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Abstract: There is not much literature on objective Bayesian analysis for binary classification problems,
especially for intrinsic prior related methods. On the other hand, variational inference methods have
been employed to solve classification problems using probit regression and logistic regression with
normal priors. In this article, we propose to apply the variational approximation on probit regression
models with intrinsic prior. We review the mean-field variational method and the procedure of
developing intrinsic prior for the probit regression model. We then present our work on implementing
the variational Bayesian probit regression model using intrinsic prior. Publicly available data from
the world’s largest peer-to-peer lending platform, LendingClub, will be used to illustrate how model
output uncertainties are addressed through the framework we proposed. With LendingClub data,
the target variable is the final status of a loan, either charged-off or fully paid. Investors may very
well be interested in how predictive features like FICO, amount financed, income, etc. may affect the
final loan status.

Keywords: objective Bayesian inference; intrinsic prior; variational inference; binary probit regression;
mean-field approximation

1. Introduction

There is not much literature on objective Bayesian analysis for binary classification problems,
especially for intrinsic prior related methods. By far, only two articles have explored intrinsic
prior related methods on classification problems. Reference [1] implements integral priors into the
generalized linear models with various link functions. In addition, reference [2] considers intrinsic
priors for probit models. On the other hand, variational inference methods have been employed to
solve classification problem with logistic regression ([3]) and probit regression ([4,5]) with normal
priors. Variational approximation methods have been reviewed in [6,7], and more recently [8].

In this article, we propose to apply variational approximations on probit regression models with
intrinsic priors. In Section 4, we review the mean-field variational method that will be used in this
article. In Section 3, procedures for developing intrinsic priors for probit models will be introduced
following [2]. Our work is presented in Section 5. Our motivations for combining intrinsic prior
methodology and variational inference is as following

• Avoiding manually set ad hoc plugin priors by automatically generating a family of
non-informative priors that are less sensible.

• Reference [1,2] do not consider inference of posterior distributions of parameters. Their focus is
on model comparison. Although the development of intrinsic priors itself comes from a model
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selection background, we thought it would be interesting to apply intrinsic priors on inference
problems. In fact, some recently developed priors that proposed to solve inference or estimation
problems turned out to be also intrinsic priors. For example, the Scaled Beta2 prior [9] and the
Matrix-F prior [10].

• Intrinsic priors concentrate probability near the null hypothesis, a condition that is widely accepted
and should be required of a prior for testing a hypothesis.

• Also, intrinsic priors have flat tails that prevents finite sample inconsistency [11].
• For inference problems with large data set, variational approximation methods are much faster

than MCMC-based methods.

As for model comparison, due to the fact that the output of variational inference methods cannot
be employed directly to compare models, we propose in Section 5.3 to simply make use of the
variational approximation of the posterior distribution as an importance function and get the Monte
Carlo estimated marginal likelihood by importance sampling for model comparison.

2. Background and Development of Intrinsic Prior Methodology

2.1. Bayes Factor

The Bayesian framework of model selection coherently involves the use of probability to express
all uncertainty in the choice of model, including uncertainty about the unknown parameters of a model.
Suppose that models M1, M2, ..., Mq are under consideration. We shall assume that the observed data
x = (x1, x2, ..., xn) is generated from one of these models but we do not know which one it is. We
express our uncertainty through prior probability P(Mj), j = 1, 2, ..., q. Under model Mi, x has density
fi(x|θi, Mi), where θi are unknown model parameters, and the prior distribution for θi is πi(θi|Mi).
Given observed data and prior probabilities, we can then evaluate the posterior probability of Mi
using Bayes’ rule

P(Mi|x) =
pi(x|Mi)P(Mi)

∑
q
j=1 pj(x|Mj)P(Mj)

, (1)

where

pi(x|Mi) =
∫

fi(x|θi, Mi)πi(θi|Mi)dθi (2)

is the marginal likelihood of x under Mi, also called the evidence for Mi [12]. A common choice of
prior model probabilities is P(Mj) =

1
q , so that each model has the same initial probability. However,

there are other alternatives of assigning probabilities to correct for multiple comparison (See [13]).
From (1), the posterior odds are therefore the prior odds multiplied by the Bayes factor

P(Mj|x)
P(Mi|x)

=
P(Mj)pj(x)
P(Mi)pi(x)

=
P(Mj)

P(Mi)
× Bji. (3)

where the Bayes factor of Mj to Mi is defined by

Bji =
pj(x)
pi(x)

=

∫
f j(x|θj)πj(θj)dθj∫
fi(x|θi)πi(θi)dθi

. (4)

Here we omit the dependence on models Mj, Mi to keep the notation simple. The marginal
likelihood, pi(x) expresses the preference shown by the observed data for different models. When
Bji > 1, the data favor Mj over Mi, and when Bji < 1 the data favor Mi over Mj. A scale for
interpretation of Bji is given by [14].
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2.2. Motivation and Development of Intrinsic Prior

Computing Bji requires specification of πi(θi) and πj(θj). Often in Bayesian analysis, when prior
information is weak, one can use non-informative (or default) priors πN

i (θi). Common choices for

non-informative priors are the uniform prior, πU
i (θi) ∝ 1; the Jeffreys prior, π J

i (θi) ∝
[

det(Ii(θi))
]1/2

where Ii(θi) is the expected Fisher information matrix corresponding to Mi.
Using any of the πN

i in (4) would yield

BN
ji =

pN
j (x)

pN
i (x)

=

∫
f j(x|θj)π

N
j (θj)dθj∫

fi(x|θi)π
N
i (θi)dθi

. (5)

The difficulty with (5) is that πN
i are typically improper and hence are defined only up to an

unspecified constant ci. So BN
ji is defined only up to the ratio cj/ci of two unspecified constants.

