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Abstract: A system’s heterogeneity (diversity) is the effective size of its event space, and can be
quantified using the Rényi family of indices (also known as Hill numbers in ecology or Hannah–Kay
indices in economics), which are indexed by an elasticity parameter q ≥ 0. Under these indices, the
heterogeneity of a composite system (the γ-heterogeneity) is decomposable into heterogeneity arising
from variation within and between component subsystems (the α- and β-heterogeneity, respectively).
Since the average heterogeneity of a component subsystem should not be greater than that of the
pooled system, we require that γ ≥ α. There exists a multiplicative decomposition for Rényi
heterogeneity of composite systems with discrete event spaces, but less attention has been paid to
decomposition in the continuous setting. We therefore describe multiplicative decomposition of
the Rényi heterogeneity for continuous mixture distributions under parametric and non-parametric
pooling assumptions. Under non-parametric pooling, the γ-heterogeneity must often be estimated
numerically, but the multiplicative decomposition holds such that γ ≥ α for q > 0. Conversely,
under parametric pooling, γ-heterogeneity can be computed efficiently in closed-form, but the
γ ≥ α condition holds reliably only at q = 1. Our findings will further contribute to heterogeneity
measurement in continuous systems.
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1. Introduction

Measurement of heterogeneity is important across many scientific disciplines. Ecologists are
interested in the heterogeneity of ecosystems’ biological composition (biodiversity) [1], economists are
interested in the heterogeneity of resource ownership (wealth equality) [2], and medical researchers
and physicians are interested in the heterogeneity of diseases and their presentations [3]. Using Rényi
heterogeneity [3–5], which for categorical random variables corresponds to ecologists’ Hill numbers [6]
and economists’ Hannah–Kay indices [7], one can measure a system’s heterogeneity as its effective
number of distinct configurations.

The heterogeneity of a mixture or ensemble of systems is often known as γ-heterogeneity, and is
generated by variation occurring within and between constituent subsystems. A good heterogeneity
measure will facilitate decomposition of γ-heterogeneity into α (within subsystem) and β (between
subsystem) components. Under this decomposition, we require that γ ≥ α, since it is counterintuitive
that the heterogeneity of the overall ensemble should be less than any of its constituents, let alone the
“average” subsystem [8,9]. Such a decomposition was introduced by Jost [9] for systems represented
on discrete event spaces (such as representations of organisms by species labels). However, many data
are better modeled by continuous embeddings, including word semantics [10–12], genetic population
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structure [13], and natural images [14]. Unfortunately, there is considerably less understood about
how to decompose Rényi heterogeneity in such cases where data are represented on non-categorical
spaces [4]. Although there are decomposable functional diversity indices expressed in numbers
equivalent, they require categorical partitioning of the data (in order to supply species (dis)similarity
matrices) [15–18] and setting sensitivity or threshold parameters for (dis)similarities [16,18]. For many
research applications, such as those in psychiatry [3,4,19] or involving unsupervised learning [13,14],
we may not have categorical partitions of the observable space that are valid, reliable, and of semantic
relevance. If we are to apply Rényi heterogeneity to such continuous-space systems, then we must
demonstrate that its multiplicative decomposition of γ-heterogeneity into α and β components
is retained.

Therefore, our present work extends the Jost [9] multiplicative decomposition of Rényi
heterogeneity to the analysis of continuous systems, and provides conditions under which the γ ≥ α

condition is satisfied. In Section 2, we introduce decomposition of the Rényi heterogeneity in categorical
and continuous systems. Specifically, we highlight that the most important decision guiding the
availability of a decomposition is how one defines the distribution over the mixture of subsystems.
We show that, for non-parametrically pooled systems (i.e., finite mixture models, illustrated in
Section 3), the γ ≥ α condition can hold for all values of the Rényi elasticity parameter q > 0, but
that γ-heterogeneity will generally require numerical estimation. Section 4 introduces decomposition
of Rényi heterogeneity under parametric assumptions on the pooled system’s distribution. In this
case, which amounts to a Gaussian mixed-effects model (as commonly implemented in biomedical
meta-analyses), we show that γ ≥ α will hold at q = 1, though not necessarily at q 6= 1. Finally,
in Section 5, we discuss the implications of our findings and scenarios in which parametric or
non-parametric pooling assumptions might be particularly useful.

2. Background

2.1. Categorical Rényi Heterogeneity Decomposition

In this section, we consider the definition and decomposition of Rényi heterogeneity for a
composite random variable (or “system”) that we call a discrete mixture (Definition 1).

