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Abstract: Probabilistic constellation shaping is investigated in the context of nonlinear fiber
optic communication channels. Based on a general framework, different link types are
considered—1. dispersion-managed channels, 2. unrepeatered transmission channels and 3. ideal
distributed Raman amplified channels. These channels exhibit nonlinear effects to a degree that
conventional probabilistic constellation shaping strategies for the additive white Gaussian (AWGN)
noise channel are suboptimal. A channel-agnostic optimization strategy is used to optimize the
constellation probability mass functions (PMFs) for the channels in use. Optimized PMFs are
obtained, which balance the effects of additive amplified spontaneous emission noise and nonlinear
interference. The obtained PMFs cannot be modeled by the conventional Maxwell-Boltzmann PMFs
and outperform optimal choices of these in all the investigated channels. Suboptimal choices of
constellation shapes are associated with increased nonlinear effects in the form of non-Gaussian noise.
For dispersion-managed channels, a reach gain in 2 spans is seen and across the three channel types,
gains of >0.1 bits/symbol over unshaped quadrature-amplitude modulation (QAM) are seen using
channel-optimized probablistic shaping.

Keywords: constellation shaping; nonlinearities; fiber optic communication; coherent communications

1. Introduction

Future demands for data transmission applications push optical fiber communication to operate
with increasingly higher spectral efficiency. Higher-order modulation is well-suited for this since it
is independent of the operating bandwidth [1], but conventional quadrature-amplitude modulation
(QAM) formats leave a gap to the channel capacity. Constellation shaping has the potential to close this
gap through the selection of modulation symbols tailored to the characteristics of the channel in use.
Both geoemtric and probabilistic schemes are possible [1]. For the classical additive white Gaussian
noise (AWGN) channel, the capacity and the potential in constellation shaping are well-understood,
with known optimal results [2]. In particular, the Maxwell-Boltzmann distribution is known to be a
near-optimal choice of a discrete probability mass function (PMF) for constellation shaping [3] and this
PMF has been successfully applied to standard optical fiber channels, such as long-haul transmission
with erbium-doped fiber amplifiers (EDFA) [4].

The widely applied enhanced Gaussian noise (EGN) model for the fiber assumes that the combined
effects of amplified spontaneous emission (ASE) noise and nonlinear interactions follow Gaussian
statistics, with a variance dependent on the higher-order signal statistics [5,6]. It is thus tempting to use
shaping schemes based upon AWGN channel-like assumptions for optical fiber channels. However,
such models may lead to suboptimal shaping design beyond the standard, highly dispersive single
mode fiber scenarios. This questions the assumptions of the memoryless AWGN channel, which could
misleade system design for channels where the nonlinear effects are particularly prevalent [7].
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In this paper, we investigate by simulations circumstances where the AWGN channel assumptions
lead to a suboptimal constellation design compared to what can be achieved through optimization of
the constellation PMF without assuming the distribution should be a Maxwell-Boltzmann distribution.
Three scenarios of nonlinear fiber optic channels will be considered, where the channel configuration
results in a relatively high influence of the nonlinear effects in the optical fiber compared to ASE
noise [4,8]. The first channel is the dispersion-managed transmission system, which uses periodic
dispersion compensation. Dispersion-managed systems were introduced to counter the limitations of
direct-detection systems, which did not compensate for dispersion digitally. The periodic dispersion
compensation recorrelates co-propagating signals and in turn enhances nonlinear distortion [1]. To the
best of our knowledge, there is no work on targeting probabilistic shaping for dispersion-managed
transmission.

The second channel is an unrepeatered transmission system, which features a single span of fiber
with no amplification of the signal—apart from at the transmitter and receiver. At distances above
100 km, such systems require high launched signal power, which directly leads to increased nonlinear
distortions [9]. Constellation shaping for unrepeatered channels was considered in Reference [10],
where gains were shown using designs based upon the EGN model.

Finally, the channels with periodic and distributed Raman amplifiers are considered.
Raman amplification allows for continuous signal amplification and has improved noise figures
compared to conventional “lumped” amplification solutions ([11] Ch. 3). However, the continuous
amplification also results in elevated signal powers for extended distances, which compounds
nonlinear phase shift and nonlinear distortion. In Reference [1], ring constellations for ideal distributed
Raman amplification (IDRA) was analysed in the context of capacity limits. These constellations are
only of theoretical interest as they are partially continuous.

