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Abstract: Wind turbines work in strong background noise, and multiple faults often occur where
features are mixed together and are easily misjudged. To extract composite fault of rolling bearings
from wind turbines, a new hybrid approach was proposed based on multi-point optimal minimum
entropy deconvolution adjusted (MOMEDA) and the 1.5-dimensional Teager kurtosis spectrum.
The composite fault signal was deconvoluted using the MOMEDA method. The deconvoluted signal
was analyzed by applying the 1.5-dimensional Teager kurtosis spectrum. Finally, the frequency
characteristics were extracted for the bearing fault. A bearing composite fault signal with strong
background noise was utilized to prove the validity of the method. Two actual cases on bearing fault
detection were analyzed with wind turbines. The results show that the method is suitable for the
diagnosis of wind turbine compound faults and can be applied to research on the health behavior of
wind turbines.

Keywords: rolling bearing; fault detection; multi-point optimal minimum entropy deconvolution
adjusted (MOMEDA); 1.5-dimensional Teager kurtosis spectrum; wind turbine

1. Introduction

As a renewable and clean energy source worldwide, wind energy has gradually received increasing
attention. However, the working environment of the wind turbine is poor, and the variable load
fluctuation makes the wind turbine component more easily damaged [1]. Therefore, to guarantee wind
turbine safe operation it is important to carry out timely failure identification by applying running
condition data [2,3]. As the main components and parts of rotating machinery, rolling bearings are
widely applied in wind turbines [4,5]. In the actual operation of the wind turbine faults often do not
occur separately, and one fault often causes other faults to occur. When multiple faults occur and their
fault features are coupled, this kind of fault is called a composite fault [6,7]. Compared with a single
fault, in composite faults the characteristics of different components are mixed with each other, and the
interference between them adds to the difficulty of fault extraction [8]. Therefore, how to effectively
diagnose the bearing compound fault is still a hot issue [9,10]. Generally, there are two main difficulties
in the diagnosis of composite fault: (1) the pulse components generated by different faults are often
overwhelmed in the time domain waveform; and (2) different faults may produce the same or different
resonant frequencies [11].

Vibration signal analysis is the preferred method for diagnosing bearing faults [12]. When the
rolling bearing of wind turbine fails, the fault signal is often accompanied by the occurrence of periodic
shock components [13,14]. In this case, it can be used to identify the frequency of impact components
in the vibration signal to detect the bearing fault. Since the measured signal is obtained by convolution
of the periodic shock signal and resonance response of mechanical components, deconvolution is
able to recover periodic pulses [15]. Currently, the application of minimum entropy deconvolution
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(MED) is extensively used. The MED method mainly enhances the pulse component in the original
signal by maximizing the kurtosis of the filtered signal [16]. MED is generally applied to extract fault
features from raw vibration signals with large amounts of noise. Endo and Randall [17] used MED and
autoregressive models to form a new deconvolution technique and verified its effectiveness through
gearbox vibration signals. Jiang et al. [18] proposed a diagnosis method for weak rolling bearing faults
founded on MED and the envelope spectrum. Mcdonald et al. [19] studied and concluded that the MED
algorithm could preferentially deconvolute a single pulse instead of repeating the required periodic
pulses during the fault, so maximum correlation kurtosis deconvolution (MCKD) was proposed.
The effectiveness of the simulation signal was verified by comparing it with the vibration signal of the
gearbox. However, MCKD is an iterative process, and the selected filter is not optimal and is limited
by too many model parameters and complex resampling processes [20]. In response to the limitations
of MED and MCKD in rotating machinery applications, Mcdonald and Zhao [21] developed an
improved deconvolution method, which was the multipoint optimal minimum entropy deconvolution
adjusted (MOMEDA). MOMEDA has improved the definition of deconvolution for the characteristics
of rotating machinery fault signals, and introduces the target vector and multi-point D-norm to provide
a non-iterative optimal solution. In this algorithm, continuous pulses are obtained by multi-point
kurtosis deconvolution, which is made available for periodic fault feature extraction. Therefore, when
the components in the bearing system fail, the impact components associated with each component
failure have their own cycles, and the MOMEDA algorithm can separate the desired signal source by
setting the corresponding deconvolution cycle. Therefore, MOMEDA was made available for bearing
compound fault diagnosis. As an envelope demodulation method, the 1.5-dimensional Teager kurtosis
spectrum with good suppression is used to effectively demodulate the amplitude-modulated signal.
Thus, a new approach was proposed here based on MOMEDA and the 1.5-dimensional Teager kurtosis
spectrum to extract composite fault features for wind turbines. A bearing composite fault simulation
signal with strong background noise was utilized to prove the validity of the method. Two actual cases
from wind turbines were analyzed to detect the faults of rolling bearings. The proposed method can
effectively detect the composite faults of wind turbines.

