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Abstract: Due to the complexity of wind speed, it has been reported that mixed-noise models, constituted
by multiple noise distributions, perform better than single-noise models. However, most existing regression
models suppose that the noise distribution is single. Therefore, we study the Least square SVR of the
Gaussian–Laplacian mixed homoscedastic (GLM− LSSVR) and heteroscedastic noise (GLMH− LSSVR)
for complicated or unknown noise distributions. The ALM technique is used to solve model GLM− LSSVR.
GLM− LSSVR is used to predict short-term wind speed with historical data. The prediction results indicate
that the presented model is superior to the single-noise model, and has fine performance.

Keywords: Least square SVR; Gaussian–Laplacian mixed noise-characteristic; empirical risk loss; equality
constraint; wind-speed forecasting

1. Introduction

In practical applications, if the data are collected in a multi-source environment, the noise distribution
is complex and unknown. Therefore, it is almost impossible for a single-noise distribution to clearly describe
the real-noise [1]. LSSVR is a method of LR that implements a sum-of-squares error function together with
regularization, thus controlling the bias–variance trade-off [2,3]. It is intended to find the concealed linear
structures in the original data [4,5]. For the sake of transition from linear to nonlinear function, the following
generalization can be made [6]: by mapping input vectors into a high-dimensional feature space H (H is
Hilbert space) through some nonlinear-mapping, seek the solution of the optimization problem in space H.
Using a suitable kernel function K(•, •), nonlinear-mappings can be estimated by kernel LSSVR, which is
an extended LR with kernel techniques. In recent years, LSSVR as a data-rich nonlinear forecasting tool
has been increasingly welcomed [7], which is applicable in many different contexts [8–10], such as machine
learning, optical character recognition, and especially wind speed/power forecasting.

Generally, the existing techniques used for wind-speed forecasting include: (i) physical; (ii) statistical
(also called data-driven); and (iii) artificial intelligence (AI)-based methods. The physical models attempt
to estimate wind flow around and inside the wind farm using physical laws governing the atmospheric
behavior [11,12]. The statistical models seek the relationships between a set of explanatory variables and
the on-line measured generation data, and the historical wind speed data recorded at the site are only
used to establish the statistical model. We can model it in a variety of ways, including persistence method
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and auto-regressive model [13,14]. AI methods include artificial neural networks (ANNs) [15], deep
learning [16], SVR machines [17,18], and the hybrid methods [19,20].

Suykens et al. [21–23] proposed least square support vector regression model with Gaussian
noise (LSSVR, also known as kernel ridge regression (KRR)). Mixed-model based on multi-objective
optimization [24,25], mixed-method based on singular spectrum analysis, firefly algorithm, and BP
neural network predict wind speed with complicated noise [26], indicating that the mixed prediction
method has the ability of powerful prediction. Mixed LSSVR machine [27] is applied to forecast the wind
speed noise, which improves performance of wind-speed prediction. GLM− SVR [28] models fitted by
Gaussian–Laplacian (G-L) mixed noise are developed, and good performance is obtained compared with
the existing regression algorithm.

To solve the above problems, we study model LSSVR of G-L mixed noise-characteristic for complex
or unknown noise distribution. In this case, we construct a technique to search the optimal solution of
the corresponding regression task. Although many LSSVR algorithms have been implemented in past
years, we exploit ALM method, as shown in Section 4. If the task is not differentiable or discontinuous, the
sub gradient descent method can be employed, or the SMO [29] can also be used if there is a very large
sample size.

The structure of this paper is as follows. Section 2 derives the optimal empirical risk loss by Bayesian
principle. Section 3 constructs the LSSVR model of G-L mixed noise. Section 4 gives the solution and
algorithm design of GLM− LSSVR. In Section 5, the numerical experiment of short-term wind-speed
prediction is presented. Finally, we conclude the work.

2. Bayesian Principle to Mixed Noise Empirical Risk Loss

Given the Dataset
DN = {(A1, y1), (A2, y2), · · · , (AN , yN)}, (1)

where Ai = (xi1, xi2, · · · , xin)
T ∈ Rn, yi ∈ R(i = 1, 2, · · · , N) is the training data. R represents real number

set, Rn is the n-dimensional Euclidean-Space, and N is the sample size. Superscript T is the transpose
of matrix. Assuming that the sample of dataset DN is generated by the additive noise function ξ, the
relationship between the measured value yi and predicted value f (Ai) is:

yi = f (Ai) + ξi, i = 1, 2, · · · , N (2)

where ξi is random, i.i.d. (independent, identical probability distribution) with p(ξi) of mean µ and
standard deviation σ. Generally, the noise PDF (probability density function) p(ξ) = p(y − f (A)) is
unknown. It is necessary to predict unknown target f (A) from training set D f ⊆ DN .

Following the authors of [30,31], the optimal empirical risk loss in the sense of Maximum Likelihood
(MLE) is

l(ξ) = l(A, y, f (A)) = −Logp(y− f (A)), (3)

i.e., the empirical risk loss l(ξ) is the log-likelihood of noise characteristic.
It is assumed that noise in Equation (2) is Laplacian, with PDF p(ξ) = 1

2 e−|ξ|. By Equation (3), in
MLE the optimal empirical risk loss should be l(ξ) = |ξ|.

