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Abstract: A restricted Boltzmann machine is a generative probabilistic graphic network. A probability
of finding the network in a certain configuration is given by the Boltzmann distribution. Given training
data, its learning is done by optimizing the parameters of the energy function of the network. In this
paper, we analyze the training process of the restricted Boltzmann machine in the context of statistical
physics. As an illustration, for small size bar-and-stripe patterns, we calculate thermodynamic quantities
such as entropy, free energy, and internal energy as a function of the training epoch. We demonstrate the
growth of the correlation between the visible and hidden layers via the subadditivity of entropies as the
training proceeds. Using the Monte-Carlo simulation of trajectories of the visible and hidden vectors in
the configuration space, we also calculate the distribution of the work done on the restricted Boltzmann
machine by switching the parameters of the energy function. We discuss the Jarzynski equality which
connects the path average of the exponential function of the work and the difference in free energies
before and after training.

Keywords: restricted Boltzmann machines; entropy; subadditivity of entropy; Jarzynski equality;
machine learning

1. Introduction

A restricted Boltzmann machine (RBM) [1] is a generative probabilistic neural network. RBMs and
general Boltzmann machines are described by a probability distribution with parameters, i.e.,
the Boltzmann distribution. An RBM is an undirected Markov random field and is considered a basic
building block of deep neural networks. RBMs have been applied widely, for example, in dimensionality
reduction, classification, feature learning, pattern recognition, topic modeling, and so on [2–4].

As its name implies, the RBM is closely connected to physics and they share some important concepts
such as entropy, free energy, and so forth [5]. Recently, RBMs have gained renewed attention in physics
since Carleo and Troyer [6] showed that a quantum many-body state could be efficiently represented
by the RBM. Gabré et al. and Tramel et al. [7] employed the Thouless–Anderson–Palmer mean-field
approximation, used for a spin glass problem, to replace the Gibbs sampling of contrastive-divergence
training. Amin et al. [8] proposed a quantum Boltzmann machine based on the quantum Boltzmann
distribution of a quantum Hamiltonian. More interestingly, there is a deep connection between the
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Boltzmann machine and tensor networks of quantum many-body systems [9–13]. Xia and Kais combined
the restricted Boltzmann machine and quantum computing algorithms to calculate the electronic energy of
small molecules [14].

While the working principles of RBMs have been well established, it may still be needed to understand
the RBM better for further applications. In this paper, we investigate the RBM from the perspective of
statistical physics. As an illustration, for bar-and-stripe pattern data, the thermodynamic quantities such
as the entropy, the internal energy, the free energy, and the work are calculated as a function of the
epoch. Since the RBM is a bipartite system composed of visible and hidden layers, it may be interesting,
and informative, to see how the correlation between the two layers grows as the training goes on. We show
that the total entropy of the RBM is always less than the sum of the entropies of visible and hidden layers,
except at the initial time when the training begins. This is the so-called subadditivity of entropy, indicating
that the visible layer becomes correlated with the hidden layer as the training proceeds. The training of
the RBM is to adjust the parameters of the energy function, which can be considered as the work done on
the RBM, from a thermodynamic point of view. Using the Monte-Carlo simulation of the trajectories of
the visible and hidden vectors in the configuration space, we calculate the work of a single trajectory and
the statistics of the work over the ensemble of trajectories. We also examine the Jarzynski equality that
connects the ensemble of the work done on the RBM and the difference in free energies before and after
the training of the RBM.

The paper is organized as follows. In Section 2, a detailed analysis of the RBM from the statistical
physics point of view is described. In Section 3, we present the summary of the result together
with discussions.

2. Statistical Physics of Restricted Boltzmann Machines

2.1. Restricted Boltzmann Machines

Let us start with a brief introduction of the RBM [1–3]. As shown in Figure 1, the RBM is composed of
two layers; the visible layer and the hidden layer. Possible configurations of the visible and hidden layers
are represented by the random binary vectors, v = (v1, . . . , vN) ∈ {0, 1}N and h = (h1, . . . , hM) ∈ {0, 1}M,
respectively. The interaction between the visible and hidden layers is given by the so-called weight matrix
w ∈ RN ×RM, where the weight wij is the connection strength between a visible unit vi and a hidden unit
hj. The biases bi ∈ R. and cj ∈ R are applied to visible unit i and hidden unit j, respectively. Given random
vectors v and h, the energy function of the RBM is written as an Ising-type Hamiltonian.