Definition 1 (Discrete Mixture). A random variable or system X is called a discrete mixture when it is defined
on an n-dimensional discrete state space X = {1, 2, . . . , n} with probability distribution p̄ = ( p̄i)i=1,2,...,n,
where p̄i is the probability that X is observed in state i ∈ X . Furthermore, let X be an aggregation of
N component subsystems X1, X2, . . . , XN with corresponding probability distributions P =

(
pij
)j=1,2,...,n

i=1,2,...,N .
The proportion of X attributable to each component is governed by the weights w = (wi)i=1,2,...,N , where
0 ≤ wi ≤ 1 and ∑N

i=1 wi = 1.

Let X be a discrete mixture. The Rényi heterogeneity for the ithcomponent is

Πq (Xi) =

(
n

∑
j=1

pq
ij

) 1
1−q

, (1)

which is the effective number of states in Xi. Assuming the pooled distribution over discrete mixture
X is a weighted average of subsystem distributions, p̄ = P>w, the γ-heterogeneity is thus

Πγ
q (X) =

(
n

∑
i=1

p̄q
i

) 1
1−q

, (2)

which we interpret as the effective number of states in the pooled system X.
Jost [9] proposed the following decomposition of γ-heterogeneity:
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Πγ
q (X) = Πα

q (X)Πβ
q (X) , (3)

where Πα
q (X) and Πβ

q (X) are summary measures of heterogeneity due to variation within and between
subsystems, respectively. Since the γ factor has units of effective number of states in the pooled system,
and α has units of effective number of states per component, then

Πβ
q (X) =

Πγ
q (X)

Πα
q (X)

(4)

yields the effective number of components in X.
For discrete mixtures, Jost [9] specified the functional form for α-heterogeneity as

Πα
q (X) =


(

∑N
i=1

wq
i

∑N
k=1 wq

k
∑n

j=1 pq
ij

) 1
1−q

q 6= 1

exp{−∑N
i=1 wi ∑n

j=1 pij log pij} q = 1
, (5)

which allows the decomposition in Equation (3) to satisfy the following desiderata:

1. The α and β components are independent [20]
2. The within-group heterogeneity is a lower bound on total heterogeneity [8]: Πα

q ≤ Πγ
q

3. The α-heterogeneity is a form of average heterogeneity over groups
4. The α and β components are both expressed in numbers that are equivalent.

Specifically, Jost [9] proved that Πγ
q (X) ≥ Πα

q (X) is guaranteed for all q ≥ 0 when wi = wj for all
(i, j) ∈ {1, 2, . . . , N}, or for unequal weights w if the elasticity is set to the Shannon limit of q→ 1.

2.2. Continuous Rényi Heterogeneity Decomposition

Let X be a non-parametric continuous mixture according to Definition 2. Despite individual
mixture components in X potentially having parametric probability density functions, we call this a
“non-parametric” mixture because the distribution over pooled components does not assume the form
of a known parametric family.

Definition 2 (Non-Parametric Continuous Mixture). A non-parametric continuous mixture is a random
variable X defined on an n-dimensional continuous space X ⊆ Rn, and composed of subsystems X1, X2, . . . , XN ,
with respective probability density functions f(x) = { fi(x)}i=1,2,...,N and weights w = (wi)i=1,2,...,N such that
∑N

i=1 wi = 1 and 0 ≤ wi ≤ 1. The pooled probability density over X is defined as

f̄ (x) =
N

∑
i=1

wi fi(x). (6)

The continuous Rényi heterogeneity for the ithsubsystem of X is

Πq (Xi) =

(∫
X

f q
i (x) dx

) 1
1−q

, (7)

whose interpretation is given by Proposition 1 (see Proposition A3 in Nunes et al. [5] for the proof),
which we henceforth call the “effective volume” of the event space or domain of Xi.

Proposition 1 (Rényi Heterogeneity of a Continuous Random Variable). The Rényi heterogeneity of a
continuous random variable X defined on event space X ⊆ Rn with probability density function f is equal to
the magnitude of the volume of an n-cube over which there is a uniform probability density with the same Rényi
heterogeneity as that in X.
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Given the pooled distribution as defined in Equation (6), the Rényi heterogeneity over the mixture,
which is the γ-heterogeneity, is

Πγ
q (X) =

(∫
X

f̄ q(x) dx
) 1

1−q
. (8)

The γ-heterogeneity is thus the total effective volume of X’s domain. The α-heterogeneity
represents the effective volume per component mixture component in X, and is computed as follows:

Πα
q (X) =

(
N

∑
i=1

wq
i

∑N
k=1 wq

k

∫
X

f q
i (x) dx

) 1
1−q

. (9)

Given Equations (8) and (9), the following theorem provides conditions under which γ ≥ α is
satisfied for a non-parametric continuous mixture. The proof is analogous to that given by Jost [9] for
discrete mixtures, and is detailed in Appendix A.