An attempt to circumvent the ill definition of the Bayes factors for improper non-informative
priors is the intrinsic Bayes factor introduced by [15], which is a modification of a partial Bayes
factor [16]. To define the intrinsic Bayes factor we consider the set of subsamples x(l) of the data x
of minimal size l such that 0 < pN

i (x(l)) < ∞. These subsamples are called training samples (not
to be confused with training sample in machine learning). In addition, there is a total number of L
such subsamples.

The main idea here is that training sample x(l) will be used to convert the improper πN
i (θi) to

proper posterior

πN
i (θi|x(l)) =

fi(x(l)|θi)π
N
i (θi)

pN
i (x(l))

(6)

where pN
i (x(l)) =

∫
fi(x(l)|θi)π

N
i (θi)dθi. Then, the Bayes factor for the remaining of the data x(n− l),

where x(l) ∪ x(n− l) = x, using πN
i (θi|x(l)) as prior is called a “partial” Bayes factor,

BN
ji (x(n− l)|x(l)) =

∫
f j(x(n− l)|θj)π

N
j (θj|x(l))dθj∫

fi(x(n− l)|θi)π
N
i (θi|x(l))dθi

(7)

This partial Bayes factor is a well-defined Bayes factor, and can be written as BN
ji (x(n− l)|x(l)) =

BN
ji (x)Bij(x(l)), where BN

ji (x) =
pN

j (x)

pN
i (x)

and Bij(x(l)) =
pN

i (x(l))
pN

j (x(l))
. Clearly, BN

ji (x(n− l)|x(l)) will depend

on the choice of the training samples x(l). To eliminate this arbitrariness and increase stability,
reference [15] suggests averaging over all training samples and obtained the arithmetic intrinsic Bayes
factor (AIBF)

BAIBF
ji (x) = BN

ji (x)
1
L

L

∑
l=1

BN
ij (x(l)). (8)

The strongest justification of the arithmetic IBF is its asymptotic equivalence with a proper Bayes
factor arising from Intrinsic priors. These intrinsic priors were identified through an asymptotic analysis
(see [15]). For the case where Mi is nested in Mj, it can be shown that the intrinsic priors are given by

π I
i (θi) = πN

i (θi) and π I
j (θj) = πN

j (θj)EMj

[mN
i (x(l))

mN
j (x(l))

|θj

]
. (9)
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3. Objective Bayesian Probit Regression Models

3.1. Bayesian Probit Model and the Use of Auxiliary Variables

Consider a sample y = (y1, ..., yn), where Yi, i = 1, ..., n, is a 0− 1 random variable such that under
model Mj, it follows a probit regression model with a j + 1-dimensional vector of covariates xi, where
j ≤ p. Here, p is the total number of covariate variables under our consideration. In addition, this
probit model Mj has the form

Yi|β0, ..., β j, Mj ∼ Bernoulli(Φ(β0x0i + β1x1i + ... + β jxji)), 1 ≤ i ≤ n, (10)

where Φ denotes the standard normal cumulative distribution function and βj = (β0, ..., β j) is a vector
of dimension j + 1. The first component of the vector xi is set equal to 1 so that when considering
models of the form (10), the intercept is in any submodel. The maximum length of the vector of
covariates is p + 1. Let π(β), proper or improper, summarize our prior information about β. Then the
posterior density of β is given by

π(β|y) =
π(β)∏n

i=1 Φ(x′i β)
yi (1−Φ(x′i β)

1−yi )∫
π(β)∏n

i=1 Φ(x′i β)
yi (1−Φ(x′i β)

1−yi )dβ
,

which is largely intractable.
As shown by [17], the Bayesian probit regression model becomes tractable when a particular set

of auxiliary variables is introduced. Based on the data augmentation approach [18], introducing n
latent variables Z1, ..., Zn, where

Zi|β ∼ N(x′i β, 1).

The probit model (10) can be thought of as a regression model with incomplete sampling
information by considering that only the sign of zi is observed. More specifically, define Yi = 1
if Zi > 0 and Yi = 0 otherwise. This allows us to write the probability density of yi given zi

p(yi|zi) = I(zi > 0)I(yi = 1) + I(zi ≤ 0)I(yi = 0).

Expansion of the parameter set from {β} to {β, Z} is the key to achieving a tractable solution for
variational approximation.

3.2. Development of Intrinsic Prior for Probit Models

For the sample z = (z1, ..., zn)′, the null normal model is

M1 : {Nn(z|α1n, In), π(α)}.

For a generic model Mj with j + 1 regressors, the alternative model is

Mj : {Nn(z|Xjβj, In), π(βj)},

where the design matrix Xj has dimensions n× (j + 1). Intrinsic prior methodology for the linear
model was first developed by [19], and was further developed in [20] by using the methods of [21]. This
intrinsic methodology gives us an automatic specification of the priors π(α) and π(β), starting with
the non-informative priors πN(α) and πN(β) for α and β, which are both improper and proportional
to 1.
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The marginal distributions for the sample z under the null model, and under the alternative
model with intrinsic prior, are formally written as

p1(z) =
∫

Nn(z|α1n, In)π
N(α)dα,

pj(z) =
∫ ∫

Nn(z|Xjβj, In)π
I(β|α)πN(α)dαdβ. (11)

However, these are marginals of the sample z, but our selection procedure requires us to compute
the Bayes factor of model Mj versus the reference model M1 for the sample y = (y1, ..., yn). To solve
this problem, reference [2] proposed to transform the marginal pj(z) into the marginal pj(y) by using
the probit transformations yi = 1(zi > 0), i = 1, ..., n. These latter marginals are given by

pj(y) =
∫

A1×...×An
pj(z)dz (12)

where

Ai =

{
(0, ∞) if yi = 1,

(−∞, 0) if yi = 0.
(13)

4. Variational Inference

4.1. Overview of Variational Methods

Variational methods have their origins in the 18th century with the work of Euler, Lagrange,
and others on the calculus of variations (The derivation in this section is standard in the literature on
variational approximation and will at times follow the arguments in [22,23]). Variational inference
is a body of deterministic techniques for making approximate inference for parameters in complex
statistical models. Variational approximations are a much faster alternative to Markov Chain Monte
Carlo (MCMC), especially for large models, and are a richer class of methods than the Laplace
approximation [6].