v1 v2 vN

h1 h2 h3 hM

c1 c2 c3 cM

b1 b2 bN

wij
Hidden layer

Visible layer

Figure 1. Graph structure of a restricted Boltzmann machine with the visible layer and the hidden layer.
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E(v, h; θ) = −
N

∑
i=1

M

∑
j=1

wijvihj −
N

∑
i=1

bivi −
M

∑
i=1

cihi , (1)

where the set of model parameters is denoted by θ ≡ {wij, bi, cj}. The joint probability of finding v and h
of the RBM in a particular state is given by the Boltzmann distribution

p(v, h; θ) =
e−E(v,h;θ)

Z(θ)
, (2)

where the partition function, Z(θ) ≡ ∑v,h e−E(v,h;θ), is the sum over all possible configurations.
The marginal probabilities p(v; θ) and p(h; θ) for visible and hidden layers are obtained by summing up
the hidden or visible variables, respectively,

p(v; θ) = ∑
h

p(v, h; θ) =
1

Z(θ) ∑
h

e−E(v,h;θ) , (3)

p(h; θ) = ∑
v

p(v, h; θ) =
1

Z(θ) ∑
v

e−E(v,h;θ) . (4)

The training of the RBM is to adjust the model parameter θ such that the marginal probability of the
visible layer p(v; θ) becomes as close as possible to the unknown probability pdata(v) that generate the
training data. Given identically and independently sampled training dataD ∈ {v(1), . . . , v(D)}, the optimal
model parameters θ can be obtained by maximizing the likelihood function of the parameters, L(θ|D) =
∏D

i=1 p(v(i); θ), or equivalently by maximizing the log-likelihood function lnL(θ|D) = ∑D
i=1 ln p(v(i); θ).

Maximizing the likelihood function is equivalent to minimizing the Kullback–Leibler divergence or the
relative entropy of p(v; θ) from q(v) [15,16]

DKL(q || p) = ∑
v

q(v) ln
q(v)

p(v; θ)
, (5)

where q(v) is an unknown probability that generates the training data, q(v) = pdata(v). Another method
of monitoring the progress of training is the cross-entropy cost between the input visible vector v(i) and a
reconstructed visible vector v̄(i) of the RBM,

C = − 1
D ∑

i∈D

[
v(i) ln v̄(i) + (1− v(i)) ln(1− v̄(i))

]
. (6)

The stochastic gradient ascent method for the log-likelihood function is used to train the RBM.
Estimating the log-likelihood function requires the Monte-Carlo sampling for the model probability
distribution. Well-known sampling methods are the contrastive-divergence, denoted by CD-k, and the
persistent contrastive divergence PCD-k. For details of the RBM algorithm, please see References [2–4].
Here, we employ the CD-k method.

2.2. Free Energy, Entropy, and Internal Energy

From a physics point of view, the RBM is a finite classical system composed of two subsystems,
similar to an Ising spin system. The training of the RBM is considered the driving of the system from
an initial equilibrium state to the target equilibrium state by switching the model parameters. It may be
interesting to see how thermodynamic quantities such as free energy, entropy, internal energy, and work
change as the training progresses.
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It is straightforward to write down various thermodynamic quantities for the total system. The free
energy F is given by the logarithm of the partition function Z,

F(θ) = − ln Z(θ) . (7)

The internal energy U is given by the expectation value of the energy function E(v, h; θ)

U(θ) = ∑
v,h

E(v, h; θ)p(v, h; θ) . (8)

The entropy S of the total system comprising the hidden and visible layers is given by

S(θ) = −∑
v,h

p(v, h; θ) ln p(v, h; θ) . (9)

Here, the convention of 0 ln 0 = 0 is employed if p(v, h) = 0 [17]. The free energy (7) is related to the
difference between the internal energy (9) and the entropy (10)

F = U − TS , (10)

where T is set to 1.
Generally, it is very challenging to calculate the thermodynamic quantities, even numerically.