Theorem 1. If X is a non-parametric continuous mixture (Definition 2), with γ-heterogeneity specified by
Equation (8) and α-heterogeneity given by Equation (9), then

Πβ
q (X) =

Πγ
q (X)

Πα
q (X)

≥ 1 (10)

under the following conditions:

1. q = 1
2. q > 0 when weights are equal for all mixture components.

If
∫
X f q

i (x) dx is analytically tractable for all i ∈ {1, 2, . . . , N}, then a closed form expression for

Πα
q (X) will be available. If

∫
X f̄ q(x) dx is also analytically tractable, then Πβ

q (X) will be too. However,
this will depend entirely on the functional form of f̄ , and will rarely be the case using real world data.
In the majority of cases,

∫
X f̄ q(x) dx will have to be computed numerically.

3. Rényi Heterogeneity Decomposition under a Non-Parametric Pooling Distribution

Definition 3 defines a general Gaussian mixture X as a weighted combination of
component Gaussian random variables, without identifying the function form of the composition.
The non-parametric Gaussian mixture, where the distribution over X is a simple model average over
its Gaussian components, is specified in Definition 4.

Definition 3 (Gaussian Mixture). The n-dimensional Gaussian mixture X is a weighted combination of the set
of n-dimensional Gaussian random variables {Xi}i=1,2,...,N with component weights w = (wi)i=1,2,...,N such
that 0 ≤ wi ≤ 1 and ∑N

i=1 wi = 1. The probability density function of component Xi is denoted N (x|µi, Σi),
and is parameterized by an n× 1 mean vector µi and n× n covariance matrix Σi.

Definition 4 (Non-Parametric Gaussian Mixture). We define the random variable X as a non-parametric
Gaussian mixture if it is a Gaussian mixture (Definition 3) whose probability density function is defined as

f̄ (x|µ1:N , Σ1:N , w) =
N

∑
i=1

wiN (x|µi, Σi), (11)

where µ1:N and Σ1:N denote the set of component mean vectors µ1, . . . , µN and covariance matrices Σ1, . . . , ΣN ,
respectively.
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We now introduce the Rényi heterogeneity of a single n-dimensional Gaussian random
variable (Proposition 2) and subsequently characterize the γ-, α-, and β-heterogeneity values for
a non-parametric Gaussian mixture.

Proposition 2 (Rényi Heterogeneity of a Multivariate Gaussian). The Rényi heterogeneity of an
n-dimensional Gaussian random variable X with mean µ and covariance matrix Σ is

Πq (X) =


Undefined q = 0

(2πe)
n
2 |Σ|

1
2 q = 1

(2π)
n
2 |Σ|

1
2 q = ∞

(2π)
n
2 q

n
2(q−1) |Σ|

1
2 q /∈ {0, 1, ∞}

. (12)

The proof of Proposition 2 is included in Appendix A. Unfortunately, a closed form solution such
as Equation (12) cannot be obtained for the γ-heterogeneity of a non-parametric Gaussian mixture,

Πγ
q (X) =

(∫
X

(
N

∑
i=1

wiN (x|µi, Σi)

)q

dx

) 1
1−q

, (13)

which must be computed numerically to yield the effective size of the mixture’s domain. This process
may be computationally expensive, particularly in high dimensions. Conversely, Equation (9), which
yields the effective size of the domain per mixture component, can be evaluated in closed form for a
Gaussian mixture:

Πα
q (X) =



Undefined q = 0

exp
{

1
2

(
n + ∑N

i=1 wi log |2πΣi|
)}

q = 1

0 q = ∞

(2π)
n
2

(
∑N

i=1
wq

i
∑N

j=1 wq
j

|Σi |
1
2

q
n
2

) 1
1−q

q /∈ {0, 1, ∞}

. (14)

The β-heterogeneity, which returns the effective number of components in the mixture, can then
be computed using Equation (4). Example 1 demonstrates an important property of considering X as a
non-parametric Gaussian mixture: that low-probability regions of the domain between well-separated
components will have little to no effect on the γ- or β-heterogeneity estimates.

Example 1 (Decomposition of Rényi heterogeneity in a univariate Gaussian mixture). Consider three
non-parametric Gaussian mixtures X(1), X(2), X(3) defined on R whose number of components are respectively
N1 = 2, N2 = 3, and N3 = 4. Components in each mixture are equally weighted—that is, the components
of mixture X(j) have weights w(j)

i = 1/Nj for all i ∈ {1, 2, . . . , Nj}—and have equal standard deviation
σ = 0.5. This yields a per-component Rényi heterogeneity of approximately 2.07, which is also consequently the
α-heterogeneity for each Gaussian mixture.