Suppose we have a Bayesian model and a prior distribution for the parameters. The model may
also have latent variables, here we shall denote the set of all latent variables and parameters by θ.
In addition, we denote the set of all observed variables by X. Given a set of n independent, identically
distributed data, for which X = {x1, ..., xn} and θ = {θ1, ..., θn}, our probabilistic model (e.g., probit
regression model) specifies the joint distribution p(X, θ), and our goal is to find an approximation
for the posterior distribution p(θ|X) as well as for the marginal likelihood p(X). For any probability
distribution q(θ), we have the following decomposition of the log marginal likelihood

ln p(X) = L(q) + KL(q||p)

where we have defined

L(q) =
∫

q(θ) ln
{ p(X, θ)

q(θ)

}
dθ (14)

KL(q||p) = −
∫

q(θ) ln
{ p(θ|X)

q(θ)

}
dθ (15)

We refer to (14) as the lower bound of the log marginal likelihood with respect to the density q, and
(15) is by definition the Kullback–Leibler divergence of the posterior q(θ|X) from the density q. Based
on this decomposition, we can maximize the lower bound L(q) by optimization with respect to the
distribution q(θ), which is equivalent to minimizing the KL divergence. In addition, the lower bound
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is attained when the KL divergence is zero, which happens when q(θ) equals the posterior distribution
p(θ|X). It would be hard to find such a density since the true posterior distribution is intractable.

4.2. Factorized Distributions

The essence of the variational inference approach is approximation to the posterior distribution
p(θ|X) by q(θ) for which the q dependent lower bound L(q) is more tractable than the original
model evidence. In addition, tractability is achieved by restricting q to a more manageable class of
distributions, and then maximizing L(q) over that class.

Suppose we partition elements of θ into disjoint groups {θi} where i = 1, ..., M. We then assume
that the q density factorizes with respect to this partition, i.e.,

q(θ) =
M

∏
i=1

qi(θi). (16)

The product form is the only assumption we made about the distribution. Restriction (16) is also
known as mean-field approximation and has its root in Physics [24].

For all distributions q(θ) with the form (16), we need to find the distribution for which the lower
bound L(q) is largest. Restriction of q to a subclass of product densities like (16) gives rise to explicit
solutions for each product component in terms of the others. This fact, in turn, leads to an iterative
scheme for obtaining the solutions. To achieve this, we first substitute (16) into (14) and then separate
out the dependence on one of the factors qj(θj). Denoting qj(θj) by qj to keep the notation clear,
we obtain

L(q) =
∫ M

∏
i=1

qi

{
ln p(X, θ)−

M

∑
i=1

ln qi

}
dθ

=
∫

qj

{ ∫
ln p(X, θ)∏

i 6=j
qidθi

}
dθj −

∫
qj ln qjdθj + constant

=
∫

qj ln p̃(X, θj)dθj −
∫

qj ln qjdθj + constant

(17)

where p̃(X, θj) is given by

ln p̃(X, θj) = Ei 6=j[ln p(X, θ)] + constant. (18)

The notation Ei 6=j[·] denotes an expectation with respect to the q distributions over all variables zi
for i 6= j, so that

Ei 6=j[ln p(X, θ)] =
∫

ln p(X, θ)∏
i 6=j

qidθi.

Now suppose we keep the {qi 6=j} fixed and maximize L(q) in (17) with respect to all possible
forms for the density qj(θj). By recognizing that (17) is the negative KL divergence between p̃(X, θj)

and qj(θj), we notice that maximizing (17) is equivalent to minimize the KL divergence, and the
minimum occurs when qj(θj) = p̃(X, θj). The optimal q∗j (θj) is then

ln q∗j (θj) = Ei 6=j[ln p(X, θ)] + constant. (19)

The above solution says that the log of the optimal qj is obtained simply by considering the log of
the joint distribution of all parameter, latent and observable variables and then taking the expectation
with respect to all the other factors qi for i 6= j. Normalizing the exponential of (19), we have
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q∗j (θj) =
exp(Ei 6=j[ln p(X, θ)])∫
exp(Ei 6=j[ln p(X, θ)])dθj

.

The set of equations in (19) for j = 1, ..., M are not an explicit solution because the expression on
the right hand side of (19) for the optimal q∗j depends on expectations taken with respect to the other
factors qi for i 6= j. We will need to first initialize all of the factors qi(θi) and then cycle through the
factors one by one and replace each in turn with an updated estimate given by the right hand side
of (19) evaluated using the current estimates for all of the other factors. Convexity properties can be
used to show that convergence to at least local optima is guaranteed [25]. The iterative procedure is
described in Algorithm 1.

Algorithm 1 Iterative procedure for obtaining the optimal densities under factorized density
restriction (16). The updates are based on the solutions given by (19).

1: Initialize q∗2(θ2), ..., q∗M(θM).
2: Cycle through

q∗1(θ1)←
exp(Ei 6=1[ln p(X, θ)])∫

exp(Ei 6=1[ln p(X, θ)])dθ1

...

q∗M(θM)←
exp(Ei 6=M[ln p(X, θ)])∫

exp(Ei 6=M[ln p(X, θ)])dθM

until the increase in L(q) is negligible.