The number of possible configurations of N visible units and M hidden units grow exponentially as
2N+M. Here, for a feasible benchmark test, the 2× 2 bar-and-stripe data are considered [18,19]. Figure 2
shows the 6 possible 2× 2 bar-and-stripe patterns out of 16 possible configurations, which will be used
as the training data in this work. We take the sizes of the visible and the hidden layers as N = 4 and
M = 6, respectively. One may take a larger size of hidden layers, i.e., M = 8 or 10, but it does not make
an appreciable difference in our results. M = 6 is not a choice of magic number but was used as an
example since we were rather limited in our capacity of numerical computation. In order to understand
better how the RBM is trained, the thermodynamic quantities are calculated numerically for this small
benchmark system.

1

10 0

0 0 1 1

0 0

1

1

0

0

1

1

0

0 1 1

0 0 1

1

1

1

Figure 2. Six samples of 2 × 2 bar-and-stripe patterns used as the training data in this work.
Each configuration is represented by a visible vector v ∈ {0, 1}2×2 or by a decimal number; (0, 0, 0, 0) = 0,
(0, 0, 1, 1) = 3, (0, 1, 0, 1) = 5, (1, 0, 1, 0) = 10, (1, 1, 0, 0) = 12, (1, 1, 1, 1) = 15 in row-major ordering.

Figure 3 shows how the weight wij, the bias bi on the visible unit i and the bias cj on the hidden unit j
change as the training goes on. The weights wij are clustered into three classes. The evolution of the bias bi
on the visible layer is somewhat different from that of the bias cj on the hidden layer. The change in ci is
larger than that in bi. Figure 4 shows the change in the marginal probabilities p(v) of the visible layer and
p(h) of the hidden layer before and after training. Note that the marginal probability p(v) after training is
not distributed exclusively over six possible outcomes corresponding to the training data set in Figure 2.
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Figure 3. (a) Bias bi on the visible unit i and bias cj on the hidden unit j are plotted as a function of the epoch.
(b) Weight wij connecting the visible unit i and the hidden unit j are plotted as a function of the epoch.

Figure 4. Marginal probabilities p(v) of visible layer and p(h) of hidden layer are plotted (a) before training
and (b) after training. The binary vector v or h in the x-axis is represented by the decimal number as noted
in the caption of Figure 2. The visible and the hidden layers have a total number of configurations given by
24 = 16 and 26 = 64, respectively. The learning rate is 0.15, the training epoch 20000, and k = 100 in CD-k.
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Typically, the progress of learning of the RBM is monitored by the loss function. Here,
the Kullback–Leibler divergence, Equation (5), and the reconstructed cross entropy, Equation (6), are used.
Figure 5 plots the reconstructed cross entropy C, the Kullback–Leibler divergence DKL, the entropy S,
the free energy F, and the internal energy U as a function of the epoch. As shown in Figure 5a, it is
interesting to see that even after a large number of epochs ∼ 10, 000, the cost function C continues
approaching zero while the entropy S and the Kullback–Leibler divergence DKL become steady. On the
other hand, the free energy F continues decreasing together with the internal energy U, as depicted in
Figure 5b. The Kullback–Leibler divergence is a well-known indicator of the performance of RBMs. Then,
our result implies that the entropy may be another good indicator to monitor the progress of the RBM
while other thermodynamic quantities may be not.

10
-2

10
-1

10
0

10
1

Entropy S

KL divergence

Cost function C

-20

-15

-10

-5

 0

 5

 10

 0  10000  20000

(a)

(b)

Epoch

Entropy S

Internal energy U

Free energy F

F-U+S

Figure 5. For 2× 2 bar-and-stripe data, (a) cost function C, entropy S, and the Kullback–Leibler divergence
DKL(q || p) are plotted as a function of the epoch. (b) Free energy F, entropy S, and internal energy U of the
RBM are calculated as a function of the epoch.

In addition to the thermodynamic quantities of the total system of the RBM, Equations (7)–(9), it is
interesting to see how the two subsystems of the RBM evolve. Since the RBM has no intra-layer connection,
the correlation between the visible layer and the hidden layer may increase as the training proceeds.
The correlation between the visible layer and the hidden layer can be measured by the difference between
the total entropy and the sum of the entropies of the two subsystems. The entropies of the visible and
hidden layers are given by

SV = −∑
v

p(v; θ) ln p(v; θ) , (11)

SH = −∑
h

p(h; θ) ln p(h; θ) . (12)
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The entropy SV of the visible layer is closely related to the Kullback–Leibler divergence of p(v; θ) to
an unknown probability q(v) which produces the data. Equation (5) is expanded as

DKL(q || p) = ∑
v

q(v) ln q(v)−∑
v

q(v) ln p(v; θ) . (13)

The second term −∑v q(v) ln p(v; θ) depends on the parameter θ. As the training proceeds, p(v; θ)

becomes close to q(v) so the behavior of the second term is very similar to that of the entropy SV of the
visible layer. If the training is perfect, we have q(v) = p(v; θ) that leads to DKL(q || p) = 0 while SV
remains nonzero.

