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Abstract: Brain dynamics can exhibit narrow-band nonlinear oscillations and multistability. For a
subset of disorders of consciousness and motor control, we hypothesized that some symptoms
originate from the inability to spontaneously transition from one attractor to another. Using external
perturbations, such as electrical pulses delivered by deep brain stimulation devices, it may be possible
to induce such transition out of the pathological attractors. However, the induction of transition
may be non-trivial, rendering the current open-loop stimulation strategies insufficient. In order to
develop next-generation neural stimulators that can intelligently learn to induce attractor transitions,
we require a platform to test the efficacy of such systems. To this end, we designed an analog circuit as
a model for the multistable brain dynamics. The circuit spontaneously oscillates stably on two periods
as an instantiation of a 3-dimensional continuous-time gated recurrent neural network. To discourage
simple perturbation strategies, such as constant or random stimulation patterns from easily inducing
transition between the stable limit cycles, we designed a state-dependent nonlinear circuit interface
for external perturbation. We demonstrate the existence of nontrivial solutions to the transition
problem in our circuit implementation.
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1. Introduction

Multistability is a widespread phenomenon in the field of dynamical systems where a system
exhibits multiple stable states or more generally attractors [1]. Appearing in nearly all disciplines
of natural science and engineering, including biology [2,3], chemistry [4,5], electronics [6,7],
fluid mechanics [8,9], genetics [10,11], and physics [12,13], researchers have shown substantial interest
in such behavior [1]. In neuroscience, computations are thought to be implemented by multistable
dynamical systems, and recent experimental and methodological advances have generated renewed
interests [14–19]. The multiple attractors within these dynamical systems seem to underlie a wide array
of functions, including sensory perception [20], motor function [21], and cognition [22,23], as well as
dysfunctions, such as movement disorders [24], epilepsy [25], and disorders of consciousness [26,27].
We hypothesized that multistability underlie some dynamical neurological diseases such that
manifested symptoms are fundamentally due to the inability to naturally transition from one basin of
attraction to another. Under this hypothesis, neurostimulation techniques provide a means to perturb
neural systems to assist transition between attractors as a treatment option.

Open-loop electrical stimulation therapies have shown remarkable successes, most notably with
Parkinson’s disease [28]. However, open-loop strategies are likely to be insufficient for the general
induction of attractor transitions that manifest complex nonlinear dynamics and non-trivial stimulus
induced perturbations. For example, high-amplitude low-frequency signals, such as those dominant in
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disorders of consciousness [27], suggest the existence of strong attractor dynamics which may require a
sophisticated feedback control system to transition out [29]. This sets the stage for the next-generation
closed-loop neural stimulators that can intelligently learn to induce attractor transitions. The added
complexity of the closed-loop stimulation systems calls for a platform to develop and test their efficacy.

In this paper, we aimed to develop a hardware platform by which these intelligent stimulation
algorithms could be tested and validated on. Clinically, this platform can serve as an initial stepping
stone, prior to the use of animal models and human patients, in demonstrating the successful use
of a stimulation regime under our hypothesis for a given application. As is a common method for
realizing a dynamical system physically, an analog electronic circuit exhibiting the desired dynamics is
constructed [30–32]. Due to the nature of widely used electrical stimulation for neurological implants,
this medium will serve well as a testbed. While such a system can be developed as a software package,
neurostimulators have an analog interface, where typically current is injected into the neural tissue.
By keeping our platform entirely analog, we maintain this interface. Furthermore, the analog nature of
the brain ensures the existence of inherent noise and imperfections in the system dynamics. We would
like to implement these imperfections here as a result of the medium by which the platform is designed
on, rather than needing to over-complicate our model. This added variability will require a stimulation
algorithm to be more robust.

To reduce unnecessary complexity, we constructed our system to demonstrate the simplest form
of oscillatory multistability, birhythmicy. More specifically, the system will simultaneously exhibit
two self-exciting limit cycles of notably different frequencies. Given that the state of the system is
sufficiently close to one of the two attractors, an intelligent stimulation algorithm can be tested by
trying to perturb the system into the other basin of attraction. While this may seem like a substantial
simplification of global brain dynamics for typical neurological function, when viewing brain activity
at different spatiotemporal scales under specific conditions far fewer attracting states may be present.
Two examples are patients under deep anesthesia or within a comatose state. Under such conditions,
there appears to be coherent synchronization across large brain regions [26,27]. Such homogeneity
would vastly simplify the underlying dynamic behavior, resulting in far fewer attractors. Under the
right lens, our developed model becomes more immediately applicable.