Suppose noise in Equation (2) is Gaussian of zero mean and homoscedastic standard deviation σ.
By Equation (3), the empirical risk loss of Gaussian noise with homoscedasticity is l(ξ) = 1

2σ2 ξ2. The noise
in Equation (2) is Gaussian of zero mean and heteroscedastic standard deviation σi. By Equation (3), the
empirical risk loss for Gaussian-noise with heteroscedasticity is l(ξi) =

1
2σ2

i
ξ2

i (i = 1, · · · , N).

Assume noise ξ in Equation (2) is the mixed noise of two kinds of noise with the PDFs p1(ξ) and
p2(ξ), respectively. Suppose that p(ξ) = [p1(ξ)

λ1 ] · [p2(ξ)
λ2 ]. By Equation (3), the corresponding empirical

risk loss of mixed-noise is
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l(ξ) = λ1 · l1(ξ) + λ2 · l2(ξ). (4)

where l1(ξ) > 0, l2(ξ) > 0 are the convex empirical risk losses of the above two kinds of noise characteristic,
respectively. The weight factors are λ1, λ2 ≥ 0 and λ1 + λ2 = 1.

Figure 1 displays the Gaussian–Laplacian (G-L) empirical risk loss of different parameters (the
parameter lambda is λ) [29].

Figure 1. G-L empirical risk loss of different parameters.

3. LSSV R Model of G-L Mixed Noise-Characteristic

Given the training samples D f ⊆ DN , construct the linear regressor f (A) = vT · A + b. To deal with
nonlinear problems, it can be summarized as follows: mapping input vectors Ai ∈ Rn into high-dimension
feature space H through the nonlinear mapping Φ (take a prior distribution), induced by nonlinear kernel
function K(Ai, Aj), kernel mapping Φ is any positive definite Mercer kernel.

Definition 1 ([6,28]). Positive definite Mercer kernel: Assume that X is a subset of Rn. Assume that the kernel
function K(Ai, Aj) defined on X× X is a positive definite Mercer kernel functionl the kernel mapping Φ is called a
positive definite Mercer kernel if there is mapping Φ : X → H (H is Hilbert Space), such that

K(Ai, Aj) = (Φ(Ai) ·Φ(Aj)), (i, j = 1, 2, · · · , N). (5)

where (·) represents the inner-product in Space H.

Therefore, the optimization problem of Space H is solved. At present, the input vectors (Ai · Aj) are
replaced by inner product (Φ(Ai) · Φ(Aj)) in feature space H. Through the use of kernel K(Ai, Aj) =

(Φ(Ai) ·Φ(Aj)), the linear model be extended to a nonlinear LSSVR.
In general, the mixed distribution has fine approximation ability to any continuous distribution.

When there is no prior knowledge of real-noise, it can well adapt to unknown or complicated noise. Thus,
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it is presented that a uniform model LSSVR with mixed noise characteristics (M− LSSVR). The primal
problem of model M− LSSVR is formalized as

Min{gPM−LSSVR =
1
2

vT ·v +
C
N
· [λ1 ·

N

∑
i=1

(l1(ξi))+

λ2 ·∑N
i=1(l2(ξi))]}

s.t. : ξi = yi −vT ·Φ(Ai)− b

(6)

where parameter v ∈ Rn represents weight-vector, b is the bias-term, C > 0 is the penalty parameter, and
the weight factors are λ1, λ2 ≥ 0, λ1 + λ2 = 1. (Ai, yi) ∈ DN , Φ(A) is a nonlinear mapping which transfers
the input dataset to a higher-dimensional feature space H. ξi = yi −vT ·Φ(Ai)− b is the random noise
variable at time i(i = 1, 2, · · · , N). l1(ξi) > 0, l2(ξi) > 0(i = 1, 2, · · · , l) is the convex loss-functions for
noise characteristic in sample-point (Ai, yi) ∈ DN ((i, j = 1, 2, · · · , N)).

In the application domain, most distributions do not obey Gaussian distribution, and they also do not
satisfy Laplacian distribution. the noise distribution is complicated, and it is almost impossible to describe
real noise with a single distribution. It has been reported that mixed noise models, constituted by multiple
noise distributions, perform better than single-noise model [1]. As the function fitting -machine, the goal is
to estimate an unknown function f (A) from dataset D f ⊆ DN . In this section, G-L mixed homoscedastic
and heteroscedastic noise distributions are used to fit complicated noise characteristic.

3.1. LSSVR Model of G-L Mixed Homoscedastic Noise-Characteristic

Suppose noise in Equation (2) is Gaussian of zero mean and homoscedastic standard deviation σ.
By Equation (3), we have that the empirical risk loss of homoscedastic-Gaussian-noise characteristic
is l1(ξ) = 1

2σ2 · ξ2. The Laplacian-noise is l2(ξ) = |ξ|. Adopting G-L mixed homoscedastic noise
distribution to fit complicated noise-characteristic, by Equation (4), the empirical risk loss about G-L
mixed homoscedastic noise is l(ξ) = λ1

2σ2 · ξ2 + λ2 · |ξ|. Putting forward the LSSVR model of G-L mixed
homoscedastic noise-characteristic (GLM− LSSVR), the primal problem of GLM− LSSVR is depicted as

Min{gPGLM−LSSVR =
1
2

vT ·v +
C
N
· ( λ1

2σ2 ·
N

∑
i=1

ξ2
i

+λ2 ·∑N
i=1 ξi)}

s.t. : ξi = yi −vT ·Φ(Ai)− b

(7)

where parameter vector v ∈ Rn, σ2 is homoscedastic, C > 0 is a penalty parameter, and the weight factors
are λ1, λ2 ≥ 0 and λ1 + λ2 = 1.