The difference between the total entropy and the sum of the entropies of subsystems is written as

S− (SV + SH) = ∑
v,h

p(v, h) ln
[

p(v) p(h)
p(v, h)

]
. (14)

Equation (14) tells us that if the visible random vector v and the hidden random vector h are
independent, i.e., p(v, h; θ) = p(v; θ)p(h; θ), then the entropy S of the total system is the sum of the
entropies of subsystems. In general, the entropy S of the total system is always less than or equal to the
sum of the entropy of the visible layer, SV , and the entropy of the hidden layer, SH , [20],

S ≤ SV + SH . (15)

This is called the subadditivity of entropy, one of the basic properties of the Shannon entropy, which is
also valid for the von Neumann entropy [17,21]. This property can be proved using the log inequality,
− ln x ≥ −x + 1. In another way, Equation (15) may be proved by using the log-sum inequality, which
states that for the two sets of nonnegative numbers, a1, . . . , an and b1, . . . , bn,

∑
i

ai log
ai
bi
≥
(

∑
i

ai

)
log

(∑i ai)

(∑i bi)
. (16)

In other words, Equation (14) can be regarded as the negative of the relative entropy or
Kullback–Leibler divergence of the joint probability p(v, h) to the product probability p(v) · p(h),

I
(

p(v, h) || p(v)p(h)
)
= ∑

v,h
p(v, h) log

[
p(v, h)

p(v)p(h)

]
. (17)

For the 2×2 bar-and-stripe pattern, the entropies of visible and hidden layers, SV , SH are calculated
numerically. Figure 6 plots the entropies, SV , SH , S, and the Kullback–Leibler divergence DKL(q || p)
as a function of the epoch. Figure 6a shows that the Kullback–Leibler divergence, DKL(q || p) becomes
saturated, though above zero, as the training proceeds. Similarly, the entropy SV of the visible layer is
saturated. This implies that the entropy of the visible layer, as well as the total entropy shown in Figure 5,
can be a better indicator of learning than the reconstructed cross entropy C, Equation (6). The same can
also be said about the entropy of the hidden layer, SH . If some information measures such as entropy and
the Kullback–Leibler divergence become steady, one may presume the training has been done.

The difference between the total entropy and the sum of the entropies of the two subsystems,
S− (SV + SH), becomes less than 0, as shown in Figure 6b. Thus, it demonstrates the subadditivity of
entropy, i.e., the correlation between the visible and the hidden layer as the training proceeds. As it is
saturated just as the total entropy and the entropies of the visible and hidden layers after a large number
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of epochs, the correlation between the visible layer and the hidden layer can also be a good quantifier of
the RBM progress.

10
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H
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Figure 6. (a) Kullback–Leibler divergence DKL(q || p), entropy SV , and their difference are plotted as a
function of the epoch. (b) Entropy S of the total system, entropy SV of the visible layer, entropy SH of the
hidden layer, and the difference S− SH − SV are plotted as a function of the epoch.

2.3. Work, Free Energy, and Jarzynski Equality

The training of the RBM may be viewed as driving a finite classical spin system from an initial
equilibrium state to a final equilibrium state by changing the system parameters θ slowly. If the parameters
θ are switched infinitely slowly, the classical system remains in a quasi-static equilibrium. In this
case, the total work done on the systems is equal to the Helmholtz free energy difference between
the before-training and the after-training, W∞ = F1 − F0 . For switching θ at a finite rate, the system may
not evolve immediately to an equilibrium state, the work done on the system depends on a specific path of
the system in the configuration space. Jarzynski [22,23] proved that for any switching rate, the free energy
difference ∆F is related to the average of the exponential function of the amount of work W over the paths

〈e−W〉path = e−∆F . (18)

