

Ṁ = ∑
i

Ṁi = 0 (32)

Ḟ = ∑
j

Ḟj = σ ≥ 0. (33)

In equilibrium the invested capital is maximal and the flows nij and Wj(pj) are equal to zero.
The distribution of capital M between the subsystems in equilibrium depends on the kinetics of
resource exchange.

For each j-th subsystem of an isolated system

Ṅji = ∑
ν

nνji(pj, pν) + Wj(pj)αij (34)

Ṁj = ∑
ν,i

ñνji(pj, cjν)cjνi, i, j = 1, . . . , n. (35)

Here, cjν is the vector of intermediate prices with components cjνi, which are to be found from the
condition of flow continuity,

ñνji(pj, cjν) = −ñjνi(cjν, pj) = nνji(pj, pν). (36)

Thus, the price vector, and therefore the rhs of equation (35), depends on the forms of kinetic
functions of supply and demand, ñνj. After expressing cjν from (36) and its substitution into ñjν and
ñνj both these functions turn out to be equal to the kinetic function njν(pj, pν) that was used in (29)
and (34).

The equilibrium distribution of capital M is determined by the resource exchange kinetics, and M
depends on equilibrium stocks N as they obey the condition

pj(M, N) = pν(M, N) = λ, ∀j, ν. (37)

In some cases the object of interest is the set Q of the values of M that can be attained from the
given initial state for different demand–supply functions ñ(p, c).

For each j-th subsystem the minimal capital increase ∆Mj = Mj − Mj0 is achieved when the
exchange with all the other subsystems is carried out using cj arbitrarily close to pj, that is, reversibly.

Therefore, Mmin
j can be found from the condition Sj(Mj, N j) = Sj(Mj0, Nj0).

A maximal Mmax
j corresponds to such an exchange for which it is possible to construct a range

Mmin
j ≤ Mj ≤ Mmax

j in the space of Mj. The intersection of this range with the plane

∑
j

Mj = ∑
j

Mj0 (38)

singles out the set Q of all feasible equilibrium distributions of capital.
As σ(p) > 0, the illiquid capital in the flows entering a non-homogeneous open system is always higher

than in the flows leaving the system.
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This condition σ(p1, p2) ≥ 0 jointly with the balances (26)–(28) determine the boundary of the
realizability area of irreversible process for an economic systems. The conditions imposed on the
rates of various flows allow us to find the minimal capital dissipation, σmin > 0, achievable for these
conditions. This reduces realizability area as the inequality σ ≥ 0 is less restrictive than σ ≥ σmin.
This is analogous to the result that the realizability area for a heat engine in FTT is more restricted than
if comparison is only made with an equilibrium system.

As the net amount of capital in an isolated system is constant (dM = 0), the maximum of
capitalization corresponds to the maximum of invested capital.

As an example, we will calculate the capital dissipation σ for exchange between two economic
agents with linear kinetics

n1(p1, c) = a1(p1 − c), (39)

n2(p2, c) = a2(p2 − c). (40)

From the condition −n1 = n2 = n we get for c(p1, p2)

a1(p1 − c) + a2(p2 − c) = 0 (41)

or
c =

a1 p1 + a2 p2

a1 + a2
(42)

n(p1, p2) = −n1(p1, c(p1, p2)) = a(p2 − p1), (43)

where
a =

a1a2

a1 + a2
. (44)

The dissipation is then

σ(p1, p2) = (p2 − p1)a(p2 − p1) = a(p2 − p1)
2 =

n2(p1, p2)

a
. (45)

3.3. Maximum Profit Flow

A classical thermodynamic problem is finding the maximum power of a heat engine that receives
heat from a source with temperature T+ and gives part of it to a source with temperature T−, taking into
account the irreversibility of heat transfer (see in [6]). The economic analog of this is the problem of
finding the maximum profit flow of a company buying an item on the market with an estimate p1 and
selling it on the market with rating p2 > p1.