The rest of this paper is organized as follows: In Sections 2 and 3, the MOMEDA and the
1.5-dimensional Teager kurtosis spectrum algorithms are reported. In Section 4, we describe the
implementation process of bearing composite fault separation and extraction of MOMEDA and the
1.5 dimension Teager kurtosis spectrum. The validity and usefulness of the method is presented by
simulations and examples in Section 5. This article is summarized in Section 6.

2. Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA)

Deconvolution is founded on the definition of a signal metric, commonly known as a norm.
A problem with the MED solution is that it is an iterative selection process, and will not necessarily
design an optimal filter for the posed problem [21]. MOMEDA is a new non-iterative deconvolution
method which is used to deconvolute the composite fault signal. MOMEDA is applied in non-integer
fault periods, and there is no resampling stage.

Suppose
→
y is a shock signal of a faulty bearing,

→

h represents the frequency response function,
→
x

stands for collected vibration signal, and
→
e represents random noise. Then, the transmission process

of the impulse signal from the signal source to the sensor can be approximated as Equation (1) [19]:

→
x =

→
y ∗
→

h +
→
e (1)
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The core part of MOMEDA algorithm aims to obtain an optimal filter
→

f in a non-iterative way to
reconstruct the original fault impact signal

→
y and minimize the influence of noise on extracted impact

signal. The deconvolution process is Equation (2):

→
y =

→

f ∗
→
x =

N−L∑
k=1

fkxk+L−1 (2)

where the value of k is 1, 2, · · · , N − L. The MOMEDA algorithm extracts the multi-point D-norm
based on the D-norm for the characteristics of periodic shock in the rotating machinery fault signal.
The multipoint D-norm is written as Equations (3) and (4) by [21]:

Multi D-Norm = MDN(
→
y ,
→

t ) =
1

‖
→

t ‖

→

t
T→

y

‖
→
y‖

(3)

MOMEDA : max
→

f

MDN(
→
y ,
→

t ) = max
→

f

→

t
T→

y

‖
→
y‖

(4)

where
→

t represents the target vector, which indicates the location and weight of the impact component
of the convolution target.

When using MOMEDA for multi-fault detection, the failure period in vibration signal should be
considered Equation (5):

tn = Pn(T) = δround(T) + δround(2T) + · · · ,
→

t =
→

P(T)
(5)

where tn stands for the pulse at signal n, and T represents the deconvolution period.

When the target vector
→

t is completely matched with the original impact signal
→
y ,

the deconvolution effect is optimal. At this time, the multi-point D-norm obtains the maximum

value, and the corresponding filter is a set of optimal filter
→

f .
Solving the problem of Equation (4) is equivalent to solving the Equation (6):

d

d
→

f


→

t
T→

y

‖
→
y‖

 = 0 (6)

where
→

f = f1, f2, · · · , fL,
→

t = t1, t2, · · · , tN−L (7)

The Equation (8) can be obtained from Equations (2), (4), and (6):

d

d
→

f


→

t
T→

y

‖
→
y‖

 = ‖→y‖−1
(t1
→

M1 + t2
→

M2 + · · ·+ tK
→

MK) − ‖
→
y‖
−3→

t
T→

yX0
→
y = 0 (8)

If X0 = [M1, M2, · · · , Mk], then Equation (8) will be abbreviated as Equation (9):