The RBM is trained by changing the parameters θ through a sequence {θ0, θ1, . . . , θτ}, as shown in
Figure 3. To calculate the work done during the training, we perform the Monte-Carlo simulation of the
trajectory of a state (v, h) of the RBM in configuration space. From the initial configuration, (v0, h0) which
is sampled from the initial Boltzmann distribution, Equation (2), the trajectory (v0, h0) → (v1, h1) →
· · · → (vτ , hτ) is obtained using the Metropolis–Hastings algorithm of the Markov chain Monte-Carlo
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method [24,25]. Assuming the evolution is Markovian, the probability of taking a specific trajectory is the
product of the transition probabilities at each step,

p(v0, h0
θ1−→ v1, h1) p(v1, h1

θ2−→ v2, h2)

. . . p(vτ−1, hτ−1
θτ−→ vτ , hτ) . (19)

The transition (v, h)→ (v′, h′) can be implemented by the Metropolis–Hastings algorithm based on
the detailed balance condition for the fixed parameter θ,

p(v, h θ−→ v′, h′)

p(v, h θ←− v′, h′)
=

e−E(v′ ,h′ ;θ)

e−E(v,h;θ)
. (20)

The work done on the RBM at epoch i may be given by

δWi = E(vi, hi; θi+1)− E(vi, hi; θi) . (21)

The total work W = ∑ δWi performed on the system is written as [26]

W =
τ−1

∑
i=0

[E(vi, hi; θi+1)− E(vi, hi; θi)] . (22)

Given the sequence of the model parameter {θ0, θ1, . . . , θτ}, the Markov evolution of the visible and
hidden vectors (v, h) ∈ {0, 1}N+M may be considered the discrete random walk. Random walkers move
to the points with low energy in configuration space. Figure 7 shows the heat map of energy function
E(v, h; θ) of the RBM for the 2× 2 bar-and-stripe pattern after training. One can see the energy function
has deep levels at the visible vectors corresponding to the bar-and-stripe patterns of the training data set
in Figure 2, representing a high probability of generating the trained patterns. Furthermore, note that
the energy function has many local minima. Figure 8 plots a few Monte-Carlo trajectories of the visible
vector v as a function of the epoch. Before training, the visible vector v is distributed over all possible
configurations, represented by the number (0, · · · , 15). As the training progresses, the visible vector v
becomes trapped into one of the six possible outcomes (0, 3, 5, 10, 12, 15).
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r

E(v,h)

−20

−18

−16

−14
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−10

Figure 7. Heat map of energy function E(v, h; θ), representing the energy level of each configuration,
after training of 2× 2 bar-and-stripe patterns for 50000 epochs. The sizes of visible and hidden layers are
N = 4 and M = 6, respectively. The learning rate is r = 0.15 and the value of k in CD-k is 100. The vertical
and the horizontal axes represent each configuration of the visible and the hidden layers, respectively.
The black tiles represent the lowest energy configurations among all configurations, thus the probability of
finding that configuration is high.
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Figure 8. Markov chain Monte-Carlo trajectories of the visible vector vi are plotted as a function of the
epoch. The visible vector jumps frequently in the early state of training and becomes trapped into one of
the target states as the training proceeds.

In order to examine the relation between work done on the RBM during the training and the free
energy difference, the Monte-Carlo simulation is performed to calculate the average of the work over paths
generated by the Metropolis–Hastings algorithm of the Markov chain Monte-Carlo method. Each path
starts from an initial state sampled from the uniform distribution over the configuration space, as shown
in Figure 4a. Since the work done on the system depends on the path, the distribution of the work is
calculated by generating many trajectories. Figure 9 shows the distribution of the work over 50000 paths at
5000 training epochs. The Monte-Carlo average of the work is 〈W〉 ≈ −5.481, and its standard deviation
is σW ≈ 3.358. The distribution of the work generated by the Monte-Carlo simulation is well fitted to
the Gaussian distribution, as depicted by the red curve in Figure 9. This agrees with the statement in
Reference [23] that for the slow switching of the model parameters the probability distribution of work is
approximated to the Gaussian.