Proposition 1. The solution of the primal problem in Equation (7) of GLM− LSSVR is existent and unique about v.

Theorem 1. The dual problem of the primal problem in Equation (7) is

Max{gDGLM−LSSVR = −1
2

N

∑
i=1

N

∑
j=1

αi · αj · K(Ai, Aj)+

∑N
i=1 αi · yi − N

2C·λ1
∑N

i=1(σ
2 · αi − C · λ2)

2}
s.t. : ∑N

i=1 αi = 0

(8)

where σ2 is homoscedastic, C > 0 is a penalty parameter, and the weight factors are λ1, λ2 ≥ 0 and λ1 + λ2 = 1.
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Proof. We introduce Lagrange functional L(v, b, α, ξ) as L(v, b, α, ξ) = 1
2 vT ·v + C

N · (
λ1
2σ2 ·∑N

i=1 ξ2
i + λ2 ·

∑N
i=1 ξi) + ∑N

i=1 αi(yi −vT ·Φ(Ai)− b− ξi).
Minimizing L(v, b, α, ξ) and deriving the partial-derivative v, b, ξ, respectively, on the basis of

KKT-conditions, we get
∇v(L) = 0,∇b(L) = 0,∇ξ(L) = 0.

We obtain

v =
N

∑
i=1

αi ·Φ(Ai),

N

∑
i=1

αi = 0,

C
N
· (λ1

σ2 · ξi + λ2)− αi = 0(i = 1, 2, · · · , N).

The extreme condition is replaced by L(v, b, α, ξ), and the maximum value of α is obtained. The dual
problem in Equation (8) of the primal problem in Equation (7) is derived.

Therefore,

vi =
N

∑
i=1

αi ·Φ(Ai),

b =
1
N

N

∑
i=1

[yi −
N

∑
j=1

αi · K(Ai, Aj)−
1

λ1
· (N · σ2 · αi

C
− λ2)].

The decision-maker for GLM− LSSVR may be represented as

f (A) = vT ·Φ(A) + b =
N

∑
i=1

αiK(Ai, A) + b.

where the parameter vector v ∈ Rn, Φ : Rn → H, (Φ(Ai) · Φ(Aj)) is the inner-product of H and
K(Ai, Aj) = (Φ(Ai) ·Φ(Aj)) is the kernel-function.

Suppose the noise in Equation (2) is Gaussian homoscedastic noise, which is Gaussian noise of zero
mean and the homoscedastic variance σ2. Thus, the dual problem of LSSVR can be derived by Theorem 2:

Max{gDLSSVR = −1
2

N

∑
i=1

N

∑
j=1

(αi · αj · K(Ai, Aj))

+∑N
i=1(αi · yi)− N

2C ·∑
N
i=1(σ

2 · α2
i )}

DGN−KRR : s.t. ∑N
i=1 αi = 0.

(9)

3.2. LSSVR Model of G-L Mixed Heteroscedastic Noise-Characteristic

It is assumed that the noise in Equation (2) is Gaussian of zero mean and heteroscedastic standard
deviation σi, that is σi 6= σj, i 6= j(i, j = 1, · · · , N). From Equation (3), the empirical risk loss of
heteroscedastic Gaussian-noise characteristic is l1(ξi) =

1
2σ2

i
· ξ2

i and the loss-function of Laplacian-noise is

l2(ξi) = |ξi|, (i = 1, · · · , N). Utilizing G-L mixed heteroscedastic noise distribution to predict complicated
noise-characteristic, from Equation (4), the loss function corresponding to G-L mixed heteroscedastic
noise is l(ξi) =

λ1
2σ2

i
· ξ2

i + λ2 · |ξi|(i = 1, · · · , N). The new model LSSVR with G-L mixed heteroscedastic

noise-characteristic (GLMH− LSSVR) is proposed. The primal problem of GLMH− LSSVR is depicted as
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Min{gPGLMH−LSSVR =
1
2

vT ·v+

C
N · (

λ1
2 ·∑

N
i=1

1
σ2

i
ξ2

i + λ2 ·∑N
i=1 ξi)}

s.t. : ξi = yi −vT ·Φ(Ai)− b

(10)

where the parameter vector is v ∈ Rn, σ2
i (i = 1, 2, · · · , N) are heteroscedastic, and C > 0 is the penalty

parameter. The weight-factors are λ1, λ2 ≥ 0 and λ1 + λ2 = 1.

Proposition 2. The solution of the primal problem in Equation (10) of GLMH − LSSVR is existent and unique
about v.