In the following section, we derive the system from the general continuous-time dynamical
system underlying the gated recurrent unit (GRU), a commonly used recurrent neural network
architecture [33,34]. In Section 3, we discuss the details of the circuit design and present the results
of the physical realization. In Section 4, we discuss the addition and design of a nonlinear circuit,
state dependent on the system described in Sections 2 and 3, by which external stimulation is interfaced.
The addition of this nonlinear stimulator circuit will ensure random or periodic stimulation patterns
will be ineffective in inducing transitions between the two attractor states.

2. Birhythmic Dynamics in 3-Dimensions

Our goal was to find a simple bistable dynamical system where each attractor corresponds to a
periodic orbit. We draw from the recurrent neural network literature on simple forms of stable limit
cycles. Specifically, we utilize the autonomous continuous-time gated recurrent unit (ct-GRU) [33,34]
formulation, which can be represented as follows:

ḣ = (1− s(t))� (T(t)− h(t)) (hidden state), (1)

s(t) = σ(Ush(t) + bs) (update gate), (2)

r(t) = σ(Urh(t) + br) (reset gate), (3)

T(t) = tanh(Uh(r(t)� h(t)) + bh) , (4)

where h(t) ∈ Rd is the state of the system, Us, Ur, Uh ∈ Rd×d are the parameter matrices,
bs, br, bh ∈ Rd are the bias vectors, � represents the Hadamard product, and σ(z) = 1/(1 + e−z) is
the element-wise logistic sigmoid function. For a given set of parameters, fixed points of the system
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exist where ḣ = 0. Since 1− s(t) > 0, ∀s, this term does not influence the roots of the right-hand side
of Equation (1). Therefore, s(t) can only affect the speed of the flow and, in turn, can be neglected
when choosing a set of parameters for the system to enact a desired structure of attractors [34].
Note that, if the parameters of r(t) have been set to zero, the ct-GRU architecture simplifies to the
classic ct-tanh-RNN if the parameters of s(t) are also set to zero.

In previous work [34], we have shown that, for d = 2, the ct-GRU is capable of expressing a single
limit cycle (attracting closed orbit) in phase space under the following set of parameters:

Ur, br, bh = 0, Uh = 3

[
cos α − sin α

sin α cos α

]
, (5)

where α ∈ S0 and S0 ⊇ ( π
21 , π

3.8 ). The phase portrait depicting this behavior for α = π
5 can be seen in

Figure 1, where h ≡
[

x y
]T

.
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Figure 1. Planar Limit Cycle with 2D continuous-time gated recurrent unit (ct-GRU) depicted in phase
space: The red dot indicates an unstable fixed point at the origin unstable, while orange and pink lines
represent the x and y nullclines, respectively. Purple lines indicate various trajectories of the hidden
state. Direction of the flow is determined by the black arrows, where the colormap underlying the
figure depicts the magnitude of the velocity of the flow in log scale.

Extending the system to 3-dimensions allows for the simultaneous existence of two limit cycles
in phase space under a single set of parameters. More specifically, the addition of a third dimension
enables us to mirror any attractor structure representable for d = 2 across an unstable manifold on the
plane defined by the original two dimensions in R3. This behavior is depicted in Figure 2A, where now

h ≡
[

x y z
]T

, and the parameters are set as follows:

Ur, br, bh = 0, Uh = 3

cos π
5 − sin π

5 0
sin π

5 cos π
5 0

0 0 1

 . (6)
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Figure 2. Birhythmicy in 3-dimensions: (A): light blue manifold on the x− y plane separates the basins
of attraction of the upper and lower limit cycles. Trajectories are colored either dark blue or purple,
depending on which basin of attraction they are initialized in. Red dots indicate fixed points, and black
arrows depict the direction of flow. (B,C): x, y, and z components of trajectories initialized in the basins
of attractions for the top and bottom limit cycles, respectively. Solid colored lines indicate x(t), dashed
lines indicate y(t), and black lines indicate z(t).