We perform the Monte-Carlo calculation of the exponential average of work, 〈e−W〉path to check the
Jarzynski equality, Equation (18). The free energy difference can be estimated as

e−∆F = 〈e−W〉path ≈
1

Nmc

Nmc

∑
n=1

e−Wn , (23)

where Nmc is the number of the Monte-Carlo samplings. At a small epoch number, the Monte-Carlo
estimated value of the free energy difference is close to ∆F calculated from the partition function. However,
this Monte-Carlo calculation gives rise to the poor estimation of the free energy difference if the epoch is
greater than 5000. This numerical errors can be explained by the fact that the exponential average of the
work is dominated by rare realization [27–31]. As shown in Figure 9, the distribution of work is given by the
Gaussian distribution ρ(W) with the mean 〈W〉 and the standard deviation σW . If the standard deviation
σW becomes larger, the peak position of ρ(W)e−W moves to the long tail of the Gaussian distribution.
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So the main contribution of the integration of 〈e−W〉 comes from the rare realizations. Figure 10 shows
that the standard deviation σW grows with the epoch, so the error of the Monte-Carlo estimation of the
exponential average of the work grows quickly.
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Figure 9. Gaussian distribution of work done by the restricted Boltzmann machine (RBM) during the
training. The number of the Monte-Carlo sampling is 50000. The red curve is the plot of the Gaussian
distribution using the mean and the standard deviation calculated by the Monte-Carlo simulation.
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Figure 10. Average of work done with standard deviation and free energy difference ∆F = F(epoch)−
F(epoch = 0) as a function of the epoch. The error bar of the work represents the standard deviation of the
Gaussian distribution.
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If σ2
W � kBT, the free energy is related to the average of work and its variance as

∆F = 〈W〉path −
σ2

W
2kBT

. (24)

Here, the case is the opposite, the spread of the value of work is large, i.e., σ2
W � kBT (= 1), so the

central limit theorem does not work and the above equation can not be applied [32]. Figure 10 shows
how the average of work, 〈W〉path, over the Markov chain Monte-Carlo paths changes as a function of
the epoch. The standard deviation of the Gaussian distribution of the work also grows as a function of
the training epoch. The free energy difference between before-training and after-training is called the
reversible work Wr = ∆F. The difference between the actual work and the reversible work is called the
dissipative work, Wd = W −Wr [26]. As depicted in Figure 10, the magnitude of the dissipative work
grows with the training epoch.

3. Summary

In summary, we analyzed the training process of the RBM in the context of statistical physics.
In addition to the typical loss function, i.e., the reconstructed cross entropy, the thermodynamic quantities
such as free energy F, internal energy U, and entropy S were calculated as a function of the epoch.
While the free energy and the internal energy decrease rather indefinitely with epochs, the total entropy
and the entropies of the visible and the hidden layers become saturated together with the Kullback–Leibler
divergence after a sufficient number of epochs. This result suggests that the entropy of the system
may be a good indicator of the RBM progress along with the Kullback–Leibler divergence. It seems
worth investigating the entropy for other larger data sets, for example, MNIST handwritten digits [33],
in future works.

We have further demonstrated the subadditivity of the entropy, i.e., the entropy of the total system is
less than the sum of the entropies of the two layers. This manifested the correlation between the visible
and hidden layers growing with the training progress. Just as the entropies are well saturated together
with the Kullback–Leibler divergence, so is the correlation that is determined by the total and the local
entropies. In this sense, the correlation between the visible and the hidden layer may become another
good indicator of the RBM performance.

We also investigated the work done on the RBM by switching the parameters of the energy function.
The trajectories of the visible and hidden vectors in the configuration space were generated using the
Markov chain Monte-Carlo simulation. The distribution of the work follows the Gaussian distribution and
its standard deviation grows with the training epochs. We discussed the Jarzynski equality, which connects
the free energy difference and the average of the exponential function of the work over the trajectories.
We note that, in addition to the Jarzynski equality, the Crooks path-ensemble average method [34,35] with
the forward and backward transformations could be also used to connect the free energy difference and
the work. This is called the bidirectional estimator [36] in contrast to the unidirectional estimator such as
the Jarzynski equality or the Hummer–Szabo method [37].

A more detailed analysis from a full thermodynamics or statistical physics point of view can bring
us useful insights into the performance of the RBM. This course of study may enable us to come up with
possible methods for a better performance of the RBM for many different applications in the long run.
Therefore, it may be worthwhile to further pursue our study, e.g., a rigorous assessment of scaling behavior
of thermodynamic quantities with respect to epochs as the sizes of the visible and hidden layers increase.
We also expect that a similar analysis on a quantum Boltzmann machine can be valuable as well.
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