‖
→
y‖
−1

X0
→

t − ‖
→
y‖
−3→

t
T→

yX0
→
y =

→

0 (9)
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It can be written as Equation (10):

→

t ·
→
y

‖
→
y‖

2 X0
→
y = X0

→

t (10)

When
→
y = X0

T
→

f is brought into Equation (10), this can be represented as Equation (11):

→

t
T→

y

‖
→
y‖

2

→

f =
(
X0X0

T
)−1

X0
→

t (11)

Give a particular solution to Equation (11), and it can be recorded as Equation (12):

→

f =
(
X0X0

T
)−1

X0
→

t (12)

Where Equation (13):

X0 =


xL xL+1 xL+2 · · · xN

xL−1 xL xL+1 · · · xN−1

xL−2 xL−1 xL · · · xN−2

· · · · · · · · · · · · · · ·

x1 x2 x3 · · · xN−L−r+1


L×N−L+1

(13)

Substituting Equation (12) into
→
y = X0

T
→

f , the original shock signal
→
y can be restored.

3. The 1.5-Dimensional Teager Kurtosis Spectrum

The k-order cumulant of the zero-mean stationary random signal x(n) is defined as Equation (14)
by [22]:

ckx(τ1, τ2, · · · , τk−1) = E[x(n)x(n + τ1) · · · x(n + τk−1)] − E[g(n)g(n + τ1) · · · g(n + τk−1)] (14)

where g(n) is a Gaussian random composition with the same second-order statistic as x(n). From this
this definition, the higher-order cumulant can not only measure the high-order correlation of the time
series, but also reflect the degree of the stochastic process away from the Gaussian distribution. That
is, the non-Gaussian of the signal can be measured. The high-order cumulant of Gaussian noise is
zero, so the high-order cumulant can suppress the noise influence well and improve the analysis and
recognition accuracy.

The third-order cumulant expression of x(n) can be derived from the definition of higher-order
cumulants as Equation (15):

c3x = E[x(n)x(n + τ1)x(n + τ2)] (15)

Here, τ1 = τ2 = τ can be taken to get the diagonal slice of the third-order cumulant as Equation (16):

c3x = E[x(n)x(n + τ)x(n + τ)] (16)

The 1.5-dimensional spectrum is defined as a one-dimensional Fourier transform of this diagonal
slice Equation (17):

B(ω) =
∫ +∞

−∞

c3x(τ, τ) e−jωτdτ (17)

The 1.5-dimensional spectrum is obtained by the Fourier transform of high-order cumulants,
which can restrain noise well and analyze nonlinear and non-Gaussian signals effectively [22].
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Teager kurtosis [23] as a fourth-order statistic can reflect signal departure from Gaussian
distribution and characterize impact signal characteristics. The sliding Teager kurtosis method
is utilized to abstract periodic impact components of the signal in this paper. The sliding Teager
kurtosis method mainly obtains different sliding Teager kurtosis time series by changing the calculation
time length of Teager kurtosis. The sliding Teager kurtosis is defined as Equation (18) by [23]:

C(ti) = c4y[x(i), x(i + L− 1)], i = 1, 2, · · · , n (18)

where C(ti) is the ith sample point of the sliding Teager kurtosis time series, and c4y[·] represents the
value of the Teager kurtosis of [x(i), x(i + L− 1)]. c4y[·] is taken into the absolute value. Due to noise
and other factors, L is generally in the range 2 ≤ L ≤ 15.

By calculating the 1.5-dimensional spectrum for M(n) (the sliding Teager kurtosis time series)
with the largest kurtosis value, the 1.5-dimensional Teager kurtosis spectrum for x(n) can be obtained
as Equation (19):

B(ω) =
∫ +∞

−∞

c3M(τ, τ) e−jωτdτ (19)

The 1.5-dimensional Teager kurtosis spectrum is provided, with high-order cumulants and
excellent properties in the Teager energy operator. The method can suppress noise well, track the
instantaneous energy change, and reflect the non-Gaussian characteristics. When the rolling bearing
of the wind turbine fails, the vibration signal departure from Gaussian distribution arises due to the
phenomenon of amplitude modulation. Therefore, the method can realize bearing fault diagnosis in
wind turbines, demodulating fault characteristic frequency successfully and extracting the weak shock
fault characteristics of the bearing.