Figure 1 demonstrates the multiplicative decomposition of Rényi heterogeneity (at q = 1) in these Gaussian
mixtures, where γ-heterogeneity was computed numerically, across varying separations of respective mixtures’
component means. Note that the β-heterogeneity in this case represents the effective number of distinct
components in the mixture distribution, and is bound between 1 (when all components overlap), and Nj (when
all components are well separated). Further separating the mixture components beyond the point at which
β-heterogeneity reaches Nj yielded no further increase in β-heterogeneity.

Assuming sufficiently accurate approximation of the integral in Equation (13), the γ-heterogeneity
in Example 1 appears to reach a limit corresponding to the sum of effective domain sizes under
all mixture components, and the β-heterogeneity reaches a limit corresponding to the number of
individual mixture components.
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Unfortunately, computation of β-heterogeneity in a non-parametric Gaussian mixture will yield
results whose accuracy will depend on the error of numerical integration, and which may consume
significant computational resources when evaluated for large N (many components) and large n (high
dimension). Monte Carlo integration may be preferable for high dimensional mixture distributions,
but running samplers can still be costly if the γ-heterogeneity must be estimated many times. Although
the non-parametric pooling approach may be the only available method for many distribution classes,
a computationally efficient parametric pooling approach exists for Gaussian mixtures, to which we
now turn our attention.
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Figure 1. Demonstration of the multiplicative decomposition of Rényi heterogeneity in Gaussian
mixture models, where γ-heterogeneity is computed using numerical integration. Each row represents
a different number of mixture components (from top to bottom: 2, 3, and 4 univariate Gaussians with
σ = 0.5, respectively). Each column shows a case in which the component locations are progressively
further separated (maxi µi −mini µi distance from left to right: 0, 2, 4, 6). The α-heterogeneity in all
scenarios was ≈ 2.07. The headings on each panel show the resulting γ and β-heterogeneity values.

4. Rényi Heterogeneity Decomposition Under a Parametric Pooling Distribution

This section introduces the parametric Gaussian mixture (Definition 5). This is essentially an
ensemble of individual Gaussian distributions whose means and covariance matrices are weighted
and pooled to obtain the mean and covariance matrix of the mixture as a whole. We subsequently
provide conditions under which decomposition of the parametric Gaussian mixture’s heterogeneity
satisfies the requirement that α-heterogeneity be a lower bound on γ-heterogeneity (Theorem 2).
Parametric Gaussian mixtures are an important class of models commonly used in mixed-effects
meta-analyses [21], where one models the effect size of each of K ∈ N+ studies as Gaussians whose
means are themselves Gaussian distributed with “true” effect-size µ∗ and variance τ2. The variance
of the true effect, τ2, is often taken as an index of between-study heterogeneity, but unfortunately
variance does not satisfy the replication principle [4]. A parametric Gaussian mixture can also be
used to measure the effective number of natural images embedded in the real valued latent space of a
variational autoencoder (a probabilistic deep learning model used to learn compressed representations
of high-dimensional data) [5].

Definition 5 (Parametric Gaussian Mixture). We define the random variable X as an n-dimensional
parametric Gaussian mixture if it is a Gaussian mixture (Definition 3) whose probability density function
is defined as
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f̄ (x|µ∗, Σ∗) = N (x|µ∗, Σ∗), (15)

with pooled mean vector

µ∗ =
N

∑
i=1

wiµi, (16)

and pooled covariance matrix

Σ∗ = −µ∗µ
>
∗ +

N

∑
i=1

wi

(
Σi + µiµ

>
i

)
. (17)

The efficiency of assuming a parametric, rather than non-parametric, Gaussian mixture is that
γ-heterogeneity for the latter may be computed in closed form using Equation (12) (it is simply a
function of Equation (17)). However, the critical difference between the parametric and non-parametric
Gaussian mixture assumptions is that γ-heterogeneity—and therefore β-heterogeneity—will depend
on the component means µ1:N , according to the following Lemma.

Lemma 1 (Relationship of γ-Heterogeneity to Component Dispersion). Let X and X′ be N-component
parametric Gaussian mixtures on Rn with component-wise mean vectors µ1:N = {µi}i=1,2,...,N and µ′1:N ={√

cµi
}

i=1,2,...,N , where c ≥ 1 is a scaling factor. The component-wise weights w and covariance matrices
Σ1:N = {Σi}i=1,2,...,N are identical between X and X′. Finally, let Σ∗ and Σ′∗ be the pooled covariance matrices
for X and X′, respectively. Then, for all c ≥ 1, we have that

Πγ
q
(
X′
)
≥ Πγ

q (X) , (18)

with equality if c = 1.