In this paper, probabilistic constellation shapes are obtained through an optimization strategy,
which does not presume a certain family of probability distributions, and through a channel tailored
Maxwell-Boltzmann distribution. Across the channel types, channel-tailored probabilistic shaping
achieves gains of >0.1 bits/symbol over the unshaped QAM case.

In Section 2, we describe information measures, fiber propagation and relevant background for
constellation shaping. In Section 3, the optimization strategy and simulation scheme used in this paper
are presented. In Sections 4 and 4.1–4.3, the dispersion-managed, unrepeatered and IDRA channels are
discussed and their results presented, respectively. Finally, in Sections 5 and 6, the results are discussed
and the paper is concluded.

2. Information Measures and Probabilistic Constellation Shaping

2.1. Information Measures

We will consider communication using complex-valued QAM symbols belonging to a discrete
alphabet, X . A sequence is transmitted, consisting of K symbols, xK

1 , each drawn from a discrete
random variable X, with associated PMF PX . The communication system under consideration sends
data from transmitter to receiver through a noisy channel, from which we obtain the received sequence
yK

1 , which is a realization of the received random variable Y. The effective channel, including any
signal processing, is thus represented by the probability density function (PDF) pY|X .

Mutual information (MI) is used to asses the performance of constellation shapes and it is
defined by

I(X; Y) = lim
K→∞

1
K

I(XK
1 ; YK

1 ) = lim
K→∞

1
K
(H(XK

1 )− H(XK
1 |YK

1 )), (1)

where H(XK
1 ) and H(XK

1 |YK
1 ) are the information entropy and conditional entropy, respectively. The

entropy term is calculated as

H(XK
1 ) = −

K

∑
k=1

log2 PX(xk), (2)
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thus assuming independence of the symbols and that the distributions are stationary over the
whole sequence.

In order to estimate the conditional entropy, H(X|Y), the conditional probability, PX|Y, must be
known, but analytic forms are not known for the general fiber optic channel. Instead, an auxiliary
channel model, qyK

1 |x
K
1

, is applied, which approximates the true channel, pY|X . Through this, we obtain
the conditional PMF,

QxK
1 |y

K
1
=

PxK
1
· qyK

1 |x
K
1

∑xK
1

PxK
1
· qyK

1 |x
K
1

. (3)

Using an auxiliary channel to estimate the conditional entropy, H(X|Y), results in an upper bound
and thus gives a lower bound on mutual information [12]. This lower bound is called the achievable
information rate (AIR), which will be the information measure used to asses the performance of the
constellation shaping schemes. The tightness of the bound depends on the accuracy of the auxiliary
channel compared to the actual channel [12].

2.2. Fiber Propagation

To simulate fiber propagation, the split-step Fourier method (SSFM) is used to numerically solve
the coupled-mode nonlinear Schrödinger equation ([13], Ch. 6); given as

∂

∂z
Ex +

α

2
Ex = −i

β2

2
∂2

∂t2 Ex + iγ
(
|Ex|2 +

2
3
|Ey|2

)
Ex,

∂

∂z
Ey +

α

2
Ey = −i

β2

2
∂2

∂t2 Ey + iγ
(
|Ey|2 +

2
3
|Ex|2

)
Ey,

(4)

where Ex, Ey are the fields in two orthogonal polarizations, z is the position in the fiber, t the time and β2

is group-velocity dispersion, α is the loss and γ is the nonlinear coefficient. Equation (4) only describes
propagation in a fiber with dispersion and nonlinearities. Noise may be added as a Langevin-noise
source term creating a stochastic nonlinear Schrödinger equation, or added to stepwise solutions to
the signal field using SSFM. In the case of distributed Raman amplifiers, the noise contribution is
distributed along the fiber span, where the distributed Raman generated ASE noise is included in the
SSFM as in Reference [8].

Co-propagating data signals and added noise interact through chromatic dispersion and the
nonlinear Kerr effect on the right hand of Equation (4), resulting in a distorted signal with stochastic
influences. Neighboring wavelength-division multiplexing (WDM) channels also contribute to the
stochastic effects in single WDM channel receivers or optical networks. The contribution from
co-propagating signals is determinstic, but to compensate it would require the entire co-propagating
WDM signal to be received and processed in unison. This would be impractical for high baudrates
and impossible for optical networks using optical routing.