The company must choose the optimal purchase and sales prices c1 and c2. Let the resource
flow be

n = k1(c1 − p1) = k2(p2 − c2). (46)

Then, after the optimal selection of purchase and sales prices, we get the maximum profit flow

m∗ =
(p2 − p1)

2

2A
, A =

(
1/k1 + 1/k2

)
, (47)

the optimal purchase sale flow

n∗ =
p2 − p1

2A
, (48)

and the corresponding optimal prices

c∗1 = p1 +
n∗

K1
, c∗2 = p2 −

n∗

K2
. (49)
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4. Resource Exchange in Isolated Systems

In isolated economic systems the combined capital does not change (∑j dMj = 0). Correspondingly,
in isolated thermodynamic systems the total energy does not change. Meanwhile, the wealth function and
capitalization of each subsystem increase during any resource exchange. This occurs due to increase of
combined illiquid capital F, whose differential is

dF = ∑
j

∑
i

pji(Nj, Mj)dNji. (50)

We will demonstrate later in this paper that when a resource is exchanged for capital (sold) in an
isolated system, the combined capitalization of the system,

dU ≥ 0⇒ dF ≥ 0 (51)

increases. Equality here corresponds to reversible exchange. When one resource is exchanged into
another without any exchange of capital (barter) and thus the capital distribution between subsystems
is fixed, we have

dF > 0. (52)

Therefore, barter is always irreversible (like heat exchange and diffusion processes
in thermodynamics).

Resource/Capital Exchange in Economic Systems with Different Configurations

Selling. Suppose the system consists of two economic agents. At t = 0 the first economic agent
has capital M0 and the second holds resource N0. At t = 0 the estimates obey p1 > p2, otherwise the
trade would be blocked by the voluntary principle.

In equilibrium the balances
M1 + M2 = M0 (53)

N1 + N2 = N0 (54)

and the equality of estimates
p1(N1, M1) = p2(N2, M2) = p (55)

hold. The increase in capitalization of each of economic agents depends on what price is used during
exchange. This price must obey the inequality

p1 ≥ c ≥ p2, (56)

otherwise the voluntarity principle would be violated (as the price would be lower than the
estimate when resource is sold to economic agent and higher when it is bough from him).

It is clear that
dM1

dN1
=

dM2

dN2
= −c, dN2 = −dN1, (57)

M1(0) = M0, M2(N0) = 0, N2(N0) = 0. (58)

For given c(N1) the conditions (57) allow us to express M1, M2, N2 in terms of N1. The change in
capitalization can then be calculated as

∆U1 =

N1∫
0

(p1(N)− c(N))dN (59)
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∆U2 =

N1∫
0

(c(N)− p2(N))dN. (60)

For the whole system

∆U = ∆U1 + ∆U2 =

N1∫
0

(p1(N)− p2(N))dN. (61)

Because M1, M2 and N2 are expressed in terms of N1 and c(N1) in (57), p1, p2 in (59)–(61) depend
not only on N1.

The conditions (53)–(56) do not fully determine the state of equilibrium. They include three
equations for four variables, (M1, M2, N1, N2). When N1 → N1, the price c tends to p. If c = p2,
then ∆U2 = 0, and the increase of the system’s capitalization is ∆U = ∆U1. It can be found from
Equation (61). If c = p1 then ∆U = ∆U2. The equilibrium states are different in these two cases.

The special case is when c = const and equal to the equilibrium estimate p. This the case of an
auction. Here, the price is set in such a way that the amount of bough and sold resource are equal.
In this case the condition

M2 = (N0 − N2)p (62)

must be added to the conditions (53)–(55) to determine the final state.
It is not possible to transfer the system from one equilibrium state achieved by choosing some price

c, which obeys inequalities (56), into another equilibrium state without reducing its capitalization and
wealth function of one of its economic agents. Therefore, the set of equilibrium states is Pareto-optimal
(i.e., consists of a set of compromises).

Suppose that the wealth functions have the same dimension. Let us find the state for which the
sum S1(N1, M1) + S2(N2, M2) attains its maximum subject to constraints (53) and (54). The stationarity
conditions of the Lagrange function on the state variables,

L =
2

∑
i=1

Si(Ni, Mi) + λ1(N1 + N2) + λ2(M1 + M2) (63)

leads to the equations
∂Si

∂Ni
= λ1,

∂Si

∂Mi
= λ2, i = 1, 2. (64)

As
∂Si

∂Mi
= pi0(Ni, Mi) (65)

and
∂Si

∂Ni
= pi0(Ni, Mi)pi(Ni, Mi), (66)

it follows that in equilibrium, which corresponds to the maximum of the wealth function, both resource
estimates pi (see (55)) and the capital estimates pi0 are the same for all subsystems. The latter condition
makes the set (53)–(55) complete.

