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Abstract: Recent years have seen a surge in approaches that combine deep learning and
recommendation systems to capture user preference or item interaction evolution over time. However,
the most related work only consider the sequential similarity between the items and neglects the item
content feature information and the impact difference of interacted items on the next items. This paper
introduces the deep bidirectional long short-term memory (LSTM) and self-attention mechanism
into the sequential recommender while fusing the information of item sequences and contents.
Specifically, we deal with the issues in a three-pronged attack: the improved item embedding, weight
update, and the deep bidirectional LSTM preference learning. First, the user-item sequences are
embedded into a low-dimensional item vector space representation via Item2vec, and the class
label vectors are concatenated for each embedded item vector. Second, the embedded item vectors
learn different impact weights of each item to achieve item awareness via self-attention mechanism;
the embedded item vectors and corresponding weights are then fed into the bidirectional LSTM
model to learn the user preference vectors. Finally, the top similar items in the preference vector
space are evaluated to generate the recommendation list for users. By conducting comprehensive
experiments, we demonstrate that our model outperforms the traditional recommendation algorithms
on Recall@20 and Mean Reciprocal Rank (MRR@20).

Keywords: recommendation systems; interactive sequence; class label; deep bidirectional LSTM;
self-attention; item similarity

1. Introduction

In the age of the Internet, users are used to acquiring the items or information on their demand
from the Internet. However, with the increasing number of online users and the explosion of
information on the Internet, users are facing the challenges of obtaining the information they really
need. As a result, the recommendation systems emerge with the purpose of digging out items that are
of interest to each user from a huge collection of items, and presenting them to users.

Generally, the recommendation list is obtained based on the user preferences, the item features,
and other auxiliary information. The recommender systems are roughly divided into three types:
content-based recommendation, collaborative filtering, and hybrid recommendation [1].

Collaborative filtering (CF) [2] and content-based recommendation [3] are traditional methods
of recommender systems. The user-based collaborative filtering (UCF) tends to recommend to target
users the items that are highly scored by the other users who are similar to the target users. Lots of
literature calculated the similarity among users or items by using a CF from user interaction data
(i.e., the scoring matrix). However, the traditional recommendation methods are mainly focused on
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recommending similar items to users, without considering the content relevance between an item and
other context items in the item sequence.

Recent years have seen a surge in approaches that combine deep learning and recommendation
systems [4]. Deep learning not only well trains some non-linear or non-trivial implicit relationships
between users and items, but also efficiently encodes the underlying complex abstract meanings
of the network into higher-level data representations. In addition, deep learning can learn the
intricate relationship of data itself from the rich data resources that are easily available. Due to
these high-performance features of deep learning, its applications in recommender systems have
gradually become more widespread in recent years [5–12], but there are also corresponding problems.
The sequence recommendation methods among them only adopt the sequential similarity between
items, and neglected the item content information which usually is the indispensable complement.
Moreover, in the real-life application scenarios, users often focus on certain items while ignoring others
based on the interacted items which have different impact on the next item choice.

To address the above issues, this paper proposes a recommendation model by fusing the item
sequences and contents (FISC). The model introduces the user preferences and deep recurrent neural
networks, such as the long short-term memory (LSTM) and self-attention, where the sequence that
consists of the user interacted items and class labels are fed into a recurrent neural network to improve
the precision of recommending a system. At the same time, the different influence weights ai learned by
the self-attention mechanism are also input into the deep bidirectional LSTM. After multiple training,
the last layer of the model outputs the user preference vectors. Finally, all the items are ranked by the
similarity between the preference vectors and the embedded vectors, and the Top-k items are selected
as the recommendation list of the users.

Our main contributions are threefold.

• We add item content information into Item2vec to represent items more abundantly and
comprehensively. First we use Item2vec to learn the initial embedded vector representation
of items, then vectorize their content attribute information, and finally concatenate the two
vectors as the final representation of items.

• In order to learn the different impact of each item in the interaction sequence on the candidate
items, we introduced the self-attention mechanism into the model. We leverage Bi-LSTM to
learn the user preference representation bidirectionally from the user item sequence for more
context information, and enhance the shallow Bi-LSTM to a deep Bi-LSTM to learn the user deeper
preference representation.