Theorem 2. The dual problem of model GLMH − LSSVR in Equation (10) is

Max{gDGLMH−LSSVR = −1
2

N

∑
i=1

N

∑
j=1

αi · αj · K(Ai, Aj)+

∑N
i=1 αi · yi − N

2C·λ1
∑N

i=1(σ
2
i · αi − C · λ2)

2}
s.t. : ∑N

i=1 αi = 0

(11)

where σ2
i (i = 1, 2, · · · , N) are heteroscedastic and C > 0 is the penalty parameter. The weight factors are λ1, λ2 ≥ 0

and λ1 + λ2 = 1.

Proof. It is easier to derive the proof of Theorem 2 by analogy with Theorem 1.

We have

vi =
N

∑
i=1

αi ·Φ(Ai),

b =
1
N

N

∑
i=1

[yi −
N

∑
j=1

αi · K(Ai, Aj)−
1

λ1
· (

N · σ2
i · αi

C
− λ2)].

The decision-maker for GLMH − LSSVR may be expressed as

f (A) = vT ·Φ(A) + b =
N

∑
i=1

αiK(Ai, A) + b,

where the parameter vector is v ∈ Rn, Φ : Rn → H, and K(Ai, Aj) is the kernel function.
Suppose noise in Equation (2) is G-L mixed-homoscedastic-noise, in which Gaussian-noise of zero

mean and homoscedastic-variance σ2, Theorem 1 can be deduced from Theorem 2.

4. Solution from ALM

In this section, we use Augmented Lagrange-multiplier method (ALM) [32] to solve the dual problem
in Equation (8) by applying Gradient descent or Newton’s method to a sequence of equality-constrained
problems. By eliminating equality constraints, arbitrary equality constraints can be reduced to equivalent
unconstrained problems [33,34]. If there are large-scale training samples, some rapid optimization
techniques can be combined with the proposed model, for example the sequential minimal optimization
(SMO) algorithm [29] and the stochastic gradient decent (SDG) algorithm [35].

Theorems 1 and 2 provide effective recognition techniques for GLM− LSSVR and GLMH − LSSVR,
respectively. In this section, we derive the solution from ALM and the algorithm for model LSSVR
of G-L mixed homoscedastic noise characteristic (GLM− LSSVR). Analogously, the solution of model
GLMH − LSSVR can be obtained by ALM method.
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(1) Let dataset be DN = {(A1, y1), (A2, y2), . . . , (AN , yN)}, where Ai ∈ Rn, yi ∈ R, i = 1, . . . , N.
(2) The optimal parameters C, λ1, λ2 were searched by using the 10-fold cross-validation strategy, and

the appropriate kernel function K(•, •) was selected.
(3) Solve model GLM− LSSVR of the problem in Equation (8), and get the optimal solution α =

(α1, · · · , αN).
(4) Build the decision-function as follows

f (A) = vT ·Φ(A) + b =
N

∑
i=1

αiK(Ai, A) + b.

The parameter vector is v ∈ Rn, b = 1
N ∑N

i=1[yi −∑N
j=1 αi · K(Ai, Aj)− 1

λ1
· (N·σ2·αi

C − λ2)], Φ : Rn →
H, (Φ(Ai) · Φ(Aj)) ((i, j = 1, 2, · · · , N)) is the inner product in H, K(Ai, Aj) = (Φ(Ai) · Φ(Aj)) is a
kernel function.

5. Case Study

This section tests and verifies the validity of constructed model GLM − LSSVR by comparing it
with other techniques in the Heilongjiang, China dataset DN . This case study consists of the following
subsections: G-L mixed-noise characteristic of wind speed, prediction performance evaluation criteria,
and short-term wind-speed forecasting based on an actual dataset.

5.1. G-L Mixed-Noise-Characteristic of Wind-Speed

To demonstrate the effectiveness of the proposed model, we collected wind speed data from
Heilongjiang. The dataset consists of more than one year of wind speed data, recording wind speed
values every 10 min. We first discovered the G-L mixed noise and conducted experiments on it. We found
that turbulence is the main reason for the high uncertainty of wind speed random fluctuations. From the
perspective of wind energy, the most significant feature of wind energy resources is their variability. Now,
it shows the distribution of wind speed. Take a wind speed value every 5 s and calculate the histogram of
wind speed within 1–2 h. Two typical distributions are given: one is calculated when the wind speed is
high and the other is calculated when the wind speed is low (see Figures 2 and 3, respectively).

Figure 2. High wind speed distribution.
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Figure 3. Low wind speed distribution.

We analyzed the one-month time-series dataset, and used the persistence method to investigate
the error distribution [32]. The results show that the wind speed error ξ obtained from the persistence
prediction is not subject to single distribution, while approximately to G-L mixed distribution, and PDF of
ξ is p(ξ) = 1

2 e−|ξ| · 1
2σ2 ξ2, as shown in Figure 4.

Figure 4. G-L mixed distribution of wind-speed forecasting-error with the persistence method.