5. Incorporate Intrinsic Prior with Variational Approximation to Bayesian Probit Models

5.1. Derivation of Intrinsic Prior to Be Used in Variational Inference

Let Xl be the design matrix of a minimal training sample (mTS) of a normal regression model Mj
for the variable Z ∼ N(Xjβj, Ij+1). We have, for the j + 1-dimensional parameter βj,

∫
Nj+1(zl |Xl βj, Ij+1)dβj =

{
|X′lXl |−1/2 if rank of Xl ≥ j + 1

∞ otherwise
.

Therefore, it follows that the mTS size is j + 1 [2]. Given that priors for α and β are proportional
to 1, the intrinsic prior for β conditional on α could be derived. Let β0 denote the vector with the first
component equal to α and the others equal to zero. Based on Formula (9), we have

π I(β|α) = πN
j (β)EMj

zl |β

[ p1(zl |α)∫
pj(zl |β)πN

j (β)dβ

]
= EMj

zl |β

[ exp{− 1
2 (zl − Xl β0)

′(zl − Xl β0)}∫
exp{− 1

2 (zl − Xl β)′(zl − Xl β)}dβ

]
= (2π)−

(j+1)
2 |(X′lXl)

−1|−
1
2 ×EMj

zl |β

[
exp{−1

2
(zl − Xl β0)

′(zl − Xl β0)}
]

= (2π)−
(j+1)

2 |2(X′lXl)
−1|−

1
2 exp{−1

2
[(β− β0)

′X
′
lXl

2
(β− β0)]}.
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Therefore,

π I(β|α) = Nj+1(β|β0, 2(X′lXl)
−1), where β0 =


α

0
...
0


(j+1)×1

.

Notice that X′lXl is unknown because it is a theoretical design matrix corresponding to the training
sample zl . It can be estimated by averaging over all submatrices containing j + 1 rows of the n× (j + 1)
design matrix Xj. This average is j+1

n X′jXj (See [26] and Appendix A in [2]), and therefore

π I(β|α) = Nj+1(β|β0,
2n

j + 1
(X′jXj)

−1).

Next, based on π I(β|α), the intrinsic prior for β can be obtained by

π I(β) =
∫

π I(β|α)π I(α)dα. (20)

Since we assume that π I(α) = πN(α) is proportional to one, set πN(α) = c where c is an arbitrary
positive constant. Denote 2n

j+1 (X
′
jXj)

−1 by Σβ|α, we obtain

π I(β) =
∫

π I(β|α)π I(α)dα

= c · (2π)−
j+1

2 |Σβ|α|−
1
2

∫
exp{−1

2
(β− β0)

′Σ−1
β|α(β− β0)}dα

∝ exp{−1
2

β′Σ−1
β|αβ} ×

∫
exp{−1

2
[β′0Σ−1

β|αβ0 − 2β′Σ−1
β|αβ0]}dα

∝ exp{−1
2

β′Σ−1
β|αβ} ×

∫
exp{−1

2
(Σ−1

β|α(1,1)
α2 − 2β′Σ−1

β|α(·1)
α)}dα

(21)

where Σ−1
β|α(1,1)

is component of Σ−1
β|α at position row 1 column 1 and Σ−1

β|α(·1)
is the first column of Σ−1

β|α.

Denote Σ−1
β|α(1,1)

by σ11 and Σ−1
β|α(·1)

by γ1, we then obtain

π I(β) ∝ exp{−1
2

β′Σ−1
β|αβ} ×

∫
exp{−1

2
σ11(α−

β′γ1

σ11
)2 +

1
2
(β′γ1)

2

σ11
}dα

∝ exp{−1
2
(β′Σ−1

β|αβ− β′
γ1γ′1
σ11

β)} ×
√

2πσ−1/2
11

∝ exp{−1
2

β′(Σ−1
β|α −

γ1γ′1
σ11

)β}.

(22)

Therefore, we have derived that

π I(β) ∝ Nj+1(0, (Σ−1
β|α −

γ1γ′1
σ11

)−1). (23)
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For model comparison, the specific form of the intrinsic prior may be needed, including the
constant factor. Therefore, by following (21) and (22) we have

π I(β) = c · (2π)−
j+1

2 |Σβ|α|−
1
2 (2π)

j+1
2 |(Σ−1

β|α −
γ1γ′1
σ11

)−1|
1
2
√

2πσ−1/2
11 × Nj+1(0, (Σ−1

β|α −
γ1γ′1
σ11

)−1)

= c · |Σβ|α(Σ
−1
β|α −

γ1γ′1
σ11

)|−
1
2
√

2πσ−1/2
11 × Nj+1(0, (Σ−1

β|α −
γ1γ′1
σ11

)−1)

= c ·
√

2πσ−1/2
11 |(I−

γ1γ′1
σ11

Σβ|α)|−
1
2 × Nj+1(0, (Σ−1

β|α −
γ1γ′1
σ11

)−1).

(24)

5.2. Variational Inference for Probit Model with Intrinsic Prior

5.2.1. Iterative Updates for Factorized Distributions

We have that

Zi|β ∼ N(x′i β, 1) and

p(yi|zi) = I(zi > 0)I(yi = 1) + I(zi ≤ 0)I(yi = 0)

in Section 3.1. We have shown in Section 5.1 that

π I(β) ∝ Nj+1(µβ, Σβ),

where µβ = 0 and Σβ = (Σ−1
β|α −

γ1γ′1
σ11

)−1. Since y is independent of β given z, we have

p(y, z, β) = p(y|z, β)p(z|β)p(β)

= p(y|z)p(z|β)p(β).
(25)

To apply the variational approximation to probit regression model, unobservable variables are
considered in two separate groups, coefficient parameter β and auxiliary variable Z. To approximate
the posterior distribution of β, consider the product form

q(Z, β) = qZ(Z)qβ(β).