• We made a comparison of the experimental results of the self-attention mechanism and deep
Bi-LSTM on the recommendation effect. The experimental results on the real-world dataset have
demonstrated the effectiveness of our recommendation model.

The remainder of this paper is structured as follows. In Section 2, we propose the recommendation
model, which takes into account the content information of items and the relationship between the
context items, based on the deep Bi-LSTM and self-attention. Section 3 presents an experimental
analysis based on the existing public dataset. Section 4 discusses some existing related work in the
recommender system. Finally, our work is summarized in the last section.

2. Sequential Recommendation Model

The deep recurrent neural networks perform well in natural language processing (NLP). As the
LSTM in recurrent neural networks has recently been successfully applied in sequence prediction
problems, this paper leverages the deep Bi-LSTM and self-attention to learn user preference information
on a deeper level.

Our sequential recommendation model includes three main phases: item embedding, weight
update and user preference learning. Figure 1 shows the our model framework.
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Figure 1. The Sequence Recommendation Model.

2.1. Item Embedding

Given all user interaction item sets S = (S1, S2, S3, . . . , Sm), where Si represents item sequence
Si = {I1, I2, I3, . . . , In} of the user i, the purpose of item embedding is to generate low-dimensional
item vectors for each item. This paper only selects sequences that show feedback on user preferences.
For example, if a user scores a low-interest item, the user is not interested in the item. Traditional item
embedding often only considers the second-order correlation between items and does not consider the
relationship between item attributes and content. We embed the class labels of an item into the item
vector, which can better calculate the relevance of the item and learn the user preferences.

Item2vec [13] is one of the important extensions of Skip-gram and negative sampling [14] for
item embedding for item-based collaborative filtering recommendations. To introduce the class label
into the model, this paper has made some improvements to Item2vec: the class label of an item is
one-hot encoded to obtain a vector, and this vector is connected with the embedding vector learned
by Item2vec to obtain the final embedded representation vector of the item. Similar to Word2vec,
this paper treats each item as a word. The sequence of user-interacted items is treated as a sentence,
and each item is embedding into a vector of fixed dimensions. Each user has an item sequence of
interactions that is different from each other. Finally, by embedding each user’s item sequence of
interactions to obtain a fixed-dimensional item vector, the closer the vectors are, the more similar the
vectors are in the embedding space. The process of item embedding is shown on the top of Figure 1.

Given a user’s item sequence of interactions, the Skip-gram goal is to maximize the following
objective functions:

1
M

M

∑
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M

∑
y 6=i
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where σ(∗) is a commonly used Sigmoid activation function and N is the number of negative samples
in the positive sample. By item embedding, we get the item sequence Si = {V1, V2, V3, . . . , Vn}.

2.2. Weight Update

The attention mechanisms are recently widely employed as a powerful tool in sequence data
scenarios such as machine translation, speech recognition, and part-of-speech tagging. The attention
mechanism can be used alone or mixed with other models. It uses the automatic weighted
transformation of data to connect two different parts to highlight key data, so that the entire model can
reach better performance. The attention mechanism is similar to the principle that the human brain
observes certain things. For example, when the people observe a certain painting for describing the
content of the painting, people first observe the words on the painting, and then make a purposeful
observation for the part of the picture that represents the theme from their judgment. When people
describe the painting, they often first describe the content that is most relevant to the painting,
and then describe other aspects; the self-attention mechanism also is a mechanism by assigning
sufficient attention to the key information and highlighting locally important information.

In real life, user preferences are not static. When users focus on certain products, they may
potentially ignore other products. For example, as shown in Figure 2, the sequence of items that the
target user interacts with is “Movie A, Movie B, Movie C, Movie D, Movie E”. We want to predict
what’s his next favorite movie. If the most recent interactions (movie C, movie D, movie E) are regarded
as the context and are given higher priority, it is likely that the items recommended to the user are
“comedy” movies, such as “Movie F”. However, the actual interaction record shows that the user
chooses “Movie G” as the next item choice, because the choice of “Movie G” may depend on the first
two items (Movie A and Movie B) that the user actually interacts with. This indicates that a good
recommender system should pay much attention to those items (movie A and movie B) that are more
related to the target item (movie G), rather than the newly added but less relevant items like “Movie C,
Movie D, Movie E”.