Albeit there is no general closed-form solution to the stochastic nonlinear Schrödinger equation,
approximate models do exist, which give some insight into the interplay between signal characteristics
and performance. In relation to constellation shaping, the EGN model [5] is particularly relevant, as it
gives an approximate closed-form relationship between the statistical properties of the modulation
symbols and nonlinear interference (NLI) noise variance, σ2

NLI [6,14]. For the purposes of constellation
shaping, the important property of σ2

NLI is that it is proportional to higher-order moments E[|X|4] and
E[|X|6], where E[·] is the expectation operator. Thus, nonlinear noise variance can be minimized by
minimizing the two higher-order moments, which is achieved using phase-shift keyed modulation [4].
Minimizing σ2

NLI will not necessarily result in maximizing MI, as ASE noise is also present in
the channel.
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2.3. Constellation Shaping

Constellation shaping alters the probability of occurrence or geometric placement of constellation
symbols to match the channel characteristics thus increasing the MI. We focus on the former, referred
to as probabilistic shaping. In AWGN channels, an increased Euclidean distance between symbols
will increase MI. This can be achieved by lowering the probability of occurrence of high-amplitude
symbols, which under a fixed power constraint, leads to an increase in Euclidean distance between
symbols [3]. Through optimization, known optimum PMFs are found [15]. For discrete distributions, a
frequently used PMF for probabilistic constellation shaping is the Maxwell-Boltzmann distribution,
which minimizes the average energy for a given entropy [3]. Its PMF is given by

PMB(x; λ) = exp(−λ|ax|2)/Z(λ), Z(λ) = ∑
x∈X

exp(−λ|ax|2), (5)

where λ controls the trade-off between average energy and entropy and a is a scaling factor set to
ensure a fixed average power Pav = ∑x∈X PMB(x; λ)|ax|2. Note that the uniform PMF is a special case
of Maxwell-Boltzmann with λ = 0.

For Gaussian noise and a given signal-to-noise ratio (SNR), an optimal value of λ can be found,
yielding a set of SNR-designed Maxwell-Boltzmann constellations. Alternatively, the PMF can be
adapted to the channel through a numerical search over λ. The latter will be referred to as (channel)
optimized Maxwell-Boltzmann constellations.

In the fiber optic channel, the memoryless AWGN assumption does not necessarily hold.
The presence of the nonlinear Kerr effect introduces signal dependent distortion through the nonlinear
term in Equation (4). The NLI variance from the EGN model models a similar effect, albeit only as
a Gaussian noise contribution, where the fourth and sixth order moments of the symbol sequence
factors into this variance [6]. An SNR-designed Maxwell-Boltzmann constellation typically results
in a constellation shape with larger or equal higher-order moments compared to those of a uniform
constellation [3,4]. SNR-designed Maxwell-Boltzmann shaping is thus expected be suboptimal for
channels exhibiting strong nonlinear effects [4]. The EGN model can be used to design probabilistic
constellation shapes apart from Maxwell-Boltzmann, as in Reference [10], but the assumed noise
contributions are still Gaussian.

2.4. Kullback-Leibler Divergence as a Measure of Noise Distribution

To quantify the Gaussian noise characteristic and thus explain the effectiveness of different
constellation shapes, the Kullback-Leibler divergence (KLD) is used. It is defined as [16]

DKL(p, q) = ∑
x

p(x) log
(

p(x)
q(x)

)
, (6)

where p and q are probability distributions. The divergence is a measure of how one probability
distribution differs from another, where a smaller KLD, down to a constant, indicates a closer match
between the probability distributions.