Lemma 1, whose proof is detailed in Appendix A, implies that the resulting β-heterogeneity of a
parametric Gaussian mixture will increase as the mixture component means are spread further apart.
This follows from the fact that Equation (14), which is computed component-wise, remains a valid
expression of the α-heterogeneity in a parametric Gaussian mixture.

Before stating the conditions under which α is a lower bound on γ for a parametric Gaussian
mixture (Theorem 2), we introduce the following Lemma, whose proof is left to Appendix A.

Lemma 2. If {Σi}i=1,2,...,N is a set of N ∈ N≥2 positive semidefinite n × n matrices with corresponding
weights w = (wi)i=1,2,...,N such that 0 ≤ wi ≤ 1 and ∑N

i=1 wi = 1, then

∣∣∣∣∣ N

∑
i=1

wiΣi

∣∣∣∣∣
1
2

≥
N

∑
i=1
|Σi|

wi
2 . (19)

Theorem 2. The Rényi β-heterogeneity of order q = 1 of a parametric Gaussian mixture X (Definition 5) has a
lower bound of 1:

Πβ
1 (X) =

Πγ
1 (X)

Πα
1 (X)

≥ 1 (20)

Proof. Recall that Πα
q (X) is independent of the mean-vectors of components in X (Equation (14)).

Furthermore, it follows from Lemma 1 that, if µ1:N = {0}i=1,2,...,N , where 0 is an n× 1 zero vector,
then for any parametric Gaussian mixture X′ with means µ′1:N , we will have Πγ

q (X′) ≥ Πγ
q (X), where

equality is obtained if µ′1:N are also zero vectors, or the covariance of mean vectors in X′,

Cov[µ′] = E[µ′µ′>]−E[µ′]E[µ′]>, (21)
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is otherwise singular. Thus, it suffices to prove our theorem under the assumption that µ1:N =

{0}i=1,2,...,N , where the pooled covariance of X is redefined as

Σ∗ =
N

∑
i=1

wiΣi. (22)

The expression for Πγ
1 (X) ≥ Πα

1 (X) is

(2πe)
n
2 |Σ∗|

1
2 ≥ exp

{
1
2

(
n +

N

∑
i=1

wi log |2πΣi|
)}

, (23)

which after simplification,

|Σ∗|
1
2 ≥

N

∏
i=1
|Σi|

wi
2 , (24)

can be appreciated to satisfy Lemma 2.

Although Theorem 2 highlights the reliability and flexibility of using elasticity q = 1, we must
emphasize that q = 1 may not be the only condition under which Πγ

q (X) ≥ Πα
q (X), as suggested by

Example 2. Indeed, Example 2 suggests that the integrity of this bound on β-heterogeneity at elasticity
values q 6= 1 may depend in various ways on the unique combination of component-wise parameters
in a parametric Gaussian mixture.

Example 2 (Decomposition of Rényi Heterogeneity in a Parametric Gaussian Mixture). Consider a
parametric Gaussian mixture X with four components defined on R (for instance, Figure 2A). The components’
respective standard deviations are σ = (0.5, 0.8, 1.1, 1.6). We vary the column vector of mixture component
weights w = (wi)i=1,...,4 according to the following function:

w(a) =



(1, 0, 0, 0)> a = 0
(0.25, 0.25, 0.25, 0.25)> a = 1
(0, 0, 0, 1)> a = ∞(

a
1
3−1

a
4
3−1

a
i−1

3

)
i=1,...,4

a /∈ {0, 1, ∞}

(25)

which “skews” the distribution of weights over components in X according to the value of a skew parameter
a ≥ 0 (shown in Figure 2B. As the parameter a decreases further below 1, components X1 and X2 (which have
the narrowest distributions) become preferentially weighted. Conversely, as a increases above 1, components X3

and X4 are preferentially weighted. At a = 1, all components are equally weighted (depicted as the dashed black
lines in Figure 2B–F).

Figures 2C–E plot the γ-, α-, and β-heterogeneity for the parametric Gaussian mixture at q 6= 1,
respectively, while Figure 2F computes the β-heterogeneity at q = 1 for variously skewed weight distributions.
Note that, when the weight distributions are skewed, there is a discontinuity in β-heterogeneity around q = 1.
When the skew parameter results in a distribution of weights whose ranking of components agrees with the rank
order of component distribution widths (that is, when the largest components of σ also have the highest weights),
then β-heterogeneity appears to exceed 1 for q > 1. However, when the component weights and distribution
widths are anti-correlated ( when the largest components of σ have the smallest weights, and vice versa), then we
observe values of β-heterogeneity below 1 at values of q > 1, as well as for some values of q < 1.