If resource estimates do not depend on the capital M, then capitalization U depends on M and N,
and dU is a total differential. In this case, it is possible to construct level curves of the function U(N, M)

on the plane with coordinates M1, N1 and origin O1. Along these lines, dU1 = 0 and
dM1

dN1
= −p1(N1).

As the estimate increases when N1 increases, the slope of these lines decreases and the curves are
convex. The capital M1 ≤ M0. The initial state of the economic agent corresponds to the point M0 on
the abscissa.
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Similarly, let us draw the level curves for the capital M2 and resource N2 of the second economic
agent (the origin here is O2, the positive direction of the resource N2 axis is down, and the capital M2

axis is to the left). This figure is called an Edgeworth diagram (see Figure 1). The points where level
curves of U1 and U2 touch obey the conditions of equilibria (55). The set of such points makes the set
of equilibrium. The initial state of any system corresponds to the right lower corner of Edgeworth
diagram and any of its points obey balances (53) and (54).

Figure 1. The Edgeworth diagram shows the possibilities of resource exchange in a closed system
consisting of two economic agents. The dashed and solid lines show the level lines of the welfare
functions of the first and second economic agents, respectively, and the arrows from the origin of the
coordinate system in the upper right corner show the directions of growth of resource reserves and
capital of each of them. The touch points of the level lines form an equilibrium curve. The section of
this curve, highlighted by the bold line, is reachable from the initial state 0, as upon transition to this
section the welfare functions of both economic agents increase. The point Q where the vector ~0Q is
perpendicular to the bold line corresponds to barter exchange.

However, not all points on the equilibrium curve can be reached without violation of the voluntary
condition. Points that can be reached are singled out by the inequality (56). They guarantee that no
agent ends up with a lower capitalization. The reachable piece of the equilibrium curve Θ is denoted
by the bold line in Figure 1. The point on it which corresponds to auction trading is given by the
intersection of this curve with the straight line drawn from the initial state of the system orthogonally
to Θ.
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Consider exchange through the auction between n economic agents on m kinds of resources
occurs. The conditions of equilibrium are

pj
i(Ni

) = λj,
i = 1, ..., n
j = 1, ..., m.

(67)

We again denote

∆Nij = Nij − Nij(0),
j = 1, ..., m
i = 1, ..., n.

(68)

The balances on resources
n

∑
j=1

∆Nij = 0, j = 1, ..., m (69)

and capital

∆Mj = −
m

∑
i=1

λi∆Nij, j = 1, ..., n (70)

need to be added to the conditions of equilibrium (67). The conditions (67)–(70) allow us to find states
of all contacting economic agents and the increment of the system wealth function,

∆S =
n

∑
j=1

(Sj(Mj, Nj)− Sj(0)). (71)

It is always positive.
For the Cobb–Douglas wealth function,

S = Mγ0
m

∏
i=1

Nγi
i , γi ≥ 0,

m

∑
i=0

γi = 1, (72)

pi =
∂S/∂Ni
∂S/∂M

=
γi M
γ0Ni

, i = 1, ..., m (73)

the conditions, derived above, take the form

Nij =
γij

λi

Mj

γ0j
, i = 1, ..., n, j = 1, ..., m, (74)

Mj = U0j −
m

∑
i=1

λi∆Nij, (75)

λi =

n
∑

j=1
Mj

γij

γ0j
n
∑

j=1
Nij(0)

, (76)

where U0j = Mj(0) + ∑m
i=1 λi Nij(0) is the capitalization of the j-th economic agent with respect to the

equilibrium prices.
Exchange with reservoir. As a reservoir’s estimates p0 are constant, the lines U = const in

Figure 1 are straight. Maximal increase of an economic agent’s ∆U corresponds to the exchange using
prices p0. Then in equilibrium the capital M and resource stocks N obey the conditions

pi(M, N) = p0
i , i = 1, ..., m, (77)

M−M0 =
m

∑
i=1

p0
i (Ni0 − Ni), (78)
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M ≥ 0, Ni ≥ 0, i = 1, ..., m. (79)

M0 and N0 are the initial values of M and N. If condition (79) holds, then the conditions (77)
and (78) determine the equilibrium state of the system. Otherwise, some of the variables are set to zero
which reduces the number of conditions ((77) and (78)) to be used to find the rest of the variables.