KLD will be used to measure the relative distance between the noise distribution, pN ,
and a Gaussian distribution with zero mean and variance matching that of the noise, N (0, σ2

N).
This divergence, DKL(pN ,N (0, σ2

N)), is interpreted as how much the noise distribution differs from
Gaussian or the degree of non-Gaussian noise present in the channel, which will be originating from the
nonlinear channel effects. The true noise distribution in a fiber optic channel would in addition depend
on the distribution of the input signal, which is not tractable, yet an estimate is needed to evaluate the
KLD. For this purpose, an empirical distribution, P̃N , is made using the noise samples obtained from
received symbols through P̃N = P(Y− X); this assumes additive and independent noise, but makes
no assumption about the noise distribution. The empirical PMF is obtained through a histogram,
where complex-valued noise samples are binned into 100 bins for the real and imaginary part each.
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Through this empirical distribution, we obtain DKL(P̃N ,N (0, σ̃2
N)), which will be our measure of how

Gaussian the noise is.

3. Optimization and Evaluation of Probabilistic Constellation Shaping

3.1. Iterative Line Search PMF Optimization Algorithm

We shall treat probabilistic shaping of QAM constellations for the nonlinear fiber optic channel
through direct optimization of PMFs, using an algorithm conceptually similar to the Blahut-Arimoto
algorithm used in References [10,17,18]. The algorithm was first presented in Reference [19] and is
summarized in Algorithm 1.

To reduce dimensionality and improve robustness over the Blahut-Arimoto
algorithm, the algorithm assumes symbols of the same amplitude to have equal probability of
occurrence, as seen in the step in Figure 1a. This heuristic will enforce a degree of rotational symmetry
given that 90◦ rotations will be equivalent. The algorithm must be initialized with a PMF and a
symbol alphabet. For each set of symbols, with equal amplitude, a line search steps through a range
of possible probability of occurrences, in Figure 1b. The AIR for the line search is evaluated using
Equation (1) and the auxiliary channel model through Equation (3). The normalization step ensures
that the constellation PMF, PA, is a valid PMF. The algorithm iterates through the amplitudes a set
number of times or until convergence is observed, as seen in Figure 1c. The PMF obtained from
Algorithm 1 is denoted as the iterative line search (ILS) PMF, PMFILS.

Algorithm 1: Greedy mutual information optimization algorithm for constellation PMFs in
arbitrary channels.

Input: (X , PX ), symbol alphabet and initialization PMF
Input: Prange, search space of possible probability of occurrences
Input: F : (xNs

1 )→ yNs
1 , a channel model mapping from input symbols to received symbols

Data: xNs
1 and yNs

1 , transmitted and received symbols, respectively
Data: A ←− unique(|X |), set of unique amplitudes
Data: Popt

A ←− PX , I(X|Y)opt ←− 0
repeat

foreach a ∈ A do
PA ←− Popt

A
forall pupdate ∈ Prange do

PA(a)←− pupdate
Normalization, PA(a)←− PA(a)/ ∑a∈A PA(a)
Generate xNs

1 ∼ PA
Evaluate channel model, yNs

1 ←− F(xNs
1 )

Calculate AIR, I(X|Y), Eq. (1), using auxiliary model, qY|X
if I(X|Y) > I(X|Y)opt then

Popt
A ←− PA

I(X|Y)opt ←− I(X|Y).
end

end
end

until Nepoch turns;
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(a)
A
IR

(b)

Optimization run

4.20
4.25
4.30
4.35
4.40
4.45

A
IR

MBSNR

Uniform

PMFILS

(c)
Figure 1. Steps and convergence of Algorithm 1. (a) Symbols are selected according to their amplitude,
picking out the four red “symbols” marked in the PMF diagram. (b) A line seach is performed by
altering the probability of occurrence of the selected symbols. (c) After iteration over the amplitudes,
the algorithm eventually converges on a PMF denoted PMFILS.

The channel model, F, maps from a transmitted sequence, xNs
1 , to a received sequence, yNs

1 ,
under stochastic influences. The algorithm is agnostic to the exact process of the mapping of F and
the universal nature of this algorithm stems from this invariance to channel models and modulation
formats. For the purposes of this work, a SSFM model and QAM constellation formats are used for
all optimizations. In Section 4, where three distinct transmission scenarios are considered, only the
definition of the channel model, F, changes; definitions are given in the respective sections.

In this work, we also perform numerical optimization of Maxwell-Boltzmann constellations,
which is channel agnostic, too, in contrast to SNR-designed Maxwell-Boltzmann constellations,
which rely on AWGN channel assumptions. The algorithm is listed in Algorithm 2 and the core
principle is the same as the above Algorithm 1; the optimization is instead in a single dimension, rather
than multi-dimensional, necessitating only a single parameter (λ) sweep.