4. Fault Feature Extraction Process

When a composite fault occurs in a rolling bearing of a wind turbine, it is often accompanied by a
large amount of noise interference. The source signals from multiple faults are mixed with each other,
causing great obstacles in the detection of faults. The key to compound fault diagnosis is whether it can
effectively separate the fault characteristic frequencies corresponding to different damage components.
The fault components related to different component faults in the signal have their own periods. In
the MOMEDA algorithm, the deconvolution period of interest can be input. Other sources will be
defaulted to noise components, and the deconvolution process can separate the desired signal sources.
Therefore, the MOMEDA algorithm is suitable for processing composite fault signals of wind turbine
bearings with periodic shock and low signal-to-noise ratio characteristics.

When the bearing system fails, the picked-up vibration signal has amplitude and frequency
modulation, and a departure of impact signal arises from the Gaussian distribution. The wind turbine
fault signal is analyzed by the 1.5-dimensional Teager kurtosis spectrum, which can suppress noise
well and demodulate the characteristic frequency of the bearing fault.

In summary, to achieve accurate discrimination of composite faults, the advantages of MOMEDA
and the 1.5-dimensional Teager kurtosis spectrum are combined for bearing fault detection for wind
turbines. The proposed extraction method of composite fault feature is presented in Figure 1.

The specific implementation process is as follows:
(1) First, MOMEDA preprocessing is performed by setting deconvolution periods of different faults;
(2) Then, 1.5-dimensional Teager kurtosis spectrum analysis is performed on the deconvolved

signal preprocessed by MOMEDA;
(3) According to bearing fault frequency and the results in previous step, the type of composite

fault for the bearing is detected.
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Figure 1. Flow chart of extraction method founded on multi-point optimal minimum entropy
deconvolution adjusted (MOMEDA) and 1.5-dimensional Teager spectrum.

5. Case Analysis

5.1. Case 1

To prove the validity of the novel extraction method, in this section a case is presented where
bearing composite faults were separated and diagnosed by the new method for wind turbines from
the National Renewable Energy Laboratory (NREL). For this case, a 750-KW wind turbine gearbox
with a high-speed shaft bearing was provided; the model was the SKF32222 J2 tapered roller bearing.
The gearbox body was installed with the roller bearing in the radial position of the high-speed shaft.
The sampling frequency was set to 40 kHz. The rotating speed of the shaft was 1800 r/min. After the
end of the experiment, the gearbox was disassembled and the high-speed shaft bearing had suffered
severe wear damage and overheating. The high-speed shaft frequency of the gearbox fr, the high-speed
gear meshing frequency fm1, the medium-speed gear meshing frequency fm2, the inner ring defect
frequency fi of the high-speed rolling bearing, and the holder defect frequency fc are all displayed in
Table 1.

Table 1. Gearbox fault characteristic frequency.

Name fr fm1 fm2 fi fc

Frequency/Hz 30 660 172.5 345.3 12.75

The kurtosis values (See Table 2) of the sliding Teager kurtosis time series were calculated according
to the deconvolved inner ring and holder signals. These kurtosis values were obtained for different
sliding length L conditions. They are represented using K1 and K2, respectively. K1 represents the
kurtosis value of the bearing inner ring source signal. K2 is the kurtosis value of the bearing hold
source signal.

Table 2. The kurtosis values of the sliding Teager kurtosis time series for case 1.

L 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K1 132.10 122.80 118.70 100.42 79.45 67.26 58.75 52.66 49.92 46.49 42.87 41.32 40.20 38.59
K2 2904.2 2106.1 1655.2 1316.7 942.0 1206.0 1360.2 866.4 611.4 494.6 429.3 385.6 353.1 327.5
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The original signal is indicated in Figure 2a when the rotating speed was about 30 Hz in the
high-speed shaft. The envelope spectrum and 1.5-dimensional Teager kurtosis spectrum of composite
signal are presented in Figures 2b and 3b. In Figure 2b, the high-speed shaft frequency components fr
and 2 fr, high-speed gear meshing frequency fm1, and the medium-speed gear meshing frequency fm2

are found. However, there were no prominent defect frequency components.
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Figure 3. The analysis of the inner ring fault signal for case 1. (a) The deconvoluted signal time domain
and (b) its 1.5-dimensional Teager kurtosis spectrum.