Let us calculate the economic agent’s capitalization for m = 1.

∆U =

N∫
N0

dU
dN

dN =

N∫
N0

(
∂U
∂M

dM
dN

+
∂U
∂N

)
dN. (80)

As
dM
dN

= −p0,
∂U
∂N

= p(M, N), M = M0 − p0(N − N0) (81)

we find

∆U =

N∫
N0

[p(M0 − p0(N − N0), N)− p0]dN. (82)

If p ≥ p0 then dN ≥ 0. Otherwise dN ≤ 0 and ∆U is non-negative.
Next, we show that the increase of the economic agent’s wealth function is maximal when market

prices are used during the exchange. Indeed,

S(N, M) = S

(
N1, ..., Nm, M(0)−

m

∑
i=1

p0
i (Ni − Ni(0))

)
→ max

N
. (83)

The conditions of maximum S(N),

∂S
∂Ni

=
∂S
∂M

∂M
∂Ni

+
∂S
∂Ni

= p0(pi − p0
i ) = 0, i = 1, ..., m (84)

coincide with the conditions of equilibrium (77). Thus, the wealth function attains maximum at
equilibrium.

Let us specify these equations for the particular case when the economic agent’s wealth function
has the Cobb–Douglas form (72). Then, the conditions of equilibrium (77) become the set of
linear equations

Nici

(
1 +

γ0

γi

)
+

m

∑
ν=1,ν 6=i

cνNν = U0 = M(0) +
m

∑
ν=1

cνNν(0), i = 1, ..., m. (85)

Here, U0 is capitalization of the economic agent in its initial state using market prices. The solution
of Equation (85) becomes

M = U0γ0, Ni = U0
γi
ci

, i = 1, ..., m. (86)

The value of the wealth function in equilibrium with the market here is

S = S(N) = U0γ
γ0
0

m

∏
i=1

(
γi
ci

)γi

. (87)

Example 1. Suppose
S = (M, N1, N2) = M1/3 N1/2

1 N1/6
2 . (88)
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The initial stocks of resources and prices are

M(0) = 1, N1(0) = 2, N2(0) = 3, c1 = 10, c2 = 20. (89)

The conditions of equilibrium and balance on capital take the form

M
N1

=
20
3

,
M
N2

= 40, (90)

M = 1− 10(N1 − 2)− 20(N2 − 3). (91)

From conditions (86) and (87) we obtain

U0 = 81, N1 = 81/20 = 4.05, N2 = 81/120 = 0.675, M = 27. (92)

S = M1/3 N1
1/2 N2

1/6
= 5.65, S(0) = 1.69. (93)

The increase of the economic agent’s wealth function ∆S = S(N)− S(0) = 3.96.
For m > 1

∆U =
m

∑
ν=1

Nν∫
N0ν

[pν(M(N), N)− p0
ν]dNν, (94)

where

M(N) = M0 +
m

∑
ν=1

p0
ν(N0ν − Nν). (95)

Barter. The condition that exchange is done voluntarily means that exchange of one kind of
resource is possible only if this resource’s estimates by the contacting subsystems have opposite signs.
For example, production waste may have negative estimate for one subsystem and positive for the
other which can process this waste into useful products. If all estimates have the same sign, then the
exchange can only occur if not less than two kinds of resources are exchanged and when there is a
counterflow of either capital or another kind of resource (barter). Here, any state for which the vector
of resource estimates p for all subsystems are equal, and these resources cannot be used for exchange
that would increase the wealth function of the ν-th subsystem,

Sν = p0ν

(
Mν +

n

∑
i=1

pi Niν

)
= p0νUν (96)

and further they would not reduce the wealth functions of other contacting subsystems, turn out to
be equilibrium. Thus, in economics, unlike in thermodynamics, all Pareto-optimal states turn out
to be in equilibrium. One of these states corresponds to an exchange via auction. Prices here are
determined by the conditions of non-accumulation of resources during re-selling. At the end of the
resource exchange, the capitalization Uν of each subsystem ν based on equilibrium estimates is equal
to the initial capitalization. This determines the distribution of capital.