Figure 2. The movie sequence recommendation.

Therefore, this paper further proposed an item-aware weight update model based on the
principle of self-attention mechanism. This model uses the self-attention mechanism to model the
internal relationship between user-interactive items when learning the user’s potential preference
representation, so that the user preference representation is more effective, as shown in the middle
of Figure 1.

The weight update introduces self-attention mechanism which we elaborate here. First, for a fixed
target item, it traverses the state of all encoders to compare the state of the target item with that of
the source item (i.e., the relationship between the target item and the source item), so as to generate
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a score for each state in the encoder. Second, the SoftMax function is used to normalize all scores to
generate a probability distribution given the target item state. Finally, we obtain the item weight from
the distribution.

In essence, the item feature representation is mapped from d-dimensional space to z-dimensional
space. The relationship mapping is shown as follows:

lz = fRelu (WId + b) (3)

A = So f tmax
(

IzW (Id)
T
)

(4)

Iz = AIz, (5)

where W is a weight matrix, b is bias and lz is the feature representation vector after item feature
embedding. Equation (3) indicates that the user interaction item features in the d-dimensional space
are mapped to the z-dimensional space. Equation (4) calculates the contribution weight of all user
interaction items in the d-dimensional space to each user interaction item in the z-dimensional space.
The model automatically adjusts the weight matrix W through the loss function during model training,
and the matrix A normalized by the Softmax function. The items in the z-dimensional space are
weighted. After weighting, the feature representation of each item in the z-dimensional space is jointly
represented by itself and all the items associated with it. The final output Iz is the characteristics of
the item after weighted by the self-attention mechanism. By weight update, we get the item different
weight ai.

2.3. User Preference Learning

RNN (Recurrent Neural Networks) play a vital role in predicting the next target of the sequence.
Inspired by the literature [15,16], the user item sequence of interactions is treated as a sentence, and each
item can as a word. We use deep recurrent neural networks to learn the relevance of each item in the
item sequence of interactions to the adjacent item. This paper is based on deep bidirectional LSTM
(i.e., deep Bi-LSTM), as shown in Figure 1, enabling the model to better utilize forward and backward
contexts representation. And deep recurrent neural networks also can better extract user characteristics.

Figure 1 shows the preference modeling, which has a double hidden layer, and information of
each upper layer in the structure is provided by its lower layer. As the picture shows, in the network
structure, the previous time step generates a set of parameters and passes the set of parameters to
the inter-neurons in the same Bi-LSTM layer at a later time step t. At the same time, the inter-neuron
needs to receive two sets of related parameters from the previous layer of the Bi-LSTM hidden layer in
the time step t; the input sequence of each hidden layer in the model starts from two directions: from
left to right, from right to left.

The relational of the deep Bi-LSTM structure is denoted in Equations (6) and (7). At the same
time step t, each output of the layer Bi-LSTM of r− 1 layer serves as an input to each intermediate
neuron of the r layer. At each time step in the training model, the result is produced by the hidden
layer propagation via connecting all the input parameters. The last hidden layer produces the final
output P (Equation (8)).
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where
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the intermediate representation of the past and the future is used to discriminate the input vector.
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each hidden representation can be computed using a series calculation function concat
(
→
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(r)
t ,
←
h
(r)
t

)
that concatenates the forward and backward hidden representations. The last layer of the hidden layer
outputs the preference vector through the fully connected layer.

The embedded vector of each item is used as the input of the model. In the model training process,
the mean square error (MSE) and Adagrad are used to learn the optimization model, so that the model
can well learn the preferences of each user and better understand and represent the user long-term
stable preference.

The MSE equation is shown as follows:

MSE =
1
n

m

∑
i=1

(yi − ŷi)
2 , (9)

where yi is the actual user interaction item in the test set, ŷi is the predicted item, and wi > 0 is the item
weight. The more similar the predicted item and the actual interaction item are, the better the model
performs, meaning the more accurate its prediction is.

2.4. Algorithms

The entire process of our recommender system includes Algorithm 1 Item Embedding and
Algorithm 2 User Preference Learning as follows.