As can be seen from the above charts and figures, wind speed error approximately satisfies G-L mixed
distribution. This is a mixed kind of task.
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5.2. Prediction Performance Evaluation Criteria

It is generally known that no prediction model forecasts perfectly. The predictable performance of
ν− SVR, GN − SVR, LSSVR, and GLM− LSSVR also has certain evaluation criteria, for example MAE
(mean absolute error), RMSE (root mean square error), MAPE (mean absolute percentage error), and SEP
(the standard error of prediction). The four criteria be defined as follows:

MAE =
1
N

N

∑
i=1
|y′i − yi|, (12)

MAPE =
1
N

N

∑
i=1

|y′i − yi|
yi

× 100%, (13)

RMSE =

√√√√ 1
N

N

∑
i=1

(y′i − yi)2, (14)

SEP =
RMSE

y
× 100%, (15)

where N is the size of the dataset DN , yi is the ith actual observed data, and y′i is the ith forecasted-result.
y is the mean value of observations yi ∈ DN [36–40]. MAE shows how similar the predicted value is to
the observed value, while RMSE measures overall deviation between predicted value and observed value.
MAPE is the ratio between error and observed value. SEP is the ratio of RMSE to average observation.
They are dimensionless measurements of accuracy of wind speed system, and are sensitive to small changes.

5.3. Short-Term Wind-Speed Forecasting with Real dataset

In this section, 2160 consecutive data (1–2160, time span of 15-days) are extracted as the training
set and 720 consecutive data (2161–2880, time span of 5-days) are extracted as the testing set. The input
vector is Ai = (xi−11, xi−10, · · · , xi−1, xi), xj is the actual observed data of wind speed at moment j(j =
i− 11, i− 10, · · · , i), and the forecasting value is xi+step, where step = 1, 3, 6. That is, the above models are
used to forecast wind speed of each point xi after 10, 30 and 60 min, respectively. Figures 5–13 describe the
forecasting results given by models ν− SVR, GN − SVR, LSSVR, and GLM− LSSVR.

The models ν− SVR, GN− SVR, LSSVR, and GLM− LSSVR were implemented in Matlab 7.8. Initial
parameters of GLM− LSSVR were C ∈ [1, 200], ν ∈ (0, 1), and λ1, λ2 ∈ [0, 1]. The optimal parameters
C, ν, λ1, λ2 were searched by using 10-fold cross-validation technique. The technology of parameter selection
is studied in detail in [41,42]. In this simulation, parameters were set to C = 181, ν = 0.5, λ1 = 0.5, λ2 = 0.5.
The practical application demonstrates that both polynomial kernel and Gaussian kernel perform well
under the assumption of smoothness. Under these circumstances, models ν− SVR, GN − SVR, LSSVR,
and GLM− LSSVR employ polynomial and Gaussian kernel functions [43]:

K(Ai, Aj) = ((Ai, Aj) + 1)d,

K(Ai, Aj) = e−
‖Ai−Aj‖

2

σ2 ,

where d is a positive integer and σ is a positive number.
The dual problem of ν− SVR and SVR of the Gaussian-noise model (GN − SVR) and LSSVR are

as follows.
ν− SVR: The authors of [41,44] define the dual problem of ν− SVR as
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Max{gDν−SVR = −1
2 ∑

i∈RSV
∑

j∈RSV
(α∗i − αi)(α

∗
j − αj)

·K(Ai, Aj) + ∑i∈RSV(α
∗
i − αi) · yi}

s.t. : ∑N
i=1(α

∗
i − αi) = 0

0 ≤ α
(∗)
i ≤ C

N , i = 1, · · · , N
∑N

i=1(αi + α∗i ) ≤ C · ν, i = 1, · · · , N.

(16)

GN − SVR: The authors of [45,46] studied SVR with equality constraints and inequality constraints.
The loss-function of Gaussian-noise is c(ξi) = ξ2

i /2, (i = 1, · · · , N). Thus, thus dual problem of GN −
SVR is

max{gDGN−SVR = −1
2 ∑

i∈RSV
∑

j∈RSV
(α∗i − αi)(α

∗
j − αj)K(Ai, Aj)+

∑i∈RSV(α
∗
i − αi)yi − N

2C ∑N
i=1(α

2
i + (α∗i )

2)}
s.t. : ∑N

i=1(α
∗
i − αi) = 0

0 ≤ α
(∗)
i ≤ C

N , i = 1, · · · , N
∑N

i=1(αi + α∗i ) ≤ C · ν, i = 1, · · · , N.

(17)

LSSVR: [22] studied LS− SVR for Gaussian-noise model. The dual problem of LS− SVR is

max{gDLS−SVR = −1
2

N

∑
i=1

N

∑
j=1

(αi · αj · K(Ai, Aj))

+∑N
i=1(αi · yi)− N

2C ·∑
N
i=1(α

2
i )}

s.t. : ∑N
i=1 αi = 0.

(18)

where ξi, ξ∗i are slack-variables. C > 0, ν ∈ (0, 1] are constants. For ν− SVR and GN − SVR, the size of ε

is not gained, but is a variable whose value is compromised by a constant with the model complexity and
relaxation variables through ν [35].

Figure 5. Result of four wind-speed forecasting models after 10 min.
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Figure 6. Error of four wind-speed forecasting models after 10 min.

Figure 7. Residual box plot of four wind-speed forecasting models after 10 min.
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Figure 8. Result of four wind-speed forecasting models after 30 min.

Figure 9. Error of four wind-speed forecasting models after 30 min.
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Figure 10. Residual box plot of four wind-speed forecasting models after 30 min.

Figure 11. Result of four wind-speed forecasting models after 60 min.
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Figure 12. Error of four wind-speed forecasting models after 60 min.

Figure 13. Residual box plot of four wind-speed forecasting models after 60 min.