As stated before, s(t) only acts to adjust the speed of phase flow. If Us, bs = 0, the periods of both
limit cycles are equal. As a means to easily decouple the two frequencies of oscillation, the velocity of
flow may be made dependent on its vertical position with respect to the z-axis. While the range of the
logistic sigmoid function has the benefit of always being defined on (0, 1), it may produce inaccurate
results when physically realized along its tails. Furthermore, any function that is strictly positive
and sufficiently well-behaved on the region of phase space we are interested in will work under this
context.

For simplicity, we redefine s(t) linearly as s(t) = Ush(t) + bs. We then note that Equation (4) is
asymptotically bound to [−1, 1]d. To account for potential error in the electronic realization, we set s(t)
such that its output remains strictly positive on (−1.5, 1.5)× (−1.5, 1.5)×R. The results of this linear
update-gate are demonstrated in Figure 2B,C and achieved under the following set of parameters in
conjunction with those of Equation (6):
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bs =

−0.5
−0.5
0.5

 , Us =

0 0 1
0 0 1
0 0 0

 . (7)

To better grasp the dynamical system depicted in Figure 2 to be later realized, we can rewrite
Equations (1)–(4) explicitly in terms of x, y and z with our chosen parameters from Equations (6)
and (7) as follows:

ẋ =

(
z− 3

2

) [
x− tanh

(
x · 3

2
cos

π

5
− y · 3

2
sin

π

5

)]
, (8)

ẏ =

(
z− 3

2

) [
y− tanh

(
x · 3

2
sin

π

5
+ y · 3

2
cos

π

5

)]
, (9)

γż = −1
2

[
z− tanh

(
3
2

z
)]

, (10)

where γ ∈ R is an added time constant that will be implemented in the circuit realization to adjust
the difficulty of transitioning between attracting states. For our implementation of Equations (8)–(10),
we let γ = 106.

3. Electronic Physical Realization

Within most applications, smooth continuous-time systems can be realized as electronic circuits
comprised of inexpensive components and integrated circuits [30]. In this section, we introduce a
comprehensive circuit design to realize Equations (8)–(10) and construct the system on a breadboard.
Experimental recordings of trajectories of interest are then compared with the theoretical system
derived in Section 2 as a means to validate the realization. All basic operational amplifiers used are
TL082CP, and all individual transistors are MPS2222. In addition, two analog multiplier chips are used,
which are the standard AD633 four quadrant multipliers. Note that all schematics shown assume
unity gain associated with each multiplier. A complete list of all component values in the following
schematics can be found in Appendix A.

3.1. Nonlinear Activation Function Circuit

To properly realize Equations (8)–(10) as an analog circuit, we first must account for the
nonlinearity in the system; the hyperbolic tangent function. Previous work has allowed us to easily
realize this nonlinearity by means of a simple op-amp and transistor circuit as depicted in Figure 3 [30].
Allowing Vin and Vo to represent the input and output voltages of the circuit, respectively, Duan and
Liao [35] showed that the input-output relation takes the following form:

V0 = − tanh
(

R2

2RVT
Vin

)
, (11)

where VT ≈ 26 mV is the thermal voltage of the transistors at room temperature. Allowing R2 = 520 Ω,
R3 = R4 = 1 kΩ, R11 = 11 kΩ, all other resistors set to R = 10 kΩ, VCC = 15 V, and VEE = −15 V,
reduces the coefficient in front of Vin in Equation (11) to 1, thereby successfully implementing the
hyperbolic tangent function as an analog circuit. Further information regarding the error associated
with our constructed hyperbolic tangent units can be found in Appendix B.



Entropy 2020, 22, 537 6 of 15

U1A

3

2

4
8

1

R1

VCC

VEE

R2

Q1 Q2

VCC

R3 R4

R5

R6

R7

R8

Q3 Q4

R9 R10

VEE

Vo

R12

R13

Vin

R11

U2A

3

2

4
8

1

VEE

VCC

Figure 3. Electronic circuit realization of the hyperbolic tangent function, as implemented in
Reference [30]. Vin and Vo represent the input and output signals, respectively.