Algorithm 2: Optimization of Maxwell-Boltzmann constellations.
Input: λrange, search space of possible probability of occurrences
Input: F : (xNs

1 )→ yNs
1 , a channel model mapping from input symbols to received symbols

Data: PMB(r; λ), the Maxwell-Boltzmann distribution, Equation (5)
Data: xNs

1 and yNs
1 , transmitted and received symbols, respectively

Data: λopt, I(X|Y)opt ←− 0
forall λ ∈ λrange do

Generate x, xNs
1 ∼ PMB(r; λ)

Evaluate channel model, yNs
1 ←− F(xNs

1 )

Calculate AIR, I(X|Y), using auxiliary model qY|X
if I(X|Y) > I(X|Y)opt then

λopt ←− λ

I(X|Y)opt ←− I(X|Y)
end

end

3.2. Transmitter and Receiver

To evaluate the performance impact of the various constellation PMFs, an optical WDM
transmission system is simulated. The test signal is constructed and decoded in the same manner
in all cases, but the channel model and signal power into the channel can be changed. A schematic
representation of the transmitter, receiver and the relation to the optimizer is depicted in Figure 2.
Note that from the perspective of the optimization algorithms, the channel model, F, is the whole
system after symbol generation and until AIR estimation. All optimizations in the three case studies
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are performed on 256 QAM constellations in a single polarization. The algorithm is initialized with
optimized Maxwell-Boltzmann PMFs according to Algorithm 2.

Going from left to right in Figure 2, the sequence of transmitted symbols are generated directly as
realizations of the constellation PMF. The symbol sequence is then pulse shaped using a root-raised
cosine pulse with 0.01 roll-off spanning 202 symbols. The single channel baudrate is 32 GBd and
14 such sequences are generated, which are modulated onto 7 carrier frequencies with a spacing of
37.5 GHz and two polarizations. This WDM signal is propagated through the channel under test.
Further details on the channel models are given in their respective sections, but all models used in this
work are based upon a SSFM implementation with a step size of 1 km. The system, optical fiber and
simulation parameters are listed in Table 1.

Fiber channel model

Symbol generation

Pulse shaping

Frame building

Pulse shaping

Symbol generationSymbol generation

WDM Matched filter

Symbol synchronization

Resampling

Phase correction

AIR estimation

Optimization algorithm

Effective channel model, F

Transmitter Receiver

x1
Ns

y1
Ns

Figure 2. Schematic representation of components of the transmitter, receiver, optimizer and the
channel model. Only the channel model changes for the various scenarios and is thus considered a
black box.

Table 1. General system, fiber and simulation parameters.

Parameter Value

Modulation 256 QAM
Symbol rate 32 GBd
Pulse shape Root-raised cosine

Roll-off 0.01
WDM channels 7 channels
WDM spacing 37.5 GHz
Polarizations 2

Nonlinear coefficient, γ 1.3 W−1 km−1

Dispersion, D 17 ps/nm/km
Attenuation, α 0.2 dB/km

SSFM step size 1 km
Symbols per ch., Ns 500,000 symbols

At the receiver, the signal is filtered using a root-raised cosine filter matching the transmitter’s and
then synchronized to the symbol sequence. Frequency domain chromatic dispersion compensation is
optionally done before pulse filtering depending on the channel under test. No further equalization is
performed on the signal. The mutual information is then estimated for each block using Equation (1).
The KLD of the noise, DKL(PN ,N (0, σ2

N)), is calculated using the synchronized received symbols and
the known transmitted symbols as in Section 2.4.

4. Results

Four distinct constellation shapes are evaluated for each channel and across varying power.
The constellations are defined by their underlying PMF and are—a uniform constellation; an
SNR-designed Maxwell-Boltzmann constellation, which is based upon the AWGN channel
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assumptions and an effective SNR measurement on a uniform constellation; an optimal
Maxwell-Boltzmann constellation selected according to Algorithm 2; and optimized constellation
selected according to the iterative line search of Algorithm 1. The constellations will respectively be
referred to as: uniform, MBSNR, MBOpt and PMFILS.