In Figures 5, 8 and 11, wind-speed forecasting-results at Ai-point of ν− SVR, GN − SVR, LSSVR,
and GLM− LSSVR are presented after 10, 30, and 60 min, respectively. Figures 6, 9, and 12 show the
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error statistic of wind-speed prediction using the above four models. The box plots (Figures 7, 10, and 13)
of several noise levels further intuitively demonstrate the comparative effect of error statistics using the
above four wind-speed forecasting models. The statistical criteria of MAE, MAPE, RMSE and SEP are
displayed in Tables 1–3.

Table 1. Error statistic of four wind-speed forecasting models after 10 min.

Model MAE (m/s) RMSE (m/s) MAPE (%) SEP (%)

ν− SVR 0.4280 0.5833 8.02 7.12

GN − SVR 0.4256 0.5789 7.92 7.07

LSSVR 0.4219 0.5768 7.94 7.06

GLM− LSSVR 0.4190 0.5711 7.91 7.05

Table 2. Error statistic of four wind-speed forecasting models after 30 min.

Model MAE (m/s) RMSE (m/s) MAPE (%) SEP (%)

ν− SVR 0.7979 1.0116 23.36 12.53

GN − SVR 0.7368 0.9886 19.93 11.89

LSSVR 0.7109 0.9226 17.17 11.43

GLM− LSSVR 0.6185 0.8241 10.71 10.19

Table 3. Error statistic of four wind-speed forecasting models after 60 min.

Model MAE (m/s) RMSE (m/s) MAPE (%) SEP (%)

ν− SVR 0.9994 1.2580 33.93 15.66

GN − SVR 0.9728 1.2355 31.78 15.37

LSSVR 0.9646 1.2177 29.01 15.16

GLM− LSSVR 0.8835 1.1180 25.72 13.97

From box-whisker plots in Figures 7, 10, and 13, as well as Tables 1–3, it can be concluded that, in most
cases, the forecasting-error of GLM− LSSVR calculation is superior to ν− SVR, GN − SVR and LSSVR.
With the increase of prediction horizon to 30 and 60 min, the forecasting error of different models increases
and the relative error decreases. Thus, in these cases, it is not that important. However, Tables 1–3 show
that, under all the criteria of MAE, MAPE, RMSE, and SEP, the Gaussian–Laplacian mixed-noise model
is slightly better than the classical model.

6. Conclusions

Most existing regression-techniques suppose that the noise model is single. Wind-speed forecasting is
complicated due to its volatility and uncertainty, thus it is difficult to model with a single-noise distribution.
This section summarizes our main work: (1) optimal empirical risk loss of G-L mixed noise is deduced
by Bayesian principle; (2) the LSSVR of G-L mixed homoscedastic noise (GLM − LSSVR) and G-L
mixed heteroscedastic noise (GLMH − LSSVR) for complicate noise is developed; (3) the dual problem
of GLM− LSSVR and GLMH − LSSVR is obtained using Lagrange-functional and according to KKT
conditions; (4) the stability and effectiveness of the algorithm are guaranteed by solving GLM− LSSVR
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with the ALM method; and (5) the proposed technology is used to predict short-term wind speed by
historical data, and then forecast the wind speed at some time after 10, 30, and 60 min, respectively. The
comparison results display that the proposed model is better than classical technologies in statistical criteria.

In the same way, we can also study Gaussian–Laplacian , or Gaussian–Weibull mixed noise classification
models. The new hybrid noise models would effectively solve complicated noise classification problems.
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Abbreviations

The following abbreviations are used in this manuscript:

LR Linear regression model
ν-SVR ν-Support vector regression
GN-SVR ν-SVR model of Gaussian homoscedastic-noise
LSSVR Least squares support vector regression model
GLM-LSSVR LSSVR model of Gaussian–Laplacian mixed homoscedastic-noise
ALM Augmented Lagrange multiplier method

References

1. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.
2. Tikhonov, A.A.; Arsenin, V.Y. Solutions of Ill-Posed Problems; New York Wiley: New York, NY, USA, 1977.
3. Gonen A.; Orabona, F.; Shalev-Shwartz, S. Solving Ridge Regression using Sketched Preconditioned SVRG.

In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016.
4. Hoerl, A.E. Application of ridge analysis to regression problems. Chem. Eng. Prog. 1962, 58, 54–59.
5. Zhang, Z.H.; Dai, G.; Xu, C.F. Regularized Discriminant Analysis, Ridge Regression and Beyond. J. Mach.

Learn. Res. 2010, 11, 2199–2228.
6. Sun, L.; Wang, L.; Ding, W.; Qian, Y.; Xu, J. Feature Selection Using Fuzzy Neighborhood Entropy-Based Uncertainty

Measures for Fuzzy Neighborhood Multigranulation Rough Sets. IEEE Trans. Fuzzy Syst. 2020. [CrossRef]
7. Jiao, L.C.; Bo, L.F.; Wang, L. Fast Sparse Approximation for Least Squares Support Vector Machine. IEEE Trans.