Algorithm 1 Item Embedding

Input:
S = (S1, S2, S3, . . . , Sm) - All user item sequences;
→
L - Class label vector.

Output:
→
V j - A vector representation of per items in a low-dimensional space;
Ui - matrix corresponding to user i’s item sequence.

1: for each i ∈ [0, m− 1] do
2: Feed Si of user i into Item2vec; 1

M ∑M
x=1 ∑M

y 6=i log p
(

Iy|Ix
)

;
3: end for
4: for each j ∈ [0, n− 1] do

5:
→
V j=

→
V j +

→
L j;

6: end for
7: return Si = {V1, V2, V3, . . . , Vn}

In Algorithm 1, the user item sequences and the content of the items are fed into Item2vec to train
the item’s embedding vectors.

First, we extract the item set I and the item’s label set L from the user rating data.
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Then, we convert the item set and the label set into a one-by-one item sequence Si and a one-hot

encoded label vector
→
L , respectively.

Finally, the item sequence and label vectors are learned as the embedded vector representation
→
V i

of items in low-dimensional space by Item2vec model (Line 1–5).
Algorithm 2 is to feed the item’s embedding vectors corresponding to the user item sequence into

deep Bi-LSTM, which generated the user preference vector by optimization of the model.

First, we use deep Bi-LSTM to learn user preferences vector
→
P i, and add multiple hidden layers

to enhance the model’s expressive ability (Line 1–11).

Then, we calculate the similarity simUi ,Ij between the preference vector
→
P i of the target user Ui

and the vector
→
V j of each item learned in the low-dimensional space: simUi ,Ij =

→
P i ·

→
V j (Line 12–16).

Last, we filter out the item set I′ that the target user does not interact with, and sort items
according to the similarity simUi ,Ij

(
Ij ∈ I′

)
. Top-k items are recommend to the target users (Line 17).

Algorithm 2 Weight Update and User Preference Learning

Input:
Si = {V1, V2, V3, . . . , Vn} - The first j− 1 item set of all item sequences;
ai - Impact weight of item i on the next item selection;
length - The length of item sequence.

Output:
→
P i - The preference vector of the target user Ui;
A recommendation Top-k list.

1: for each j ∈ [0, n− 1] do
2: if j < length-1 then
3: Vj and ai input to deep Bi-LSTM;
4: else if j = length-1 then
5: Vj as a target item of deep Bi-LSTM;
6: else
7: break;
8: end if
9: end for

10: MSE optimization, parameter update;

11: return
→
P i;

12: for each i ∈ [0, m− 1] do
13: for each j ∈ [0, n− 1] do

14: simUi ;Ij =
→
P i ·

→
V j;

15: end for
16: Sort items according to simUi ,Ij

(
Ij ∈ I′

)
;

17: end for
18: return A Top-k recommendation list.

Note that a item sequence consists of items that the user Ui has interacted with, which is denoted

by
→
Si = {V1, V2, . . . , Vn}, and the

→
P i of the model training output represents the user preference vector.

3. Experimental Evaluation

To evaluate our proposed recommendation model, this paper conducted the following
experiments by comparing with the state of the art of recommender methods.

3.1. Datasets

The dataset is the MovieLens 10m dataset, which is a classic dataset to calibrate various algorithms
in recommender systems. It contains 710,054 ratings and 20 class label information for 71,567 users



Entropy 2020, 22, 870 8 of 14

and 10,681 movies. The users selected in the data set are the users who have scored at least 20 movies.
The user’s rating data for the movie is contained in the ratings file, where each line represents a user’s
rating for a movie. The ratings file is sorted according to the order of the userId, and then sorted in
the order of the movieId. The movies file contains content information about the movie, and each
line represents a movie. Among them, movieId is the real movie Id with which a movie is uniquely
identified and genres is the category information of the movie. Note that a movie may belong to
multiple genres or categories.

Tables 1 and 2 are samples of the item’s sequence and item’s contents, respectively.

Table 1. Item’s Sequence.

UserId MovieId Rating Timestamp

1 122 5 838985046
1 185 5 838983525
1 231 5 838983392
1 292 5 838983421
1 316 5 838983392

Table 2. Item’s Contents.