4.1. Dispersion-Managed Systems

The simulated dispersion-managed channel consists of four distances of 5, 10, 20 and 40 spans
of 100 km fiber, with a link as in Figure 3 replacing the “Fiber channel model” in Figure 2. The inline
dispersion compensation is simulated using a linear frequency domain filter, defined by (Reference [20]
Ch. 8)

H f (L, ω) = exp(iβ2/2 ·ω2L), (7)

where ω is the angular frequency and L is the fiber distance propagated. The dispersion compensation
is followed by re-amplification to the launch power using EDFA’s with a noise figure of 5 dB. Note that
there is no chromatic dispersion compensation at the receiver.

Repeated for each span

SSMF, 100 km EDFADCF

Figure 3. Link setup for the dispersion-managed channel. In the simulations, dispersion management
is simulated using ideal filtering.

In Figure 4, the results of optimizations and simulations are presented at multiple link distances.
After 20 spans, the PMFILS constellations achieve an improvement of 0.1 bits/symbol over uniform
and MBSNR. This distance exhibits a scenario, where MBSNR underperforms compared to uniform
because of PMF-dependent nonlinear effects. At short distances, MBOpt performs close to PMFILS, but
as the number of spans is increased the performance of MBOpt becomes closer to uniform, indicating
that the noise distribution is non-Gaussian. The reach gain by PMFILS is 2 span, which is achieved
around the 20-span reach.

1 2 3 4 5 6 7 8
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3.6
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b
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o
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(a)
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Spans
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A
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b
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b
o
l)
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MB
SNR

PMF
ILS

MB
Opt

18 20 22 24
3.25

3.50

3.75

4

2 spans

(b)
Figure 4. (a) Achievable information rate (AIR) versus launch power for 20 spans of a
dispersion-managed system. (b) Maximum AIR versus number of spans. Detail displays the AIR
around 20 spans.

The noise characteristics are compared across constellations and launch powers by evaluating the
KLD of the noise samples relative to a Gaussian distribution, plotted in Figure 5a. Values closer to zero
indicate a greater similarity to Gaussian noise. It is seen that that the noise deviates from a Gaussian
distribution as the launch power is increased and the choice of connstellation shapes influences this
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statistic. Especially, the MBSNR constellation is associated with a much larger divergence and thus
more non-Gaussian noise.

0 2 4 6 8 10

Launch power (dBm)

0.3

0.35

0.4

K
L
D

 (
b
)

Uniform

MB
SNR

PMF
ILS

MB
Opt

(a)

0 2 4 6 8 10

Launch power (dBm)

-2

-1

0

1

2

3

4

m
a
x

40 spans

20 spans

10 spans

5 spans

(b)
Figure 5. (a) Kullback-Leibler divergence (KLD) versus power for 20 spans of dispersion-managed
256 QAM transmission. (b) λ of MBOpt versus power for various number of spans.

In Figure 5b, the λ of the MBOpt constellations are plotted against varying power and number
of spans. We note a trend that as power is increased the value of λ decreases, indicating that the
PMF becomes less peaked and more uniform. A similar observation can be made with regards to
an increasing number of spans. The tendency does not converge towards uniform, but decreases to
negative values of λ.

For the 20 span case, two constellations of PMFILS are shown in Figure 6: at the optimum launch
power (5 dBm) and at an increased launch power (8 dBm). At 20 spans, the channel in this scenario
is significantly non-AWGN and the rate is low enough to make the low-entropy constellations in
Figure 6a optimal. The higher-order moments, seen in Table 2, reveal that at the optimum launch power,
PMFILS and MBOpt both have lower higher-order moments, than MBSNR. The lowest higher-order
moment is obtained with uniform, not the numerically optimized PMFs, demonstrating the need for
making a trade-off between linear and nonlinear effects. At elevated launch powers (8 dBm), nonlinear
effects dominate and PMFILS results in a ring-like structure and the lowest higher-order moments
indicating that the nonlinear effects are stronger.

(a) (b)

Figure 6. 256 quadrature-amplitude modulation (QAM) PMFILS for 20 span dispersion-managed
transmission: (a) At the optimum launch power (5 dBm). (b) At an elevated launch power (8 dBm).
The higher-order moments are summarized in Table 2.
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Table 2. Table of higher-order moments.