3.2. Schematics of Electronic Birhythmic RNN

Analog circuits can successfully perform addition and subtraction with just operational amplifiers
and appropriately connected resistors. The additional use of capacitors allows for an analog
implementation of integration [36]. In regards to our realization of Equations (8)–(10), the analog
implementation of the hyperbolic tangent function can be achieved with the schematic demonstrated
in Figure 3. In the following schematics, such nonlinear operations are represented by boxes labeled
“-tanh”, where terminals IOP1 and IOP2 are the input and output voltage to each hyperbolic tangent
unit, respectively. Furthermore, two analog multiplication chips can be used to introduce the phase
flow speed dependence on z(t) in Equations (8) and (9). Thus, the entire system can be constructed
entirely from simple analog components.

We begin with the circuit realization of Equation (10), where the schematic is shown in Figure 4.
Note that Equation (10) only comprises of the state variable z(t), and can therefore be build
independently of Equations (8) and (9). The variable z(t) is represented as the voltage across capacitor
C1 in the provided circuit diagram. The input reading stim_out represents the output of the nonlinear
stimulator circuit and will be discussed in Section 4. The schematic of the electronic realization of
Equations (8) and (9) is shown in Figure 5, where the state variables, x(t) and y(t), are represented by
the voltages across capacitors C1 and C2, respectively. The “z” input to analog multipliers, M1 and
M2, is taken from the integrator output labeled “z” in Figure 4.
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Figure 4. Circuit schematic of ż for the birhythmic system. The system block labeled -tanh represents
the circuit depicted in Figure 3, where I01 and I02 correspond to Vin and Vo, respectively. The terminal
labeled stim_out represents the output to the stimulator circuit, as discussed in Section 4.
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Figure 5. Circuit schematic of ẋ and ẏ for the birhythmic system. The system blocks labeled -tanh1
and -tanh2 represent the circuit depicted in Figure 3, where I01 and I02 correspond to Vin and Vo,
respectively, for both blocks. The two multiplier chips, M1 and M2, are assumed to operate with
unity gain.

3.3. Circuit Construction and Experimental Results

A circuit following the schematics depicted in Figures 4 and 5 was constructed on a breadboard.
This system was photographed and is depicted in Figure 6. The blue boxes indicate the three separate
hyperbolic tangent units. The magenta box indicates the realization of Equation (10), as described by
Figure 4, and the green box highlights the two analog multiplier chips and their configuration.

The circuit was constructed so that each limit cycle maintains an approximately constant
z-component value when sufficiently close to one of the two attractors. Using an four channel
oscilloscope, we observed the behavior of the system for different initial conditions as a means to
demonstrate stability across runs. These included ten trials initialized randomly within a subset
of each of the two basins of attractions. These subsets are (−1.5, 1.5) × (−1.5, 1.5) × (0, 1.5) and
(−1.5, 1.5)× (−1.5, 1.5)× (−1.5, 0) for the slow and fast limit cycles, respectively. Each trajectory was
given five seconds to relax, and then the state of the system was recorded for five seconds. For the
slow limit cycle, the sample mean of the average z-component values across all recorded time steps
was calculated to be 0.858 V across trials, with a standard deviation of 5.800× 10−3 V across those
trial averages. For any single trial, the expected standard deviation of the z-component values across
all time steps was calculated to be 1.110× 10−16 V, suggesting the upper limit cycle is extremely
stable. Similarly, for the fast limit cycle, the sample mean of the average z-component values across
all recorded time steps was calculated to be −0.907 V across trials, with a standard deviation of
9.248× 10−3 V across those trial averages. For any single trial, the expected standard deviation of the
z-component values across all time steps was calculated to be 2.133× 10−3 V, suggesting the lower
limit cycle is also highly stable.

An example of these recordings are depicted in Figure 7 for two different initializations; one
within the basin of attraction for each of the two stable limit cycles. Figure 7A,C show the asymptotic
behavior of the three state variable voltages in time [x(t), y(t), z(t)]. As intended, the period of the
each limit cycles are visibly different, and qualitatively match the asymptotic behavior demonstrated
in Figure 2B,C. Furthermore, Figure 7B,D depict the trajectories projected onto the x-y plane, shown in
Figure 7A,C, respectively. These recordings indicate the same asymptotic behavior as demonstrated
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in Figure 1. As such, we can conclude that the analog implementation of Equations (8)–(10) was
successfully realized from the model derived in Section 2.