If the functions Sν have the same dimensionality (which is not always the case), then it is possible
to find that state on the Pareto set which maximizes the combined wealth function. This means
that none of the subsystems would benefit more from a transition to new new equilibrium state
than the others would loose. As we demonstrated above, this state corresponds to equality of the
capital estimates,

p0ν = p0, ν = 1, ..., m, (97)

which, jointly with conditions of equilibrium and conditions of non-accumulation, determine the
distributions of all resources.
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Consider a system that includes two economic agents that both have two types of resources and
no capital. In the initial state the resource stocks and their estimates are given by

N0
1 = (N0

11, N0
12), N0

2 = (N0
21, N0

22), p0
1ν(N0

ν ), p0
2ν(N0

2 ), ν = 1, 2. (98)

The estimates here either do not depend on capital or the distribution of capital M is fixed.
If the initial stocks have such values that the solution of the conditions of equilibrium,

p11(N1) = p21(N2), (99)

p12(N1) = p22(N2), (100)

N1 + N21 = N0
11 + N0

21, N12 + N22 = N0
12 + N0

22, (101)

are positive, then these conditions completely determine the state of the system.
In the general case of barter exchange in which n economic agents take part, each of which holds

m kinds of resources, the conditions of equilibrium take the form

n

∑
i=1

Niν =
n

∑
i=1

N0
iν = N0

ν , ν = 1, ..., m, (102)

piν(Ni, Mi) = λν, i = 1, ..., n, ν = 1, ..., m. (103)

For the non-degenerate case of convex (with respect to Ni) functions piν(N), the conditions (102)
and (103) determine the equilibrium distribution of resources for fixed capital Mi.

For isolated economic systems the following statement holds.
For each distribution of initial capital M between subsystems, resources are distributed in such a way that

the net sum of invested capital attains its maximum conditional on the constraints imposed on the system:

F(M) = ∑
i

∑
ν

piν(Ni, Mi)Ni → max
Ni

(104)

subject to conditions (102). This maximum is

F∗(M) = ∑
ν

λν(M)N0
ν . (105)

In its turn the distribution of capital M between subsystems obeys the conditions of capital
balance, inequalities that follow from the voluntary nature of exchange. It also depends on the form of
the kinetic functions.

5. Stationary State of an Open Economic System

Exchange between markets. Suppose the system consists of two markets. They exchange a
vector of resources N whose estimates on the first and second market correspondingly are p1 and p2.
From the economic balances it follows that capital dissipation here is

σ = ∑
i

ni(p1, p2)(p2i − p1i). (106)

For flows proportional to the price difference, ni = ai12(p2i − p1i), analogous to simple flows in
thermodynamics, we get

σ = ∑
i

ai12(p2i − p1i)
2. (107)

Stationary open system. A stationary regime in an open economic system where there is no
convective flows is possible only if it includes at least two economic reservoirs. We denote flows
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between the ν-th and j-th subsystems as nνj(pν, pj). For each ν-th economic agent, the vector balances
of resources take the following form,

∑
j

nνj + nd
ν + Wναν = 0, (108)

where j is the subscript denoting the j-th subsystem. In accordance with (29) capital dissipation becomes

σ =
1
2 ∑

ν,j
nνj(pν, pj)(pν − pj) + ∑

ν

ne
ν(pν, cν)(pν − cν) + ∑

ν

Wναν pν. (109)

In particular, if the system is near equilibrium and flows are proportional to the estimate
differences, and the rates of production Wνjαν are constant, then the dissipation takes the following
form, similar to exchange between markets,

σ =
1
2 ∑

ν,j,i
aνji(pνi − pji)

2 + ∑
i,ν

pνiWνiανi + ∑
ν

aνi(pνi − cνi)
2. (110)

Here, ν, j are subsystem subscripts and i is the resource subscript.