The measured original signal (see Figure 2a) was analyzed. The MOMEDA algorithm was
first utilized to deconvolute the original signal, and the deconvolution period was set to the inner
ring fault period Ti = fs/ fi = 115.8. Then, 1.5-dimensional Teager kurtosis spectrum analysis was
performed. The deconvoluted time signal and its 1.5-dimensional Teager kurtosis are indicated in
Figure 3a,b. The sliding length L was set to 2 because the kurtosis value (K1) (See Table 2) of the sliding
Teager kurtosis time series for inner ring fault signal was the largest. Figure 3b displays the result
of 1.5-dimensional Teager kurtosis spectrum analysis when the sliding window length was 2. From
Figure 3b, it can be seen that the fault frequency fi and 2 fi, 3 fi, · · · of the bearing inner ring were
accurately extracted. Noise was suppressed. There was no other defect frequency component, and the
fault frequency of bearing fi was effectively separated and presented at the same time using the novel
extraction method.

The analysis results of holder fault signal are displayed in Figure 4. MOMEDA algorithm was
first used to deconvolute the original signal, and the deconvolution period was set to the holder
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failure period Tc = fs/ fc = 3137.3. Then, 1.5-dimensional Teager kurtosis spectrum analysis was
performed. The deconvoluted time signal and its 1.5-dimensional Teager kurtosis are demonstrated
in Figure 4a,b. The sliding length L was set to 2 because the kurtosis value (K2) (see Table 2) of the
sliding Teager kurtosis time series for the holder fault signal was the largest. Figure 4b displays the
result of 1.5-dimensional Teager kurtosis spectrum analysis when the sliding window length was 2.
In Figure 4b, the fault frequency fc of the bearing holder and harmonics were accurately extracted.
Noise was suppressed, and there was no other defect frequency component. According to the above
analysis results, it can be concluded that the bearing inner ring and holder were faulty at the same
time, and the two faults were separated and diagnosed effectively by the novel method.
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Envelope spectrum analysis was performed directly on the deconvolved signals in Figures 3a and
4a. The analysis results are demonstrated in Figure 5a,b. The fault frequency of the bearing inner ring fi
is extracted in Figure 5a, and the fault frequency fc of bearing holder is also demonstrated in Figure 5b.
However, the characteristics are not clear and prominent due to background noise as compared with
Figures 3b and 4b. The two faults were separated and detected effectively by combining MOMEDA with
the 1.5-dimensional Teager kurtosis spectrum, as demonstrated in Figures 3b and 4b. The synthetical
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Figure 5. Envelope spectrum analysis results for the deconvolved signals of case 1. (a) Envelope
spectrum of the deconvolved signal for the inner ring fault. (b) Envelope spectrum of the deconvolved
signal for the holder fault.

In addition, for the sake of illustrating the superiority of the novel method, the measured
signals were analyzed and compared by the spectral kurtosis (SK) and MED method referred to
in [15]. The corresponding kurtogram is shown in Figure 6. There are two resonant frequency bands.
The resonant frequency band A was from 10,000 Hz to 11,250 Hz and the resonant frequency band B
was from 17,500 Hz to 18,750 Hz. The original signal was filtered with band A and band B to obtain
the filtered signal, and the filtered signal was handled by the MED method. Figure 7a,c,e present
the analysis of frequency band A, and Figure 7b,d,f present the analysis of frequency band B. As can
be concluded from Figure 7c,d, the fundamental frequency components of the inner race fault were
prominent, but the background noise interference was very large and the cage fault feature could not
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be displayed, even in enlarged spectrums as demonstrated in Figure 7e,f. The SK and MED method
could not separate the composite fault features, but the novel method was able to eliminate interference
successfully and extract fault features, as demonstrated in Figures 3b and 4b. The comparison between
MED and the proposed method is presented in Table 3.
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Table 3. The comparison of the methods for case 1.