Figure 6. Physical birhythmic circuit constructed on a breadboard. Blue boxes represent hyperbolic
tangent units. The magenta box indicates the subsection of the circuit generating ż, and the green box
indicates the analog multipliers.

Figure 7. Experimental recordings of the birhythmic circuit: (A,C): x (yellow), y (blue), and z (pink)
with respect to time of trajectories within the basin of attraction of the fast and slow limit cycles,
respectively. (B,D): Projection of the corresponding trajectories in (A,C) onto the x-y plane, respectively.
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4. Nonlinear Stimulator Circuit Design and Discussion

When looking at the system derived in Section 2, as expressed by Equations (8)–(10), we notice
the geometric simplicity of the global dynamics. As shown in Figure 2A, the two periodic attractors
are mirror images of one another across a planar unstable manifold on the x-y plane. This symmetry
enabled us to easily decouple the frequencies of each limit cycle by introducing a strictly positive
variable time constant dependent only on our z-coordinate. However, this introduces a clear problem
from the point of view of developing a neurostimulation testbed. In order to transition between basins
of attraction, we only need to worry about the component z(t). In other words, transition between
attractors can be achieved with constant stimulation on z. This solution to attractor transition is trivial,
and does not require the use of an intelligent algorithm to solve, rendering it inadequate as a testbed.
In order to negate this issue, we develop a state-dependent nonlinear stimulator interface circuit by
which all stimulus must pass through. In addition, we allow only one location of stimulation within the
circuit previously designed, as marked by the node labeled stim_out in Figure 4, where the output to
the stimulator circuit will be fed in and summed with the current value of ż in the system. By extending
the system properly in this way, we can prevent straightforward stimulation patterns (i.e., constant,
random, periodic, etc.) from inducing attractor transitions.

Ideally, we want to develop a stimulation circuit such that a pulse stimulated at a random time
may cause the output, stim_out, to either increase or decrease. Furthermore, the amount by which
the signal can change should exist on a continuum, rather than outputting a voltage from a finite set
of values. The final requirement we will enforce for such a circuit will be that a stimulation pulse
delivered at a random time should have equal probability of increasing or decreasing the output signal.
This last requirement ensures that if one stimulates randomly or continuously, the expected value of
stim_out averaged across all time will be zero as time approaches infinity.

Due to the sinusoidal nature of the x and y components in Equations (8) and (9), Equation (12)
will serve as the input/output relation of the stimulator circuit at a given time t.

Sout(t) = Sin(t)x(t)y(t), (12)

where Sout is the output voltage of the stimulator circuit, and Sin is the input stimulus (note that
Sin = 0 when no stimulus is applied). We note that this system satisfies all of our requirements, as z is
independent of x and y. To transition from the slow limit cycle to the fast limit cycle, stimulation must
be applied primarily when x(t) and y(t) are of opposite signs. By doing this, the rate of change in z(t)
can be made negative on a subset of these intervals (dependent on the current value of z(t)). Assuming
that this downward forcing of z(t) can both overcome the pullback from the attractor during these
intervals and travel further downward than the accumulated upward travel during periods of no
stimulation, then, after a sufficient amount of time, the system will jump over the unstable manifold at
z = 0 and into the basin of attraction of the fast limit cycle. Since the speed of oscillation is dependent
on z(t), any added stimulation will change the time window by which proper stimulation should
be applied, ensuring that a periodic stimulation regime will fail to transition between the attractors.
By the same argument, to transition from the fast limit cycle to the slow limit cycle, stimulation must
be applied primarily when x(t) and y(t) are of the same sign. Figure 8 depicts the schematic for the
described stimulator circuit, where Sin is labeled as Stimulus.

A physical realization of the stimulator circuit was created in conjunction with the birhythmic
system and tested with a stimulus that could be turned on (4 V) or off (0 V). While this voltage range is
certainly larger than those seen during neurostimulation, we note that this testbed acts to validate the
underlying logic of a stimulation algorithm, and that this range is made proportional, in a practical
sense, to the voltage range of the constructed dynamics. For interfacing with a traditional neural
stimulation device, an additional signal amplifying circuit will need to be constructed to take in
stimulus (typically low current biphasic pulse injections), and control a properly scaled voltage output
which will be fed into the input of our designed nonlinear stimulator circuit.
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Figure 8. Schematic for nonlinear stimulator circuit, with input labeled as Stimulus. The output, labeled
stim_out, is fed into the terminal with the same name presented in the circuit diagram shown in
Figure 4. The two multiplier chips, M1 and M2, are assumed to operate with unity gain, and the x and
y terminals are fed into the equivalently named terminals depicted in Figure 5.