Neural Netw. 2007, 18, 685–697. [CrossRef]
8. Völgyesi, L.; Palánc, B.; Fekete, K.; Popper, G. Application of Kernel Ridge Regression to Network Levelling via

Mathematica. Geophys. Res. Abstr. 2005, 73, 263–276.
9. Sun, L.; Zhang, X.; Qian, Y.; Xu, J.; Zhang, S. Feature selection using neighborhood entropy-based uncertainty

measures for gene expression data classification. Inf. Sci. 2019, 502, 18–41. [CrossRef]
10. Douak, F.; Melgani, F.; Benoudjit, N. Kernel ridge regression with active learning for wind-speed prediction.

Appl. Energy. 2013, 103, 328–340. [CrossRef]
11. Alexiadis, M.C.; Dokopoulos, P.S.; Sahsamanoglou, H.S.; Manousaridis, I.M. Short term forecasting of wind

speed and related electrical power. J. Sol. Energy 1998, 63, 61–68. [CrossRef]
12. Negnevitsky, M.; Potter, C.W. Innovative short-term wind generation prediction techniques. In Proceedings of

the Power Systems Conference and Exposition, Atlanta, GA, USA, 29 October–1 November 2006.
13. Torres, J.L.; Garcia, A.; De Blas, M.; De Francisco, A. Forecast of hourly average wind speed with ARMA models

in Navarre (Spain). J. Sol. Energy 2005, 79, 65–77. [CrossRef]
14. Kavasseri, R.G.; Seetharaman, K. Day-ahead wind-speed forecasting using f-ARIMA models. Renew. Energy

2009, 34, 1388–1393. [CrossRef]

http://dx.doi.org/10.1109/TFUZZ.2020.2989098
http://dx.doi.org/10.1109/TNN.2006.889500
http://dx.doi.org/10.1016/j.ins.2019.05.072
http://dx.doi.org/10.1016/j.apenergy.2012.09.055
http://dx.doi.org/10.1016/S0038-092X(98)00032-2
http://dx.doi.org/10.1016/j.solener.2004.09.013
http://dx.doi.org/10.1016/j.renene.2008.09.006


Entropy 2020, 22, 629 17 of 18

15. Li, G.; Shi, J. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010, 87,
2313–2320. [CrossRef]

16. Hu, Q.; Zhang, R.; Zhou, Y. Transfer learning for short-term wind-speed prediction with deep neural networks.
Renew. Energy 2016, 85, 83–95. [CrossRef]

17. Salcedo-Sanz, S.; Ortiz-Garcı, E.G.; Pérez-Bellido, Á.M.; Portilla-Figueras, A.; Prieto, L. Short term wind-speed
prediction based on evolutionary support vector regression algorithms. Expert Syst. Appl. 2011, 38, 4052–4057.
[CrossRef]

18. Zhou, J.; Shi, J.; Li, G. Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers.
Manag. 2011, 52, 1990–1998. [CrossRef]

19. Liu, H.; Tian, H.-Q.; Chen, C.; Li, Y.-F. A hybrid statistical method to predict wind speed and wind power.
Renew. Energy 2010, 35, 1857–1861. [CrossRef]

20. Wang, Y.; Hu, Q.; Li, L.; Foley, A.M.; Srinivasan, D. Approaches to wind power curve modeling: A review and
discussion. Renew. Sustain. Energy Rev. 2019, 116, 109422. [CrossRef]

21. Suykens, J.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999, 9, 293–300.
[CrossRef]

22. Suykens, J.; Lukas, L.; Vandewalle, J. Sparse approximation using least square vector machines. In Proceedings of
the IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, 28–31 May 2000; pp. 757–760.

23. Suykens, J.; De Brabanter, J.; Lukas, L.; Vandewalle, J. Weighted least squares support vector machines: robustness
and sparse approximation. Neurocomputing 2002, 48, 85–105. [CrossRef]

24. Du, P.; Wang, J.; Guo, Z.; Yang, W. Research and application of a novel hybrid forecasting system based on
multi-objective optimization for wind speed forecasting. Energy Convers. Manag. 2017, 150, 90–107. [CrossRef]

25. Sun, L.; Wang, L.; Ding, W.; Qian, Y.; Xu, J. Neighborhood multi-granulation rough sets-based attribute reduction
using Lebesgue and entropy measures in incomplete neighborhood decision systems. Knowl.-Based Syst. 2020,
192, 105373. [CrossRef]

26. Jiang, Y.; Huang, G.Q. A hybrid method based on singular spectrum analysis, firefly algorithm, and BP neural
network for short-term wind-speed forecasting. Energies 2016, 9, 757.

27. Jiang, Y.; Huang, G. Short-term wind speed prediction: Hybrid of ensemble empirical mode decomposition,
feature selection and error correction. Energy Convers. Manag. 2017, 144, 340–350. [CrossRef]

28. Zhang, S.; Zhou, T.; Sun, L.; Wang, W.; Wang, C.; Mao, W. ν-Support Vector Regression Model Based on
Gauss-Laplace Mixture Noise Characteristic for Wind Speed Prediction. Entropy 2019, 21, 1056. [CrossRef]

29. Shevade, S.; Keerthi, S.S.; Bhattacharyya, C.; Murthy, K. Improvements to the SMO algorithm for SVM regression.
IEEE Trans. Neural Netw. 2000, 11, 1188–1193. [CrossRef]

30. Klaus-Robert, M.; Sebastian, M. An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw.
2001, 12, 181–202.

31. Chu, W.; Keerthi, S.; Ong, C.J. Bayesian Support Vector Regression Using a Unified Loss Function. IEEE Trans.
Neural Netw. 2004, 15, 29–44. [CrossRef]

32. Rockafellar, R.T. Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming.
SIAM J. Control 1974, 12, 268–285. [CrossRef]

33. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004; pp. 521–620.
34. Wang, S.; Zhang, N.; Wu, L.; Wang, Y. Wind speed forecasting based on the hybrid ensemble empirical mode

decomposition and GA-BP neural network method. Renew. Energy 2016, 94, 629–636. [CrossRef]
35. Bordes, A.; Bottou, L.; Gallinari, P. SGD-QN: Careful quasiNewton stochastic gradient descent. J. Mach. Learn. Res.