We proceed by first describing the distribution for each factor of the approximation, qZ(Z) and
qβ(β). Then variational approximation is accomplished by iteratively updating the parameters of each
factor distribution.

Start with qZ(Z), when yi = 1, we have

log p(y, z, β) = log
(

∏
i

1√
2π

exp{−
(zi − x′i β)

2

2
} × π I(β)

)
where zi > 0.

Now, according to (19) and Algorithm 1, the optimal qZ is proportional to

Eβ[log p(y, z, β)] = −1
2
Eβ[z′z− 2β′Xz + β′X′Xβ] +Eβ[log π I(β)]

= −1
2

z′z +Eβ[β]
′X′z +

��
���

���:constant
−1

2
Eβ[β

′X′Xβ] +
��

���
��:constant

Eβ[log π I(β)].
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So, we have the optimal qZ,

q∗Z(Z) ∝ exp{−1
2

z′z +Eβ[β]
′X′z + constant}

∝ exp{−1
2
(z− XEβ[β])

′(z− XEβ[β])}.

Similar procedure could be used to develop cases when yi = 0. Therefore, we have that the
optimal approximation for qZ is a truncated normal distribution, where

q∗Z(Z) =

{
N[0,+∞)(XEβ[β]i, 1) if yi = 1,

N(−∞,0](XEβ[β]i, 1) if yi = 0.
(26)

Denote XEβ[β] by µz, the location of distribution q∗Z(Z). The expectation Eβ is taken with respect
to the density form of q(β) for which we shall derive now.

For qβ(β), given the joint form in (25), we have

log p(y, z, β) = −1
2

exp{(z− Xβ)′(z− Xβ)} − 1
2

exp{(β− µβ)
′Σ−1

β (β− µβ)}+ constant.

Taking expectation with respect to qZ(z), we have

EZ[log p(y, z, β)] =
��

�
��
�*constant

−1
2
EZ[Z′Z] +EZ[Z]′Xβ− 1

2
β′X′Xβ

− 1
2

β′Σ−1
β β + µ′βΣ−1

β β +���
��:constant

µ′βΣ−1
β µβ .

Again, based on (19) and Algorithm 1, the optimal qβ(β) is proportional to EZ[log p(y, z, β)],

q∗β(β) ∝ −1
2

β′(X′X + Σ−1
β )β + (EZ[Z]′X + µ′βΣ−1

β )β.

First notice that any constant terms, including constant factor in the intrinsic prior, were canceled
out due to the ratio form of (19). Then by noticing the quadratic form in the above formula we have

q∗β(β) = N(µqβ
, Σqβ

), (27)

where

Σqβ
= (X′X + Σ−1

β )−1,

µqβ
= (X′X + Σ−1

β )−1(EZ[Z]′X + µ′βΣ−1
β ).

Notice that µqβ
, i.e., Eβ[β], depends on EZ[Z]. In addition, from our previous derivation, we

found that the update for EZ[Z] depends on Eβ[β]. Given that the density form of qZ is truncated
normal, we have

EZ[Zi] =

XEβ[β]i +
φ(−XEβ [β]i)

1−Φ(−XEβ [β])i
if yi = 1,

XEβ[β]i −
φ(−XEβ [β]i)

Φ(−XEβ [β])i
if yi = 0,

where φ is the standard normal density and Φ is the standard normal cumulative density. Denote
EZ[Z] by µqZ . See properties of truncated normal distribution in Appendix A. Updating procedures
for parameters µqβ

and µqZ of each factor distribution are summarized in Algorithm 2.
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Algorithm 2 Iterative procedure for updating parameters to reach optimal factor densities q∗β and q∗Z
in Bayesian probit regression model. The updates are based on the solutions given by (26) and (27).

1: Initialize µqZ .
2: Cycle through

µqβ
← (X′X + Σ−1

β )−1(µ′qz X + µ′βΣ−1
β ),

µqZ ← Xµqβ
+

φ(Xµqβ
)

Φ(Xµqβ
)y[Φ(Xµqβ

)− 1]1−y ,

until the increase in L(q) is negligible.

5.2.2. Evaluation of the Lower Bound L(q)

During the process of optimization of variational approximation densities, the lower bound for
the log marginal likelihood need to be evaluated and monitored to determine when the iterative
updating process converges. Based on derivations from previous section, we now have the exact form
for the variational inference density,

q(β, Z) = qβ(β)qZ(Z).

According to (14), we can write down the lower bound L(q) with respect to q(β, Z).

L(q) =
∫

q(β, Z) log
{ p(Y, β, Z)

q(β, Z)

}
dβdZ

=
∫

qβ(β)qZ(Z) log
{ p(Y, β, Z)

qβ(β)qZ(Z)

}
dβdZ

=
∫

qβ(β)qZ(Z) log{p(Y, β, Z)}dβdZ−
∫

qβ(β)qZ(Z) log{qβ(β)qZ(Z)}dβdZ

= Eβ,Z[log{p(Y, Z|β)}] +Eβ,Z[π
I(β)]−Eβ,Z[log{qβ(β)}]−Eβ,Z[log{qZ(Z)}].

(28)

As we can see in (28), L(q) has been divided into four different parts with expectation taken over
the variational approximation density q(β, Z) = qβ(β)qZ(Z). We now find the expression of these
expectations one by one.