In order to test the validity of our constructed system we recorded twenty trials for each of
several stimulation methods, where half of the trials had the state of the system initialized on the
slow limit cycle, and the other half of the trials were initialized on the fast limit cycle. Each trial was
recorded for five seconds. We show that neither 4 V constant stimulation nor 4 V manually random
stimulation induce state transition, and that these results appear invariant to the initial phase angle of
the oscillations in x(t) and y(t) when stimulation is applied. Furthermore, we implement a stimulation
pattern that can successfully transition between the stable limit cycles.

For constant stimulation, we statistically quantify the expectation of the maximum euclidean
distance z(t) moves away from the limit cycle that the system is initialized on for a given trial. The z
coordinates of both limit cycles empirically derived in Section 3.3 will be used. In the case of the slow
limit cycle, the sample mean of the maximum distances achieved on each trial is 0.230 V, with a standard
deviation of 0.026 V across trials, implying that each trial was nearly identical in its effectiveness to
transition between states. For the fast limit cycle, this sample mean is 0.147 V, and no variance was
detectable in these recordings in 24-bit resolution. A 1.5 s segment of z(t) for all trials is depicted in
Figure 9, where constant stimulation is denoted in turquoise. Figure 10A,B depict an example of the
resultant behavior of the system under constant 4 V stimulation initialized on the slow and fast limit
cycles, respectively. The yellow, blue, and pink curves represent the x, y, and z components of the
system, and the green curve depicts the voltage over time of stim_out.

For random stimulation, we do the same thing. In the case of the slow limit cycle, the sample
mean of the maximum distance achieved on each trial is 0.242 V, with a standard deviation of 0.022 V
across trials. For the fast limit cycle, this sample mean is 0.177 V, with standard deviation of 0.013 V
across trials. A segment of z(t) for all of these trials is depicted in orange in Figure 9. Figure 11A,B
depict an example of the resultant behavior for trajectories initialized on the slow and fast limit cycles,
respectively.

Despite executing stimulation at a random initial phase angle in terms of the oscillation in x and
y, the sample statistics suggest a qualitative homogeneity across trials for the two stimulation patterns,
which can be seen in Figure 9. In addition, as expected, both of these stimulation regimes do not escape
the basin of attraction by which the system is initialized in, as to do so would require the stimulation
when the system state is in the proper two quadrants of the x-y plane to overtake the stimulation in the
other two for a prolonged period of time. By restricting our stimulation to the desired intervals, we can
achieve state transition. In this case, we simply place a 1N4148 diode in the appropriate orientation
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just prior to the stim_out node in Figure 8 and apply constant stimulation. All of the trials successfully
traveled over the separating unstable manifold at z = 0 as depicted by the red and blue curves in
Figure 9, representing the trials initialized on the slow and fast limit cycles, respectively. An example
of the behavior for all system coordinates and the stimulator circuit output is shown in Figure 12 for
both trajectories initialized on the slow and fast limit cycles.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time [s]

1.0

0.5

0.0

0.5

1.0

z(
t) Separating Manifold

Figure 9. A time window of z(t) for all experimental trials: Red and blue trajectories demonstrate
resultant behavior from stimulation patterns designed to transition states from the slow and fast limit
cycles, respectively. Turquoise trajectories depict trials of constant stimulation, and orange trajectories
show trials of random stimulation.

Figure 10. x (yellow), y (blue), z (pink), and stim_out (green) with respect to time of trajectories within
the basin of attraction of the slow (A) and fast (B) limit cycles, under constant stimulation. Note that this
stimulation regime does not successfully transition between the two attracting states in either direction.
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Figure 11. x (yellow), y (blue), z (pink), and stim_out (green) with respect to time of trajectories within
the basin of attraction of the slow (A) and fast (B) limit cycles, with random stimulation. Note that this
stimulation regime does not successfully transition between the two attracting states in either direction.