Figure 3 illustrates the effect of progressively separating the locations (i.e., means) of mixture
components on the resulting β-heterogeneity of parametric and non-parametric univariate Gaussian
mixtures. We implemented mixtures with N ∈ {2, 3, 4} equally weighted components, respectively.
Each Gaussian component had unit variance, since our comparison is primarily concerned with
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separation of component means. The mean of component i ∈ {1, . . . , N} was set to iµo, with µo ≥ 0.
Thus, as µo is increased, mixture components become progressively further separated.
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Figure 2. Graphical counterexample showing that α-heterogeneity is not always a lower bound
on γ-heterogeneity when q 6= 1 for a parametric Gaussian mixture. (A) four univariate Gaussian
components used in the mixture distribution evaluated. (B) mixture component weights. Each colored
line (see (C)) represents a different distribution of weights on the mixture components, such that, in
some settings, the most narrow components are weighted highest, and vice versa. Weightings W1 to
W7 were generated by varying the parameter a (from Equation (25)) across the following values: a ∈
{0.32, 0.5, 0.79, 1., 1.26, 2., 3.16}. (C) γ-heterogeneity as computed by pooling the mixture components
from Panel A according to Equation (15), for each weighting scheme at q 6= 1. (D) the α-heterogeneity
for each weighting scheme at q 6= 1; (E) the β-heterogeneity across each weighting scheme at q 6= 1;
(F) the β-heterogeneity across various weighting schemes (plotted on the x-axis in log scale) at q = 1.
The vertical coloured lines correspond to the values of Πβ

1 (X) across the weighting schemes W1:7

shown in the legend of (C).
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Figure 3. Comparison of β-heterogeneity for univariate Gaussian mixtures with varying numbers of
components (blue lines N = 2; purple lines N = 3; gold lines N = 4). Individual Gaussian components
have unit variance, and the mean of component i ∈ {1, . . . , N} is set to iµo, with µo ≥ 0. Solid lines
show the β-heterogeneity computed for the non-parametric Gaussian mixture using a second-order
asymptotic approximation to the integral in Equation (13). Dotted markers show β-heterogeneity of
respective non-parametric Gaussian mixtures with the γ-heterogeneity estimated numerically. Dashed
lines show the respective β-heterogeneities for parametric Gaussian mixtures.

The γ-heterogeneity values of parametric Gaussian mixtures were computed by pooling
component means and variances according to Definition 5, to which we applied Equation (12).
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The γ-heterogeneity values of non-parametric Gaussian mixtures (Equation (13)) were computed
using numerical integration, as well as in closed form using second-order asymptotic approximation.
In all cases, the α-heterogeneity reduced simply to the Rényi heterogeneity of a single univariate
Gaussian with unit variance.

Figure 3 further highlights that the β-heterogeneity of uniformly weighted non-parametric
Gaussian mixtures tend to approach the number of individual components in the system. Conversely,
the β-heterogeneity of parametric Gaussian mixtures continues increasing. In fact, one can show that,
as the separation between mixture components becomes large, the β-heterogeneity approaches a linear
rate of growth (Appendix B).

5. Discussion

This paper provided approaches for multiplicative decomposition of heterogeneity in
continuous mixture distributions, thereby extending the earlier work on discrete space heterogeneity
decomposition presented by Jost [9]. Two approaches were offered, dependent upon whether the
distribution over the pooled system is defined either parametrically or non-parametrically. Our results
improve the understanding of heterogeneity measurement in non-categorical systems by providing
conditions under which decomposition of heterogeneity into α and β components conforms to the
intuitive property that γ ≥ α.

If one defines the pooled mixture non-parametrically, as in a finite mixture model, heterogeneity is
decomposable such that γ ≥ α for all q > 0 (if component weights are uniform, or at q = 1, otherwise),
and β may be interpreted as the discrete number of distinct mixture components (Sections 2.2 and 3).
This has the advantage of conforming with the original discrete decomposition by Jost [9], insofar as
probability mass in the mixture is recorded only where it is observed in the data, and not elsewhere,
as would be assumed under a parametric model of the pooled system. Consequently, one achieves a
more precise estimate of the size of the pooled system’s base of support. The primary limitation arises
from the need to numerically integrate the γ-heterogeneity, which can become prohibitively expensive
in higher dimensions. Future work should investigate the error bounds on numerically integrated γ.