Part 1: Eβ,Z[log{p(Y, Z|β)}]

= log(2π)−
n
2 +

∫ ∫
qβ(β)qZ(Z){−

1
2
(z− Xβ)′(z− Xβ)}dβdz

= log(2π)−
n
2 +

∫
qZ(Z)

∫
qβ(β){−1

2
(β′X′Xβ− 2z′Xβ + z′z)}dβdz

(29)

Deal with the inner integral first, we have∫
qβ(β){−1

2
(β′X′Xβ− 2z′Xβ + z′z)}dβ = −1

2

∫
qβ(β)[β′X′Xβ]dβ + z′XEβ[β]−

1
2

z′z

= −1
2

∫
qβ(β)[β′X′Xβ]dβ + z′Xµqβ

− 1
2

z′z
(30)
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where

−1
2

∫
qβ(β)[β′X′Xβ]dβ = −1

2

∫
qβ(β)[(β− µqβ

+ µqβ
)′X′X(β− µqβ

+ µqβ
)]dβ

= −1
2

trace(X′XEβ[(β− µqβ
)(β− µqβ

)′])− 1
2

µ′qβ
X′Xµqβ

= −1
2

trace(X′X[µqβ
µ′qβ

+ Σqβ
]).

(31)

Substitute (31) into (30), we got∫
qβ(β){−1

2
(β′X′Xβ− 2z′Xβ + z′z)}dβ = −1

2
trace(X′X[µqβ

µ′qβ
+ Σqβ

]) + z′Xµqβ
− 1

2
z′z. (32)

Substituting (32) back into (29) gives

Eβ,Z[log{p(Y, Z|β)}] = log(2π)−
n
2 +

∫
qZ(z){−

1
2

trace(X′X[µqβ
µ′qβ

+ Σqβ
]) + z′Xµqβ

− 1
2

z′z}dz

= log(2π)−
n
2 − 1

2
trace(X′X[µqβ

µ′qβ
+ Σqβ

])− 1
2
EZ[z′z] + µ′qz

µz

= log(2π)−
n
2 − 1

2
trace(X′X[µqβ

µ′qβ
+ Σqβ

]) + µ′qz
µz

− 1
2

n

∑
i=1

[1 + µ2
zi
− µzi

φ(−µzi )

Φ(−µzi )
]I(yi=0)[1 + µ2

zi
+ µzi

φ(−µzi )

1−Φ(−µzi )
]I(yi=1)

= log(2π)−
n
2 − 1

2
trace(X′X[µqβ

µ′qβ
+ Σqβ

]) + µ′qz
µz

− 1
2

n

∑
i=1

[1 + µqzi
µzi ]

I(yi=0)[1 + µqzi
µzi ]

I(yi=1)

= log(2π)−
n
2 − 1

2
trace(X′X[µqβ

µ′qβ
+ Σqβ

]) +
1
2

µ′qz
µz −

n
2

.

(33)

We applied properties of truncated normal distribution in Appendix B to find the expression of
the second moment EZ[z′z].

Part 2: Eβ,Z[log qZ(z)]

=
∫ ∫

qβ(β)qZ(z) log qZ(z)dβdZ

=
∫

qZ(z) log qZ(z)dZ

= −n
2
(log(2π) + 1)

+
n

∑
i=1
{[log(Φ(−µzi )) + µzi

φ(−µzi )

2Φ(−µzi )
]I(yi=0)[log(1−Φ(−µzi ))− µzi

φ(−µzi )

2(1−Φ(−µzi ))
]I(yi=1)}

= −n
2
(log(2π) + 1)− 1

2
µ′zµz +

1
2

µ′qz µz +
n

∑
i=1
{[log(Φ(−µzi ))]

I(yi=0)[log(1−Φ(−µzi ))]
I(yi=1)}

(34)

Again, see Appendix B for well-known properties of truncated normal distribution. Now
subtracting (34) from (33) we got

Eβ,Z[log{p(Y, Z|β)}]−Eβ,Z[log qZ(z)] = −
1
2

trace(X′X[µqβ
µ′qβ

+ Σqβ
]) +

1
2

µ′zµz+

n

∑
i=1
{[log(Φ(−µzi ))]

I(yi=0)[log(1−Φ(−µzi ))]
I(yi=1)}.

(35)



Entropy 2020, 22, 513 13 of 20

Based on the exact expression of the intrinsic prior π I(β), denoting all constant terms by C,
we have

Part 3: Eβ,Z[log pβ(β)]

=
∫ ∫

qZ(z)qβ(β) log π I(β)dβdz

= log C− (j + 1)
2

log(2π)− 1
2

log |Σβ| −
1
2

∫
qβ(β)[β′Σ−1

β β]dβ

(36)

To find the expression for the integral, we have∫
qβ(β)[β′Σ−1

β β]dβ =
∫

qβ(β)(β− µqβ
+ µqβ

)′Σ−1
β (β− µqβ

+ µqβ
)dβ

= E[trace(Σ−1
β (β− µqβ

)(β− µqβ
)′)] + µ′qβ

Σ−1
β µqβ

= trace(Σ−1
β Σqβ

) + µ′qβ
Σ−1

β µqβ

(37)

Substituting (37) back into (36), we obtained

Eβ,Z[log pβ(β)] = log C− (j + 1)
2

log(2π)− 1
2

log |Σβ| −
1
2
[trace(Σ−1

β Σqβ
) + µ′qβ

Σ−1
β µqβ

]. (38)

Part 4: Eβ,Z[log qβ(β)]

=
∫ ∫

qZ(z)qβ(β) log qβ(β)dβ

= − j + 1
2

log(2π)− 1
2

log |Σqβ
| − 1

2

∫
qβ(β)(β− µqβ

)′Σ−1
qβ

(β− µqβ
)dβ

= − j + 1
2

log(2π)− 1
2

log |Σqβ
| − 1

2
trace(Σ−1

β Σβ)