MovieId Title Genres

1 Jumanji (1995) Adventure | Children | Fantasy
2 Grumpier Old Men (1995) Comedy | Romance
3 Waiting to Exhale (1995) Comedy | Drama| Romance
4 Father of the Bride Part II (1995) Comedy
5 Heat (1995) Action | Crime | Thriller

The data set is divided into two parts—the training set and the test set. The 90% of the data is
randomly used as the training set to complete the training of the whole algorithm, and the remaining
10% of the data is used as the test set to measure the actual performance of the model. When training
the model, the items with less than 3 training users in the training set are filtered from the item
sequences, which makes the model perform better and more appropriate to the user preference.

3.2. Baseline Algorithms

To verify the validity of the proposed model, the following algorithms are given as comparisons:
Item-based k-NN: An item-based nearest neighbor recommendation. It is a collaborative filtering

method that determines the target user’s rating of the item, finds other items that are similar to the item,
and infers his rating of the item based on the target user’s rating of a similar item. In Reference [17],
the non-personalized variants of the Item-based k-NN achieved good recommendation results in the
sequence prediction task.

Exp. Dec. Item-based k-NN [18]—An exponential decay component is added to the Item-based
k-NN to punish items that were consumed early.

Matrix Factorization (MF) [19]: A typical model-based collaborative filtering recommendation
algorithm that uses the rating information between users and items to predict the target user’s rating
of the item. However, MF only uses scoring data. Due to the scoring matrix is a very sparse matrix,
MF has serious data sparsity problems, and it is a shallow model that cannot learn further features
between users and items.

Seq. Matrix Factorization [20,21] is a method of adding a sequence based on MF and expanding
to a sequence MF method.

Standard GRU [22]: Some recommendation methods take advantage of information about user
interaction behavior. For example, Reference [22] uses the standard GRU to embed the user interaction
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items and its corresponding actions into a model to learn the interaction model of the user, and finally
outputs the next possible interaction action of the user.

3.3. Evaluation Criterion

Two ranking-based evaluation indicators are used to evaluate the quality of the next
recommendation:

Recall @k: It is the main evaluation indicator. Defined as the next item of the target user’s actual
item sequence appears in the Top-k recommendation list, which is the proportion of cases with the
required items in the Top-k items in all test cases [23].

Recall@k =
Num

NumG
, (10)

where Num is the number of related items in the recommended top-k items, and NumG is the number
of all related items.

MRR @k: Another evaluation criterion is the Mean Reciprocal Rank, the average of the reciprocal
ranking of the next item of the target user’s actual item sequence in the recommendation list [24]. If it
is higher k, the level is set zero.

MRR@k =
1
|Q|

|Q|

∑
x=1

1
rankx

, (11)

where |Q| is the number of items that the test centralized user interacts, and rankx is the item where
the user interacts in the x-th position of the recommendation list.

In short, the higher the value of these two evaluation indicators are, the better the recommendation
results of our model is. (In this paper, we set k = 20).

3.4. Experimental Results

3.4.1. Parameter Configuration

In order to ensure the accuracy of the algorithm results, this article uses the parameter
configuration corresponding to the original text, the parameters of the three comparison algorithms
are configured as follows:

Item-based k-NN nearest neighbors is set to 100; Exp. Dec. Item-based k-NN has a decay constant
set to 1; The number of the potential factor of Matrix Factorization (MF) and the number of iterations
are set to 20 and 30, respectively; The window size of Seq. Matrix Factorization is set to 2; The batch
and iteration times of standard GRU are set to 1000 and 10, respectively.

3.4.2. Performance Comparison

Table 3 shows the performance comparison in terms of the two evaluation indicators Recall@20
and MRR@20.

Table 3. Performance Comparison on MovieLens Dataset.

Recall@20 MRR@20

Item-based k-NN 0.12142 0.03639
Exp. Dec. Item-based k-NN 0.12853 0.04231
Matrix Factorization (MF) 0.07744 0.01192
Seq. Matrix Factorization 0.10730 0.01550

Standard GRU 0.15773 0.04730
FISC 0.22634 0.05634

The proposed model produces better results than other comparison methods. Especially on the
Recall@20 indicator, after adding the item content information, the recommendation performance is
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significantly improved compared to the Standard GRU, and at the same time, the MRR@20 indicator
has also been improved.