A more computationally efficient approach for decomposition of continuous Rényi heterogeneity
is to assume that the pooled mixture has an overall parametric distribution. A common application for
which this assumption is generally made is in mixed-effects meta-analysis [21]. An important departure
from the non-parametric pooling approach of finite mixture models is that non-trivial probability mass
may now be assigned to regions not covered by any of the constituent component distributions.
From another perspective, one may appreciate that the non-parametric approach to pooling is
insensitive to the distance between component distributions, and rather only measures the effective
volume of event space to which component distributions assign probability. Conversely, assumption
of the parametric distribution over mixture (in the case of Section 4, a Gaussian) incorporates the
distance between the component distributions into the calculation of γ-heterogeneity. This would
be appropriate in scenarios where one assumes that the observed components undersamples the
true distribution on the pooled system. For example, in the case of mixed-effects meta-analysis, the
available research studies for inclusion may differ significantly in terms of their means, but one might
assume that there is a significant probability of a new study yielding an effect somewhere in between.
Specifying a parametric distribution over the pooled system would capture this assumption.

One limitation of the present study is the use of a Gaussian model for the pooled system
distribution. This was chosen on account of (A) its prevalence in the scientific literature and (B)
analytical tractability. Future work should expand these results to other distributions. Notwithstanding
this, we have demonstrated the decomposition of γ Rényi heterogeneity into its α and β components for
continuous systems. There are (broadly) two approaches, based on whether parametric assumptions
are made about the pooled system distribution. Under these assumptions applied to Gaussian mixture
distributions, we provided conditions under which the criterion that γ ≥ α is satisfied. Future
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studies should evaluate this method as an alternative approach for the measurement of meta-analytic
heterogeneity, and expand these results to other parametric distributions over the pooled system.
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visualization, A.N.; supervision, M.A. and T.T. All authors have read and agreed to the published version of the
manuscript.
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Appendix A. Proofs

Proof of Theorem 1. Following Jost [9] (proof 2), in the limit q → 1, one obtains the following
inequality:

−
N

∑
i=1

wi

∫
X

fi(x) log fi(x) dx ≤ −
∫
X

f̄ (x) log f̄ (x) dx, (A1)

whereas, when wi = wj for all (i, j) ∈ {1, 2, . . . , N}, for q > 1, we have

1
N

N

∑
i=1

∫
X

f q
i (x) dx ≥

∫
X

(
1
N

N

∑
i=1

fi(x)

)q

dx. (A2)

and, for q < 1, we have
1
N

N

∑
i=1

∫
X

f q
i (x) dx ≤

∫
X

(
1
N

N

∑
i=1

fi(x)

)q

dx, (A3)

all of which hold by Jensen’s inequality.

Proof of Proposition 2. We must solve the following integral:

Πq (X) =

[
(2π)−

qn
2 |Σ|−

q
2

∫
Rn

e−
q
2 (x−µ)>Σ−1(x−µ) dx

] 1
1−q

(A4)

The eigendecomposition of the inverse of the covariance matrix Σ−1 into an orthonormal matrix
of eigenvectors U and an n × n diagonal matrix of eigenvalues Λ =

(
δijλi

)j=1,2,...,n
i=1,2,...,n , where δij is

Kronecker’s delta, facilitates the substitution y = U−1(x− µ) required for Gaussian integration, by
which we obtain the following solution for q /∈ {0, 1, ∞}:

Πq (X) = q
n

2(q−1) (2π)
n
2 |Σ|

1
2 . (A5)

L’Hôpital’s rule facilitates computation of the limit as q→ 1:

lim
q→1

log Πq (X) = lim
q→1

(
n

2(q− 1)
log q

)
+

n
2

log(2π) +
1
2

log |Σ|

=
n
2
+

n
2

log(2π) +
1
2

log |Σ| ,
(A6)

giving the perplexity,

Π1 (X) = (2πe)
n
2 |Σ|

1
2 . (A7)

By the same procedure, we can compute the limit as q→ ∞,

Π∞ (X) = (2π)
n
2 |Σ|

1
2 , (A8)
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as well as show that Π0 (X) is undefined.

Proof of Lemma 1. For all q > 0, proving Πγ
q (X′) ≥ Πγ

q (X) amounts to proving
∣∣Σ′∗∣∣ 1

2 ≥ |Σ∗|
1
2 .