= − j + 1
2

(log(2π) + 1)− 1
2

log |Σqβ
|

(39)

Combining all four parts together, we get

L(q) = Eβ,Z[log{p(Y, Z|β)}] +Eβ,Z[π
I(β)]−Eβ,Z[log{qβ(β)}]−Eβ,Z[log{qZ(Z)}]

= −1
2

trace(X′X[µqβ
µ′qβ

+ Σqβ
]) +

1
2

µ′zµz +
n

∑
i=1
{[log(Φ(−µzi ))]

I(yi=0)[log(1−Φ(−µzi ))]
I(yi=1)}︸ ︷︷ ︸

Eβ,Z [log{p(Y,Z|β)}]−Eβ,Z [log{qZ(Z)}]

+ log C− 1
2

log |Σβ| −
1
2
[trace(Σ−1

β Σqβ
) + µ′qβ

Σ−1
β µqβ

] +
j + 1

2
+

1
2

log |Σqβ
|︸ ︷︷ ︸

Eβ,Z [log pβ(β)]−Eβ,Z [log qβ(β)]

.

(40)

5.3. Model Comparison Based on Variational Approximation

Suppose we want to compare two models, M1 and M0, where M0 is the simpler model.
An intuitive thought on comparing two models by variational approximation methods is just to
compare the lower bounds L(q1) and L(q0). However, we should note that by comparing the lower
bounds, we are assuming that the KL divergences in the two approximations are the same, so that we
can use just these lower bounds as guide. Unfortunately, it is not easy to measure how tight in theory
any particular bound can be, if this can be accomplished we could then more accurately estimate
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the log marginal likelihood from the beginning. As clarified in [27], when comparing two exact log
marginal likelihood, we have

log p1(X)− log p0(X) = [L(q1) + KL(q1 ‖ p1)]− [L(q0)− KL(q0 ‖ p0)] (41)

= L(q1)−L(q0) + [KL(q1 ‖ p1)− KL(q0 ‖ p0)] (42)

6= L(q1)−L(q0). (43)

The difference in log marginal likelihood, log p1(X) − log p0(X), is the quantity we wish to
estimate. However, if we base this on the lower bounds difference, we are basing our model comparison
on (43) rather than (42). Therefore, there exists a systematic bias towards simpler model when
comparing models if KL(q1 ‖ p1)− KL(q0 ‖ p0) is not zero.

Realizing that we have a variational approximation for the posterior distribution of β, we propose
the following method to estimate p(X) based on our variational approximation qβ(β) (27). First,
writing the marginal likelihood as

p(x) =
∫ [ p(x|β)π I(β)

qβ(β)

]
qβ(β)dβ,

we can interpret it as the conditional expectation

p(x) = E
[ p(x|β)π I(β)

qβ(β)

]
with respect to qβ(β). Next, draw samples β(1), ..., β(n) from qβ(β) and obtain the estimated
marginal likelihood

p̂X(x) =
1
n

n

∑
i=1

p(x|β(i))π I(β(i))

qβ(β(i))
.

Please note that this method proposed is equivalent to importance sampling with importance
function being qβ(β), for which we know the exact form and the generation of the random β(i) is easy
and inexpensive.

6. Modeling Probability of Default Using Lending Club Data

6.1. Introduction

LendingClub (https://www.lendingclub.com/) is the world’s largest peer-to-peer lending
platform. LendingClub enables borrowers to create unsecured personal loans between $1000 and
$40,000. The standard loan period is three or five years. Investors can search and browse the loan
listings on LendingClub website and select loans that they want to invest in based on the information
supplied about the borrower, amount of loan, loan grade, and loan purpose. Investors make money
from interest. LendingClub makes money by charging borrowers an origination fee and investors a
service fee. To attract lenders, LendingClub publishes most of the information available in borrowers’
credit reports as well as information reported by borrowers for almost every loan issued through
its website.

6.2. Modeling Probability of Default—Target Variable and Predictive Features

Publicly available LendingClub data, from 2007 June to 2018 Q4, has a total of 2,260,668 issued
loans. Each loan has a status, either Paid-off, Charged-off, or Ongoing. We only adopted loans with an
end status, i.e., either paid-off or charged-off. In addition, that loan status is the target variable. We
then selected following loan features as our predictive covariates.

https://www.lendingclub.com/
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• Loan term in months (either 36 or 60)
• FICO
• Issued loan amount
• DTI (Debt to income ratio, i.e., customer’s total debt divided by income)
• Number of credit lines opened in past 24 months
• Employment length in years
• Annual income
• Home ownership type (own, mortgage, of rent)

We took a sample from the original data set that has customer yearly income between $15,000 and
$60,000 and end up with a data set of 520,947 rows.

6.3. Addressing Uncertainty of Estimated Probit Model Using Variational Inference with Intrinsic Prior

Using the process developed in Section 5, we can update the intrinsic prior for parameters (see
Figure 1) of the probit model using variational inference, and get the posterior distribution for the
estimated parameters. Based on the derived parameter distributions, questions of interest may be
explored with model uncertainty being considered.

Figure 1. Intrinsic Prior.

Investors will be interested in understanding how each loan feature affect the probability of
default, given a certain loan term, either 36 or 60. To answer this question, we samples 6000 cases
from the original data set and draw from derived posterior distribution 100 times. We end up with
6000× 100 calculated probability of default, where each one of the 6000 samples yield 100 different
probit estimates based on 100 different posterior draws. We summarize some of our findings in
Figure 2, where color red representing 36 months loans and green representing 60 months loans.

• In general, 60 months loans have higher risk of default.
• Given loan term months, there is a clear trend showing that high FICO means lower risk.
• Given loan term months, there is a trend showing that high DTI indicating higher risk.
• Given loan term months, there is a trend showing that more credit lines opened in past 24 months

indicating higher risk.
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• There is no clear pattern regarding income. This is probably because we only included customers
with income between $15,000 and $60,000 in our training data, which may not representing the
true income level of the whole population.