Figure 12. Examples of stimulation patterns capable of inducing transition between states: x (yellow),
y (blue), z (pink), and stim_out (green) with respect to time of trajectories initialized within the basin
of attraction of the slow (A) and fast (B) limit cycles. As z(t) changes with stimulation so does the
frequency of oscillation. As such, the time window to stimulate shifts continuously.

Such a demonstration indicates the existence of a stimulation pattern capable of transitioning
between basins of attraction in the system. An input stimulus pattern of this form will have to be
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mimicked by an intelligent algorithm to a sufficient degree of accuracy without the added rectifier, thus
aiding in the validation of the use of that algorithm. However, note that a stimulation system would
not have direct access to the state variables, the dynamical system, nor how the stimulus modulates
the states. Any such algorithm will need to discover the latent dynamics and learn to control the states
from observations [32] at the same time it learns to transition out of the current basin of attraction.
The continuously changing intervals of when stimulation should be applied, while geometrically
simple, are a highly nontrivial relation to uncover within a dynamical system in this manner and
should prove challenging for a general algorithm required to learn it.

5. Conclusions

For this paper, an electronic testbed for intelligent neurostimulation methods was developed
from a physical realization of the dynamical system underlying the architecture of an artificial gated
recurrent neural network. Using simple analog components, the system is fabricated such that it
exhibits birhythmic behavior, but the stimulation pattern required to transition between attracting states
is made nontrivial. As such, standard open-loop stimulation regimes will be unable to induce attractor
transitions. We hypothesized that an inability to perform analogous state transitions may underlie
some neurological diseases, and prior evidence suggests that, under this hypothesis, global cortical
brain function may give rise to very few attractors under the proper spatiotemporal scale of viewing
for comatose patients and patients under deep anesthesia. If correct, this enables our system to aid
in validating the efficacy of next-generation neurostimulation algorithms upon successfully jumping
between basins of attraction. We suspect multiple realizations of this system can be appropriately
coupled together to form a more complicated testbed with a wider array of dynamics. Such an extension
may be more immediately applicable to more complex neurological functions and dysfunctions.
We leave this to future work.
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Appendix A. Circuit Component Values

Appendix A.1. Component Values for Figure 4

VCC = 15 V, VEE = −15 V
R1 = R3 = R4 = R5 = R6 = R12 = R13 = 100 kΩ, R2 = 1 MΩ, R7 = 50 kΩ, R8 = R9 = R11 =

10 kΩ, R10 = 5kΩ
C1 = 1 µF

Appendix A.2. Component Values for Figure 5

VCC = 15 V, VEE = −15 V, VDD = 1 V
R1 = R3 = R5 = R6 = R7 = R9 = R10 = R11 = R12 = R14 = R16 = R17 = R19 = R21 =

R22 = R23 = R24 = R25 = R26 = R27 = R28 = R29 = R31 = R32 = R33 = R34 = R35 =

R36 = R37 = R38 = R39 = R40 = R42 = R43 = R44 = R45 = R46 = R47 = R48 = R49 = 10 kΩ,
R2 = R4 = R13 = R15 = 100 kΩ, R8 = R20 = 8820 Ω, R18 = R50 = 2315 Ω, R30 = R41 = 5 kΩ.
C1 = C2 = 10 µF, C3 = C4 = C5 = C6 = 1 µF
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Appendix A.3. Component Values for Figure 8

VCC = 15 V, VEE = −15 V
R1 = R2 = R3 = 100 kΩ
C1 = C2 = C3 = C4 = C5 = 1 µF

Appendix B. Hyperbolic Tangent Implementation

Our system depicted in Equations (8)–(10) requires the construction of three separate hyperbolic
tangent units. Following construction, 21 input voltages, equally spaced on [−2, 2] V, were applied
to each hyperbolic tangent unit as input, and each respective output voltage was recorded and
compared with the hyperbolic tangent function for that given input. These recordings and comparisons
of accuracy of the three hyperbolic tangent units are displayed in Figure A1. The average mean
squared error of the built hyperbolic tangent units with respect to the hyperbolic tangent function was
approximately 86.5 mV.
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Figure A1. Input/output relation of three physically realized hyperbolic tangent circuits, interpolated
through 21 points, compared with the analytic hyperbolic tangent function.
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