5 dBm 8 dBm
E[|X4|] E[|X6|] E[|X4|] E[|X6|]

PMFILS 1.43 2.44 1.19 1.58

MBOpt 1.57 3.05 1.25 1.75

Uniform 1.40 2.29 1.40 2.29

MBSNR 1.91 5.16 1.91 5.14

4.2. Unrepeatered Transmission

The unrepeatered links consist of a single span of standard single-mode fiber of 160, 180 and
200 km in length, with a link as in Figure 7. At the end of the span, a single EDFA with a noise figure
of 5 dB re-amplifies the signal to the same as its launch power.

SSMF EDFA

Figure 7. Link setup for the unrepeatered channel.

In Figure 8a–c, the AIR of the simulated signals can be seen as the launch power is varied over
three distances. A maximum shaping gain of 0.2 bits/symbol is obtained at 160 km, with the shaping
gain being >0.1 bits/symbol at all distances.
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(d)
Figure 8. AIR versus launch power in an unrepeatered transmission system with span lengths of
(a) 160 km, (b) 180 km and (c) 200 km. (d) KLD versus power for a 160 km span length.
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To build upon the results from the dispersion-managed channel, we note the relative performance
of the constellation shapes as distance and power is changed. As power and distance is increased,
the MBSNR constellations degrade in performance compared to the other constellations. Using MBOpt,
an improvement is achieved over uniform, but the improvement diminishes as power is increased and
converges to the same performance as uniform. The characteristics of the optimal value of λ mirror
those for the dispersion-managed system seen in Figure 5b. Despite being channel tailored, MBOpt is
intrinsically limited to a specific family of PMFs. PMFILS displays an improvement over both uniform
and MBOpt, even as power is increased beyond the optimum.

In Figure 8d, the KLD of the noise samples is plotted against power, where the MBSNR constellation
shaping introduces significant degree of non-Gaussian noise. Both MBOpt and PMFILS results in noise
characteristics comparable to those produced when uniform PMFs are used for constellation shaping.
In Figure 9, the obtained PMFILS are depicted at the optimum and an elevated launch power. We note
again a ring-link structure which minimizes the higher-order moments at the elevated launch power.

(a) (b)
Figure 9. 256 QAM PMFILS for 160 km unrepeatered transmission: (a) At the optimum launch power
(13 dBm). (b) At an elevated launch power (16 dBm).

4.3. Channels with Ideal Raman Amplification

For raman amplification, a co-propagating laser amplifies the data signal through the process
of stimulated Raman scattering, with a setup similar to Figure 10. The Raman model used for the
simulations is an IDRA where the signal power is constant with distributed noise contributions as
in Reference [8]. Thus the two pumps in Figure 10 are not part of the simulation; instead, the fiber loss,
α, is set to zero, thereby removing the loss term from Equation (4).

Repeated for each span

SSMF, 100 km Pump laser

Pump laser

Figure 10. Link setup for the Raman channel. The coupled pump lasers are shown for illustrative
purposes only as ideal distributed Raman amplification (IDRA) is simulated.

In Figure 11a, the results of the simulations and optimizations are plotted, where PMFILS yields
an improvement of 0.1 bits/symbol compared to uniform. We note that the MBSNR constellation
severely underperforms on the Raman amplified channel. In Figure 11b, this is backed up by presence
of a significant difference in the noise distribution obtained with MBSNR. This demonstrates the
mismatch between the assumptions behind the design of MBSNR and the Raman amplified channel,
where signal power is effectively constant throughout the entire fiber. In dispersion-managed systems
and unrepeatered systems, the signal power attenuates during propagation, gradually decreasing
the nonlinear effects. Through MBOpt and PMFILS it is possible to recover an improvement over
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uniform constellations, yet as launch power is increased, MBOpt converges to the performance of
uniform whereas PMFILS continues to sustain an improvement. The increased degrees of freedom
in PMFILS allow it to match the channel characteristics better, compared to MBOpt which only has a
single parameter. PMFILS is shown in Figure 12 for the optimum power and for an elevated launch
power. The ring structure depicted at the elevated launch power minimizes the higher-order moments,
indicating the importance of the nonlinear contributions.
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Figure 11. (a) AIR versus launch power for 30 spans of fiber with IDRA. (b) KLD versus launch power
for the same system.