Model uncertainty could also be measured through credible intervals. Again, with the derived
posterior distribution, the credible interval is just the range containing a particular percentage of
estimated effect/parameter values. For instance, the 95% credible interval of the estimated parameter
value of FICO is simply the central portion of the posterior distribution that contains 95% of the
estimated values. Contrary to the frequentist confidence intervals, Bayesian credible interval is much
more straightforward to interpret. Using the Bayesian framework created in this article, from Figure 3,
we can simply state that given the observed data, the estimated effect of DTI on default has 89%
probability of falling within [8.300, 8.875]. Instead of the conventional 95%, we used 89% following
suggestions in [28,29], which is just as arbitrary as any of the conventions.

One of the main advantages of using variational inference over MCMC is that variational inference
is much faster. Comparisons were made between the two approximation frameworks on a 64-bit
Windows 10 laptop, with 32.0 GB RAM. Using the data set introduced in Section 6.2, we have that

• with a conjugate prior and following the Gibbs sampling scheme proposed by [17], it took 89.86 s
to finish 100 simulations for the Gibbs sampler;

• following our method proposed in Section 5.2, it took 58.38 s to get the approximated posterior
distribution and sampling 10,000 times from that posterior.

Figure 2. Effect of term months and other covariates on probability of default
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Figure 3. Credible intervals for estimated coefficients

6.4. Model Comparison

Following the procedure proposed in Section 5.3, we compare the following series of nested
models. From the data set introduced in Section 6.2, 2000 records were sampled to estimate the
likelihood p(x|β(i)). Where β(i) is one of the 2500 draws sampled directly from the approximated
posterior distribution qβ(β), which serves as the importance function used to estimate the marginal
likelihood p(x).

• M2: FICO + Term 36 Indicator
• M3: FICO + Term 36 Indicator + Loan Amount
• M4: FICO + Term 36 Indicator + Loan Amount + Annual Income
• M5: FICO + Term 36 Indicator + Loan Amount + Annual Income + Mortgage Indicator

Estimated log marginal likelihood for each model is plotted in Figure 4. We can see that the model
evidence has increased by adding predictive features Loan Amount and Annual Income sequentially.
However, if we further adding home ownership information, i.e., Mortgage Indicator as a predictive
feature, the model evidence decreased. We have the Bayes factor

BF45 =
p(x|M4)

p(x|M5)
= e−1014.78−(−1016.42) = 5.16,

which suggests a substantial evidence for model M4, indicating home ownership information may be
irrelevant in predicting probability of default given that all the other predictive features are relevant.



Entropy 2020, 22, 513 18 of 20

Figure 4. Log marginal likelihood comparison

7. Further Work

The authors thank the reviewers for pointing out that mean-field variational Bayes underestimates
the posterior variance. This could be an interesting topic for our future research. We plan to study
the linear response variational Bayes (LRVB) method proposed in [30] to see if it can be applied on the
framework we proposed in this article. To see if we can get the approximated posterior variance
close enough to the true variance using our proposed method, comparisons should be made between
normal conjugate prior with the MCMC procedure, normal conjugate prior with LRVB, and intrinsic
prior with LRVB.
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Appendix A. Density Function

Suppose X ∼ N(µ, σ2) has a normal distribution and lies within the interval X ∈ (a, b),−∞ ≤
a < b ≤ ∞. Then X conditional on a < X < b has a truncated normal distribution. Its probability
density function, f , for a ≤ X < b, is given by

f (x|µ, σ, a, b) =
1
σ φ( x−µ

σ )

Φ( b−µ
σ )−Φ( a−µ

σ )

and by f = 0 otherwise. Here

φ(ξ) =
1√
2π

exp(−1
2

ξ2)
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is the probability density function of the standard normal distribution and Φ(·) is its cumulative
distribution function. If b = ∞, then Φ( b−µ

σ ) = 1, and similarly, if a = −∞, then Φ( a−µ
σ ) = 0. And the

cumulative density for the truncated normal distribution is

F(x|µ, σ, a, b) =
Φ(ξ)−Φ(α)

Z
,

where ξ = x−µ
σ and Z = Φ(β)−Φ(α).

Appendix B. Moments and Entropy

Let α = a−µ
σ and β = b−µ

σ . For two-sided truncation:

E(X|a < X < b) = µ + σ
φ(α)− φ(β)

Φ(β)−Φ(α)
,

Var(X|a < X < b) = σ2
[
1 +

αφ(α)− βφ(β)

Φ(β)−Φ(α)
−
( φ(α)− φ(β)

Φ(β)−Φ(α)

)2]
.

For one sided truncation (upper tail):

E(X|X > a) = µ + σλ(α)

Var(X|X > a) = σ2[1− δ(α)],

where α = a−µ
σ , λ(α) = φ(α)

1−Φ(α)
and δ(α) = λ(α)[λ(α)− α].

For one sided truncation (lower tail):

E(X|X < b) = µ− σ
φ(β)

Φ(β)

Var(X|X < b) = σ2
[
1− β

φ(β)

Φ(β)
−
( φ(β)

Φ(β)

)2]
.

More generally, the moment generating function for truncated normal distribution is

eµt+σ2t2/2 ·
[Φ(β− σt)−Φ(α− σt)

Φ(β)−Φ(α)

]
.

For a density f (x) defined over a continuous variable, the entropy is given by

H[x] = −
∫

f (x) log f (x)dx.

And the entropy for a truncated normal density is

log(
√

2πeσZ) +
αφ(α)− βφ(β)

2Z
.
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