6. Principle of Minimal Capital Dissipation

The factor that causes resource exchange flows to occur (the ”driving force”) is the difference
between the resource estimates in two contacting subsystems or between the price and the estimate
(for definiteness we will consider the latter). Near equilibrium this difference is small and flows can be
assumed to depend linearly on the difference of price and estimate.

The driving force of resource exchange here is ∆ = p− c. We assume that the flow directed to the
economic agent is positive, then

ni =
n

∑
ν=1

aνi∆ν =
n

∑
ν=1

aνi(pν − cν), i = 1, ..., n. (111)

We shall call the matrix A with the elements aiν the matrix of kinetic coefficients of the economic
agent. It determines exchange kinetics between the economic agent and its environment.

The resource exchange flow causes a counter flow of capital such that

dM
dt

= −
n

∑
i=1

cini. (112)

The rate of change of the wealth function is

dS
dt

=
∂S

∂N0

dN0

dt
+

n

∑
i=1

∂S
∂Ni

gi = −p0

n

∑
i=1

cigi ++p0

n

∑
i=1

pigi =

= p0

n

∑
i=1

(pi − ci)gi = p0∆T A∆.
(113)

Here, ∆ is the vector of driving forces.
As capital estimate p0 > 0 and since resource exchange is voluntary and therefore wealth function

cannot decrease during an exchange, it follows that the matrix A is positive definite. Let us show that
it is also symmetrical.

Indeed, if we extract ∆ from (111), then for any infinitesimal time interval the expression (113)
takes the form

dS
p0

= dNT BdN, (114)
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where dN is the column vector of increments of stocks of resources and B = A−1. The elements biν of
this matrix are

biν =
∂2( S

p0
)

∂Ni∂Nν
= bνi, i, ν = 1, ..., n. (115)

Thus, B is positive definite and symmetric. Therefore, for small deviations from equilibrium,
the inverse of the B matrix of supply and demand, A = B−1 is symmetric and positive definite.
Further, the following reciprocity conditions hold. The influence of the difference between the price
and estimate of the ν-th resource on the flow of the i-th resource is the same as the influence of the
difference of the price and estimate of the i-th resource on the flow of the ν-th resource.

After taking into account the symmetry of the kinetic coefficient matrix, the conditions of
minimum σ (see (110)) with respect to pνi (ν = 1, ..., k) for each economic agent lead to the equations
such that

∑
j

aνji(pνi − pji) + Wνiανi + aνi(pνi − cνi) = 0 ∀i, ν. (116)

For linear flows this coincides with resource balance equations for each of the subsystems (108).
As a consequence, the following statement is true. Resources and capital are distributed in equilibrium in
an open economic system with near linear laws of resource exchange in such a way that capital dissipation σ is
minimal. This is the analogue of the Prigogine principle in irreversible thermodynamics [7].

7. Conclusions

We have shown above that the mathematical descriptions of processes occurring between
thermodynamic systems and between economic systems have much in common. The concept
of irreversibility of economic transport phenomena is introduced, and the problem of minimum
irreversibility for a limited duration, or a given average intensity, of economic processes similar to
FTT are considered. These analogies are treated in a large number of studies (see [8–11] a.o.). As so
may concepts are similar, here we rather emphasize the main difference between thermodynamic and
economic systems.

In thermodynamics any consequences of energy or mass transport between the subsystems of
an isolated system are accompanied by an increase in the total entropy. However, the entropy of one
subsystem can decrease while the entropy of another one increases by at least the same amount.

In economics not only the total welfare function grows under similar conditions, but also
the welfare function of each of the subsystems according to the condition of voluntarity.
Moreover, each flow of resource transport is accompanied by a counter flow of capital transport.

Equations of thermodynamic balances correspond in economics to balance equations for capital,
for each kind of resources, and for welfare. The role of dissipation is played by the growth rate of the
welfare function (it is non-negative). The constraints must be accompanied by the requirements of
non-negativity for the growth rate of the welfare function for each subsystem.
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