2009, 10, 1737–1754.
36. Bludszuweit, H.; Dominguez-Navarro, J.; Llombart, A. Statistical Analysis of Wind Power Forecast Error.

IEEE Trans. Power Syst. 2008, 23, 983–991. [CrossRef]
37. Fabbri, A.; Román, T.G.S.; Abbad, J.R.; Quezada, V.H.M. Assessment of the cost associated with wind generation

prediction errors in a liberalized electricity market. IEEE Trans. Power Syst. 2005, 20, 1440–1446. [CrossRef]
38. Guo, Z.; Zhao, J.; Zhang, W.; Wang, J. A corrected hybrid approach for wind speed prediction in Hexi Corridor

of China. Energy 2011, 36, 1668–1679. [CrossRef]

http://dx.doi.org/10.1016/j.apenergy.2009.12.013
http://dx.doi.org/10.1016/j.renene.2015.06.034
http://dx.doi.org/10.1016/j.eswa.2010.09.067
http://dx.doi.org/10.1016/j.enconman.2010.11.007
http://dx.doi.org/10.1016/j.renene.2009.12.011
http://dx.doi.org/10.1016/j.rser.2019.109422
http://dx.doi.org/10.1023/A:1018628609742
http://dx.doi.org/10.1016/S0925-2312(01)00644-0
http://dx.doi.org/10.1016/j.enconman.2017.07.065
http://dx.doi.org/10.1016/j.knosys.2019.105373
http://dx.doi.org/10.1016/j.enconman.2017.04.064
http://dx.doi.org/10.3390/e21111056
http://dx.doi.org/10.1109/72.870050
http://dx.doi.org/10.1109/TNN.2003.820830
http://dx.doi.org/10.1137/0312021
http://dx.doi.org/10.1016/j.renene.2016.03.103
http://dx.doi.org/10.1109/TPWRS.2008.922526
http://dx.doi.org/10.1109/TPWRS.2005.852148
http://dx.doi.org/10.1016/j.energy.2010.12.063


Entropy 2020, 22, 629 18 of 18

39. Wang, J.Z.; Hu, J.M. A robust combination approach for short-term wind-speed forecasting and analysis-
Combination of the ARIMA, ELM, SVM and LSSVM forecasts using a GPR model. Energy 2015, 93, 41–56.
[CrossRef]

40. Abdoos, A.A. A new intelligent method based on combination of VMD and ELM for short term wind power
forecasting. Neurocomputing 2016, 203, 111–120. [CrossRef]

41. Chalimourda, A.; Schölkopf, B.; Smola, A.J. Experimentally optimal ν in support vector regression for different
noise models and parameter settings. Neural Netw. 2004, 17, 127–141. [CrossRef]

42. Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression.
Neural Netw. 2004, 17, 113–126. [CrossRef]

43. Kwok, J.T.; Tsang, I.W. Linear dependency between and the input noise in ε-support vector regression. IEEE Trans.
Neural Netw. 2003, 14, 544–553. [CrossRef]

44. Schölkopf, B.; Smola, A.J.; Williamson, R.C.; Bartlett, P. New Support Vector Algorithms. Neural Comput. 2000, 12,
1207–1245.

45. Wu, Q. A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm
optimization. Expert Syst. Appl. 2010, 37, 2388–2394. [CrossRef]

46. Wu, Q.; Law, R. The forecasting model based on modified SVRM and PSO penalizing Gaussian noise. Expert Syst.
Appl. 2011, 38, 1887–1894. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.energy.2015.08.045
http://dx.doi.org/10.1016/j.neucom.2016.03.054
http://dx.doi.org/10.1016/S0893-6080(03)00209-0
http://dx.doi.org/10.1016/S0893-6080(03)00169-2
http://dx.doi.org/10.1109/TNN.2003.810604
http://dx.doi.org/10.1016/j.eswa.2009.07.057
http://dx.doi.org/10.1016/j.eswa.2010.07.120
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Bayesian Principle to Mixed Noise Empirical Risk Loss 
	 LSSVR Model of G-L Mixed Noise-Characteristic 
	 LSSVR Model of G-L Mixed Homoscedastic Noise-Characteristic
	 LSSVR Model of G-L Mixed Heteroscedastic Noise-Characteristic

	Solution from ALM 
	Case Study 
	G-L Mixed-Noise-Characteristic of Wind-Speed
	Prediction Performance Evaluation Criteria
	Short-Term Wind-Speed Forecasting with Real dataset

	Conclusions
	References