(a) (b)
Figure 12. 256 QAM PMFILS for IDRA transmission: (a) At the optimum launch power (−0.5 dBm).
(b) At an elevated launch power (2 dBm).

5. Discussion

In this paper, we investigate the noise characteristics and validity of an AWGN channel
assumption in nonlinear optical fiber systems. The particular interest is with regard to constellation
shaping and how underlying assumptions about the noisy channel model influence their
resulting performance.

At low launch powers, the AWGN model is a close enough approximation of the fiber optic
channel that it can be used to design probabilistic constellation shaping solely based upon an SNR
measure, since the performances of MBSNR, MBOpt and PMFILS were overlapping, giving evidence
that the model assumptions are valid. However, as launch power is increased, it is seen that this model
becomes increasingly inaccurate and MBSNR degrades to generally having worse performance than
the non-shaped uniform constellation.

In the cases presented in this paper, MBOpt provided shaping gains through numerical
optimization accounting for the channel. This need for channel tailored optimization reflects the
effective SNR measure’s dependence upon the PMF in the optical fiber channel, an effect which is
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also observed in the EGN model. But beyond the optimum power, MBOpt converges to a uniform
PMF and thus matches the non-shaped performance. For all three nonlinear channel cases in this
paper, the noise distribution deviates from Gaussian, as evaluated using KLD, at high launch powers.
Thus the optimum launch power lies in a region of increasing nonlinear influence and thus increasing
non-Gaussian noise. By expanding the degrees of freedom, PMFILS deviates from MBOpt to achieve
improved results, leading to a shaping gaing of >0.1 bits/symbol over uniform across all channels.
This demonstrates the need for channel tailored constellation shapes in the presented scenarios.

Further improvements could possibly be obtained by allowing the optimization algorithm to
operate on higher-order symbols spanning time and polarizations [7].

6. Conclusions

Optimization of probablistic constellation shaping is necessary for maximizing the spectral
efficiency, and in nonlinear channels, constellation design must account for both nonlinear effects and
ASE noise. This is investigated and shown in three cases: dispersion-managed channels, unrepeatered
transmission channels and channels with IDRA. Using a channel-agnostic optimization strategy,
constellation PMFs can be optimized for the individual, numerically simulated channels. The iterative
line search optimization algorithm does not assume the PMFs to belong to a specific family and the
increased degrees of freedom allow it to account for non-Gaussian noise effects in the channel.

At low launch powers, the investigated channels behave as conventional AWGN channels, but as
launch power is increased, the characteristics of the three channels change. Using the Kullback-Leibler
divergence to analyse the noise statistics reveals that SNR-designed Maxwell-Boltzmann constellations
increase nonlinear distortion resulting in non-Gaussian noise and thus lead to suboptimal
performance in the channels. Despite the differences in length, dispersion-compensation and
amplification techniques, the channels share this common characteristic of rendering SNR-designed
Maxwell-Boltzmann constellations suboptimal and degrade the performance to worse than uniform as
power is increased.

At the optimum launch powers, constellation shapes must balance both nonlinear distortion
and ASE noise. This is demonstrated using the iterative line search algorithm, which provides a
gain upon numerically optimized Maxwell-Boltzmann constellations. As power is increased further,
numerically optimized Maxwell-Boltzmann constellations converge on uniform constellations, because
of the increasingly non-Gaussian noise. The channel-tailored constellation shapes achieve gains of
>0.1 bits/symbol across all channels and a 2 span reach increase on the dispersion-managed channel,
when compared to uniform QAM constellations.
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Abbreviations

The following abbreviations are used in this manuscript:

AIR Achievable information rate
ASE Amplified spontaneous emission
AWGN Additive white Gaussian noise
EDFA Erbium-doped fiber amplifier
EGN Enhanced Gaussian noise
IDRA Ideal distributed Raman amplification
ILS Iterative line search
KLD Kullback-Leibler divergence
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MI Mutual information
NLI Nonlinear interference noise
PDF Pobability density function
PMF Probability mass function
QAM Quadrature amplitude modulation
SNR Signal-to-noise ratio
SSFM Split-step Fourier method
WDM Wavelength-division multiplexing
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