The performance of the recommendation system has been improved by adding time and sequence
factors from the traditional method. It can be seen from the Item-based k-NN and Exp. Dec. Item-based
k-NN that the calculation steps are the same, and the time factor can improve the performance. Prove
that using sequence recommendations can better mine users’ interest preferences. From the comparison
of Matrix Factorization (MF) and Seq. Matrix Factorization, it is found that by adding user item
sequence factors, user preferences can be better modeled, and the hidden correlation between items
can be obtained from the sequence.

The proposed model is significantly improved compared with the standard sequence
recommendation GRU. The key point is that the item embedding process combines the content
information of the item and the design of the neural network, which not only considers the order
similarity of the item but also considers the item’s content similarity. Further, a deeper neural network
can better learn user preferences.

3.4.3. Impact of Embedded Dimensions

The dimensions of the item’s embedded representation also affect our model’s performance.
Figure 3 shows the effect of the size of the embedded dimension on the performance of the

proposed model in the item embedding process. From the experimental results in the Figure 3, it can
be seen that when the embedding dimension is 8 dimensions, the embedded representation of the
item does not reach the best, and the recommendation performance of the trained model is relatively
low. Meanwhile, the main evaluation index Recall@20 is worse than the 16-dimensional result. When
the embedding dimensions are 16 and 32, the two index values corresponding to the two dimensions
are almost equal, and the performance of the model is improved compared to the 8-dimensional
index value, but this does not mean that the higher the dimension is, the better the recommendation
performance of the model is. When the dimension is 20, the performance of the model reaches the
highest value relative to other dimensions on the two indicators, and the recommendation performance
is relatively good.

Figure 3. Impact of Embedded Dimensions.

3.4.4. Impact of Deep Bi-LSTM

In order to further evaluate the efficiency of the proposed deep neural network, we compared the
experimental results of single-layer bidirectional LSTM (Bi-LSTM) and deep bidirectional LSTM shown
in Table 4. It can be seen that the proposed deep model is much improved compared to the single-layer
model. From the two evaluation indicators Recall@20 and MRR@20, the recommendation performance
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results for deep Bi-LSTM are 1.59% and 2.91% higher than Bi-LSTM, respectively. And the key is that
deep neural networks can learn a deeper representation of preferences between item sequences.

Table 4. Impact of Bidirectional long short term memory (LSTM) with Different Layers.

Bi-LSTM Deep Bi-LSTM Improve

Recall@20 0.22280 0.22634 +1.59%
MRR@20 0.05475 0.05634 +2.91%

3.4.5. Impact of Self-Attention

According to the experimental results as shown in Table 5, the introduction of the self-attention
mechanism makes our recommendation model effectively improve the Recall@20 and MRR@20
indicators by 8.26% and 7.34%. Because the self-attention mechanism can learn the weight that is
the impact of items which are from the item sequences on candidate item (the next item that the
user is about to interact with), and assign various weights to these items to achieve item awareness.
The model can more accurately express user preferences.

Table 5. Impact of Self-Attention.

no-att add-att Improve

Recall@20 0.15040 0.16283 +8.26%
MRR@20 0.03186 0.03402 +7.34%

Our model performs much better than other traditional advanced algorithms. The key lies in the
combination of deep bidirectional LSTM and self-attention neural network. Deep learning can better
mine the potential characteristics of users, deeply model the correlation between items, and improve
the performance of recommender systems.

4. Related Work

Reference [6] employed a bidirectional deep neural network with two hidden layers for extracting
reviews at each time, where a hidden layer is used for forward propagation (from left to right) and
another layer for back propagation (from right to left). Furthermore, the efficiency of the model
is proved by their experiments. To be able to well maintain these two hidden layers at all times,
the network’s weight and offset parameters consume twice as much memory space. Finally, the final
classification result is generated by combining the result scores produced by the two-layer RNN hidden
layer. Equations (12) and (13) are used to calculate the hidden layer representation of the bidirectional
RNN. The only difference between the two hidden layers is that they are recursively different through
the corpus. Equation (14) is a comprehensive representation of the hidden learning in both directions,
thereby predicting the possible classification relationship of the next word.