Fault Features Advantages Disadvantages

SK + MED Invisible and noisy Prominent fundamental
frequency

Cannot separate the composite
fault features

MOMEDA Visible and clear Eliminating interference Can separate composite fault
features

5.2. Case 2

Another case is presented where bearing composite faults were separated and diagnosed by
the novel method in wind turbine from a wind farm set in Hebei, China. The wind turbine used a
three-stage gearbox. The first stage was a planetary gear, and the second and the third stages (middle
stage and high speed stage) were parallel helical gears. The acceleration measurement was adopted
during vibration testing. Figure 8 illustrates the structural diagram of wind turbine drive system.
The condition monitoring system (CMS) was applied to obtain data on the gearbox faults. The structure
sketch and the exact placement of the sensor of a gearbox for wind turbine are shown in Figure 8. There
were seven sensors installed in the gearbox system. The fault occurred in the seventh sensor, as shown
in Figure 8. That is, the experimental data were measured by the vibration acceleration sensor on the
generator. Output shaft frequency was fr = 21.6 Hz. The bearing model was SKF 6330M.C3 (deep
groove ball bearing). The feature frequencies of the SKF 6330M.C3 bearing are illustrated in Table 4.
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Table 4. Test bearing parameters.

Bearing Type SKF 6330M.C3

Inner ring failure frequency 116.7 Hz
Outer ring failure frequency 77.4 Hz

Rolling element failure characteristic frequency 51 Hz
Cage failure characteristic frequency 8.6 Hz

The test picture is displayed in Figure 9. A transducer in the gearbox is shown in Figure 9a.
The bearing fault on inner ring is presented in Figure 9b. The time domain waveform and envelope
spectrum of the fault bearing vibration signal are presented in Figure 10. As shown in Figure 10b,
the fundamental frequency of bearing inner and outer rings defect frequency could be extracted, but
their harmonic frequencies could not be presented. Therefore, the diagnosis of bearing fault type is
difficult to achieve.
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Figure 10. Raw signal of non-drive end bearing of the generator. (a) The time series and (b) its
envelope spectrum.

Table 5 displays kurtosis values of the sliding Teager kurtosis time series for the deconvolved
outer ring and inner signals. These kurtosis values are obtained for different sliding length L conditions.
They are represented using K1 and K2, respectively. K1 is the kurtosis value of outer ring source signal.
K2 is the kurtosis value of inner ring source signal.

Table 5. The kurtosis values of the sliding Teager kurtosis time series for case 2.

L 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K1 84.00 82.88 74.38 57.36 43.19 37.32 37.14 38.08 38.41 38.42 38.42 38.72 39.19 39.05
K2 417.12 452.85 311.59 216.84 151.71 101.80 67.33 45.69 33.13 27.96 27.00 28.38 30.44 31.94

The measured original fault signal (see Figure 10a) was analyzed. The MOMEDA algorithm was
first utilized to deconvolute the original signal, and the deconvolution period was set to the inner
ring fault period Ti = fs/ fi = 140.39. Then, 1.5-dimensional Teager kurtosis spectrum analysis was
performed. The deconvoluted time signal and its 1.5-dimensional Teager kurtosis are displayed in
Figure 11a,b. The sliding length L was set to 2 because the kurtosis value (K1) (See Table 5) of the
sliding Teager kurtosis time series for the inner ring fault signal was the largest when L = 2. Figure 11b
displays the result of 1.5-dimensional Teager kurtosis spectrum analysis when the sliding window
length was 2. From Figure 11b, it can be seen that the inner race failure frequency, its doubling
frequency component, and the modulation frequency components of the characteristic frequency were
clearly extracted. From the spectrum, it can be concluded that the noise was evidently suppressed.
There was no other defect frequency component, and the feature frequency of bearing inner ring fault
was effectively separated and presented at the same time utilizing the novel method.
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Figure 11. The analysis of bearing inner ring fault signal for case 2. (a) The time series and (b) its
1.5-dimensional Teager kurtosis spectrum.