To this end, we have

Σ′∗ =
N

∑
i=1

wiΣi +

 N

∑
i=1

wi
(√

cµi
) (√

cµi
)> −( N

∑
i=1

wi
√

cµi

)(
N

∑
i=1

wi
√

cµi

)> (A9)

=
N

∑
i=1

wiΣi + c

(
N

∑
i=1

wiµiµ
>
i − µ∗µ

>
∗

)
(A10)

= Σ̂ + cC[µ] (A11)

and
Σ∗ = Σ̂ + C[µ], (A12)

where we denoted Σ̂ = ∑N
i=1 wiΣi and C[µ] = ∑N

i=1 wiµiµ
>
i − µ∗µ

>
∗ for notational parsimony. Clearly,

when c = 1, we have Σ′∗ = Σ∗.
By the Minkowski determinant inequality, we have that

∣∣Σ′∗∣∣ 1
2 ≥

∣∣Σ̂∣∣ 1
2 + c

n
2 |C[µ]|

1
2 (A13)

|Σ∗|
1
2 ≥

∣∣Σ̂∣∣ 1
2 + |C[µ]|

1
2 , (A14)

which, since c ≥ 1, implies the first line is greater than or equal to the second. Subtracting the second
line from the first and simplifying yields

∣∣Σ′∗∣∣ 1
2 − |Σ∗|

1
2

|C[µ]|
1
2

≥ c
n
2 − 1 (A15)

At c = 1, Equation (A15) reduces to an equality, and, since c ≥ 1 and n ≥ 1, Equation (A15)

establishes that
∣∣Σ′∗∣∣ 1

2 ≥ |Σ∗|
1
2 .

Proof of Lemma 2. Since Σ1:N are positive semidefinite matrices, then for all x ∈ Rn, we have that
− 1

2 x> (wiΣi) x ≤ 0, and thus− 1
2 x>

(
∑N

i=1 wiΣi

)
x ≤ 0. By exponentiating the quadratic term, we have

e−
1
2 x>(∑N

i=1 wiΣi)x =
N

∏
i=1

(
e−

1
2 x>Σix

)wi
. (A16)

We obtain the following expressions by applying Gaussian integration to the left-hand side,

∫
Rn

e−
1
2 x>(∑N

i=1 wiΣi)x dx = (2π)
n
2

∣∣∣∣∣
(

N

∑
i=1

wiΣi

)∣∣∣∣∣
− 1

2

, (A17)

as well as to a bound on the right-hand side obtained by Hölder’s inequality,

∫
Rn

N

∏
i=1

(
e−

1
2 x>Σix

)wi
dx ≤

N

∏
i=1

(∫
Rn

e−
1
2 x>Σix dx

)wi

(A18)

= (2π)
n
2

(
N

∏
i=1
|Σi|−

wi
2

)
. (A19)
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Substituting Equations (A17) and (A19) into Equation (A16) and simplifying terms yields

∣∣∣∣∣ N

∑
i=1

wiΣi

∣∣∣∣∣
1
2

≥
N

∏
i=1
|Σi|

wi
2 . (A20)

Appendix B. Growth of β-Heterogeneity with Respect to Component Separation

Let X be a parametric Gaussian mixture with N component-wise means µ, 2µ, . . . , Nµ, where µ is
an n-dimensional column vector where all entries are equal to a scalar µ > 0. Component-wise n× n
covariance matrices are identical and equal to Σ. The pooled mean is therefore

µ∗ =
N + 1

2
µ (A21)

and the pooled covariance matrix is

Σ∗ = Σ +
N2 − 1

12
µµ>. (A22)

Using Equations (9) and (12), the β-heterogeneity for this parametric Gaussian mixture can be
computed as follows for q = 1:

Πβ
1 (X) = 2πe

1
2 (− log(|2πΣ|)−n)+1

√∣∣∣∣Σ +
1

12
(N2 − 1) µµ>

∣∣∣∣, (A23)

and as follows for q /∈ {0, 1, ∞}:

Πβ
q (X) = (2π)1− n

2 q
1

q−1

(√
|Σ|q−

n
2

) 1
q−1

√∣∣∣∣Σ +
1
12

(N2 − 1) µµ>
∣∣∣∣. (A24)

We now show that the limit of d
dµ Πβ

q (X) as µ→ ∞ approaches a non-negative constant, indicating
that the growth in β-heterogeneity approaches a linear rate. At q = 1, we obtain

lim
µ→∞

Πβ
1 (X) =

√
eπ

6

√
N2 − 1

n−1

∏
i=1

√
2(i + 1)/i
2
√

eπ
, (A25)

and at q /∈ {0, 1, ∞}, we have

lim
µ→∞

Πβ
q (X) =

(
q

1
2(q−1)

√
π

6

√
N2 − 1

) n−1

∏
i=1

q
1

2−2q
√

2(i + 1)/i
2
√

π
, (A26)

both expressions of which are non-negative and constant with respect to µ.
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