→
h t= f

(→
Axt +

→
B
→
h t−1 +

→
z
)

(12)

←
h t= f

(←
Axt +

←
B
←
h t−1 +

←
z
)

(13)

ŷt = g
(

W
→
h t +c

)
= g

(
W
[→

h t;
←
h t

]
+ c
)

, (14)

where
→
A,
→
B and

→
z are weight matrix and offset vector generated in forward propagation;

←
A,
←
B and

←
z

are weight matrix and offset vector generated in backward propagation; U is output matrix;
→
h t and

←
h t

are respectively the intermediate representation of the past and the future is used to discriminate the
input vector, and c is the output deviation.
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In Reference [7], Feng et al. proposed an MN-HDRM recommendation model. It mainly uses the
neural network framework to fuse two types of neural network models—the recurrent neural network
is responsible for modeling dynamic data, and the forward neural network is responsible for global
user data modeling. However, this method uses the deep neural network too much, which causes an
over-fitting problem on the training learning of the model.

Reference [8] proposed a convolutional LSTM network for predicting precipitation weather.
They regard the precipitation prediction in the most recent period as a space-time sequence prediction
problem and form a coding prediction by stacking multiple layers of convolutional LSTM layers.
The structure of the end-to-end precipitation prediction training model is constructed.

Reference [9] conducted deep research on the time-cycle mode that users sign in terms of
time non-uniformity and time continuity. Reference [25] incorporated time-cycle information into a
user-based collaborative filtering framework for time-aware POI recommendations.

In the context-aware repetitive neural network [10], the recommender system constructed by
RNN also utilizes information containing multiple contexts to process behavior sequence problems.
However, there are some problems with RNN when processing sequence data, assuming that the time
dependency varies monotonically with the position in the sequence, which means that one element in
the sequence is usually more important than the previous element used for prediction. In Reference [11],
the authors propose the idea of using RNN and FNN models for a joint recommendation but fail to
fully consider the impact of long-term factors.

The most recent work [26,27] uses neural networks to learn preference-preserving binary code
embedding on both users and items, which can significantly reduce the storage requirements of the
recommendation system.

Interesting areas of recommender systems are building the links between recommendations and
cognition or sentiment analysis. Reference [28] suggests that recommender systems should also be
designed and evaluated considering cognitive factors to acquiring more intelligence. Reference [29]
adjusts the recommendation process and defines a user preference model based on the perception of
preferences received by users. Affective computing have great potential as a facility for recommendations
to collect feedback on whether the recommended items is in their favors in practice [30].

Although the above methods use deep learning to make recommendations, the content
information of the item is not fully utilized, and the above methods neglect the correlation or the
impact weights among items. Based on this, this paper proposes a model for fusing item sequences
and contents based on the deep bidirectional LSTM model and self-attention, which not only utilizes
the user item sequence of interactions but also makes full use of the item’s content information and
impact weights to explore deeper relationships between items.

5. Conclusions

To improve the performance of recommender systems, this paper proposes the deep Bi-LSTM and
self-attention based recommendation model by fusing item sequences and contents. First, the user-item
interaction sequence and the item class labels are embedded to obtain the more expressive item
sequence vector. Then, the embedded item vectors are fed into self-attention to learn different impact
weights ai of each item on candidate item; the sequence vector and ai are fed into the deep Bi-LSTM,
which is trained to obtain the preference vector of each user. Finally, the Top-k recommendation list is
given by calculating the similarity between the preference vector and the item vector. The experimental
results demonstrate that the proposed model outperforms the state of the art of the methods compared
in this paper on Recall@20 and Mean Reciprocal Rank (MRR@20).

In future work, we intend on adding more item content or user information for embedding to
further improve item representation. Another promising direction is that as deep learning is less
interpretable, to combine other technologies such as knowledge graph or reinforcement learning with
deep learning in the recommendation system will better the user’s experience and increase the desire
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to purchase. Besides, we will consider training our neural networks in parallel by using Keras and
Apache Spark with multi-GPUs to accelerate the training time for big data.
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