The analysis results from the bearing outer ring fault are displayed in Figure 12. The MOMEDA
algorithm was first utilized to deconvolute the original signal, and the deconvolution period was set to
the outer ring failure period To = fs/ fo = 211.68. Then, 1.5-dimensional Teager kurtosis spectrum
analysis was performed. The deconvoluted time signal and its 1.5-dimensional Teager kurtosis are
displayed in Figure 12a,b. Sliding length L was set to 3 because the kurtosis value (K2) (see Table 4)
of the sliding Teager kurtosis time series for the outer ring fault signal was the largest when L = 3.
The result of 1.5-dimensional Teager kurtosis spectrum analysis is presented in Figure 12b when the
sliding window length was 3. In Figure 12b it can be seen that the fault frequency fo of outer ring and
its harmonic frequencies were accurately extracted. The spectrum shows that the noise was suppressed,
and there was no other defect frequency component. According to the above analysis results, it appears
that bearing inner and outer rings were faulty at the same time, and the two faults were separated
and detected effectively by utilizing the novel method. These diagnosis results are consistent with the
actual situation.
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Figure 12. The analysis of the outer ring fault signal for case 2. (a) The time series and (b) its
1.5-dimensional Teager kurtosis spectrum.

Envelope spectrum analysis was performed directly on the deconvolved signals in Figures 11a
and 12a, and the results are illustrated in Figure 13a,b. The failure frequency of bearing inner ring
fi is presented in Figure 13a. Besides, the outer ring failure frequency fo and its double frequency
component are with lower amplitudes in Figure 13a. This means that the separation of the inner race
failure feature was insufficient. The envelope spectrum of the outer race fault is displayed in Figure 13b.
It was found that the amplitudes of the extracted outer race fault fo and 2 fo were all low. The fault
features in Figure 13b were not clear due to background noise as compared with Figure 11b. The two
faults were separated and detected effectively when combining MOMEDA with the 1.5-dimensional
Teager kurtosis spectrum, as illustrated in Figures 11b and 12b. The synthetical method can effectively
eliminate redundant interference and extract the fault characteristics.
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Figure 13. Envelope spectrum analysis results for the deconvolved signals of case 2. (a) Envelope
spectrum of the deconvolved signal for inner ring fault; (b) Envelope spectrum of the deconvolved
signal for outer ring fault.

The kurtogram of measured original fault signal is presented in Figure 14. Only one resonant
frequency band, marked as band C, was observed in the kurtogram. The MED analysis result is
displayed in Figure 15. As shown in Figure 15b, only the inner race fault characteristic frequency fi
and its double component could be extracted, but no relevant component of outer race fault was found.
The spectrum was interspersed with a number of interference lines. It is hard to decide the type of
bearing compound fault accurately, but the novel method is capable of eliminating interference and
extracting fault features effectively, as displayed in Figures 11b and 12b. The comparison between
MED and the proposed method for case 2 is presented in Table 6.
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Table 6. The comparison of the methods for case 2.

Fault Features Advantages Disadvantages

SK + MED Visible inner race fault
frequency

Prominent fundamental
frequency

Cannot separate the
composite fault features

MOMEDA Visible inner and outer
race fault frequencies Eliminates interference Can separate composite fault

features

6. Conclusions

The paper proposes a novel method based on MOMEDA and the 1.5-dimensional Teager kurtosis
spectrum for bearing compound fault diagnosis in wind turbines. Using this method, MOMEDA was
utilized to deconvolute the compound fault signal as a preprocessing application. The kurtosis values of
sliding Teager kurtosis time series were computed for different bearing fault signals. The sliding length
was selected for 1.5-dimensional Teager kurtosis spectrum analysis, which was then was performed
and was aimed at obvious fault information. Synthetic analyses of simulated and actual monitoring
signals show that the new method can restrain strong background noise well and achieve accurate
separation of compound fault features for rolling bearings. When comparing the proposed method
with other methods, the proposed method is capable of eliminating interference and separating the
composite fault features, and the features of different faults are extracted effectively. The results prove
that this new method has apparent strengths in the compound fault diagnosis of rolling bearings for
wind turbines
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