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Abstract: In this paper, a gradient descent algorithm is proposed for the parameter estimation of
multi-input and multi-output (MIMO) total non-linear dynamic models. Firstly, the MIMO total
non-linear model is mapped to a non-completely connected feedforward neural network, that is,
the parameters of the total non-linear model are mapped to the connection weights of the neural
network. Then, based on the minimization of network error, a weight-updating algorithm, that is,
an estimation algorithm of model parameters, is proposed with the convergence conditions of a
non-completely connected feedforward network. In further determining the variables of the model set,
a method of model structure detection is proposed for selecting a group of important items from the
whole variable candidate set. In order to verify the usefulness of the parameter identification process,
we provide a virtual bench test example for the numerical analysis and user-friendly instructions for
potential applications.

Keywords: parameter estimation; total non-linear model; neural networks; neuro-computing;
gradient descent algorithm

1. Introduction

Because a total non-linear model can provide a very concise representation for complex non-linear
systems and has good extrapolation characteristics, it has attracted the attention of academic research
and applications. Compared with the polynomial non-linear auto-regressive moving average with
exogenous input (NARMAX) model, the total non-linear model is an extension of the polynomial
model, which can be defined as the ratio of two polynomial expressions [1–3]. The introduction of
denominator polynomials makes the NARMAX model non-linear in parameters and regression terms.
Therefore, compared with the polynomial model, the model identification and the controller design
of the total non-linear model are much more challenging [4,5]. In view of the difficulty of parameter
estimation of a total non-linear model, using simple and effective algorithm and machine learning
should be considered for extracting the information from measurement data.

1.1. Literature Survey

At present, a variety of model structure detection techniques and parameter estimation algorithms
are developed for non-linear models, including the orthogonal model structure detection and parameter
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estimation program [6], the generalized least square estimator [7,8], the prediction error estimator [9,10],
the Kalman filter estimator [11,12], the genetic algorithm estimator [12,13], the artificial neural network
estimator [14–17], etc. However, most of these algorithms are parameter estimators for polynomial
non-linear models. Zhu and Billings have done a lot of research work on the parameter identification
of a total non-linear model [7,8], and they put forward the parameter estimation method of a total
non-linear model based on a back-propagation (BP) algorithm in 2003. They discussed the advantages
of BP calculation in recognition of the classical model to provide the best combination of classical and
neural network methods and provided a powerful tool for analyzing a large number of systems.

In [18], a back-propagation estimation formula based on neuro-computing was presented for
estimating the total non-linear model parameters, where a pack of solutions were derived for the
problems of parameter initialization, learning rate selection, stop criteria and model structure detection,
and the convergence of a back-propagation estimator (BPE). However, Reference [18] only proposed a
parameter estimation method for single-input and single-output (SISO) systems, and correspondingly
the case studies. Expanding [18], this paper presents solutions for the parameter estimation of a total
non-linear multi-input and multi-output (MIMO) model. Due to the complexity of a MIMO system,
it is more difficult to estimate the model parameters, but they are more general in academic research
and applications. For example, the parameters of a MIMO system are many more than those of a SISO
system, and the parameters to be estimated each time will be multiplied, which increases the difficulty
of estimation. Moreover, due to the coupling of multiple systems, the parameter values of each system
also affect each other. The algorithms to estimate these parameters are not independent but interactive
and complex. Because the components of different MIMO systems are different, the total connection
neural network structure adopted in [18] is not suitable for estimating the parameters of MIMO systems.
When the MIMO system is mapped into a neural network, the network structure is often asymmetric
or non-completely connected (the neurons in the hidden layer are not connected with all the neurons in
the input layer). That is to say, the network is not a common completely connected feedforward neural
network, and the general BP algorithm cannot be directly applied to the estimation of the parameters.
Therefore, the learning algorithm of the parameters must be properly derived. Due to the asymmetry
of the network, the convergence of the network is also facing challenges. It is necessary to analyze the
convergence of the network and give the specific conditions of the network convergence. A MIMO
system needs to identify the parameters of a SISO system several times, and a MIMO system can have
multiple inputs. In the simulation experiment, the parameters of the system should be estimated under
different combinations of multiple inputs, and the performance of the network estimator should be
verified. Therefore, the parameter identification of a MIMO system is much more challenging.

1.2. Motivation and Contributions

The authors of [19] presented a thorough analysis that included two kernel components, the SISO
model and the orthogonal algorithms are parameter estimators for polynomial non-linear models
such as predictive and back propagation computation. Since then, rational model identification has
gone to diversified directions, such as more theoretical considerations of a non-linear least squares
algorithm [4], a maximum likelihood estimation [3], and a biased compensation recursive least squares
algorithm [2]. It has been noted that the MIMO rational model identification has seldom attracted
research, probably due to the complexity in algorithm formulation and the coupling effect. However,
this MIMO rational model identification should be a research agent now because of recent applications
and increasing computing facilities.

The total non-linear system model, which is relatively new, is the alternative name of the NARMAX
rational model, which was defined by a survey paper on the rational model identification [19]. The total
non-linear model emphasizes the non-linearity in both the parameters and control inputs, and it has
been taken as a challenging structure for designing non-linear dynamic control systems [1]. The rational
model gives more consideration as expanded polynomials in math, structure detection, and parameter
estimation in the field of system identification [2,3]. Therefore, the main contribution of the new study
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is to use neural computing algorithms for a MIMO model parameter estimation. The new study is a
complement to those classical NAMAX approaches.

The rest of the paper is organized as follows. The total non-linear model is described in Section 2.
Section 3 presents the gradient descent calculation of parameter estimation. Next, model structure
detection is discussed in Section 4. A convergence analysis of an algorithm is presented in Section 5.
Simulation results and discussions are demonstrated in Section 6. Finally, Section 7 includes the paper
conclusions and some of the future aspects.

2. Total Non-Linear Model

In mathematics, the dynamic total non-linear model of a MIMO system with error can be defined as

yi(t) = ŷi+ei(t)=
ai(t)
bi(t)

+ei(t) =
ai(u1, u2, . . . , uJ, y1, y2, . . . , yI, e1, e2, . . . , eI)

bi(u1, u2, . . . , uJ, y1, y2, . . . , yI, e1, e2, . . . , eI)
+ei(t)i = 1, 2, . . . , I (1)

ai(t) =
∑N

k=1
pn

k (t)θ
n
k , bi(t) =

∑D

k=1
pd

k(t)θ
d
k i = 1, 2, . . . , I (2)

where y(t) = [y1(t), y2(t), . . . , yI(t)] ∈ RI and
^
y(t) =

[
ŷ1(t), ŷ2(t), . . . , ŷI(t)

]
∈ RI are the measured

output and model output, respectively; u(t) =
[
u1(t), u2(t), . . . , uJ(t)

]
∈ RJ is the input; e(t) =

[e1(t), e2(t), . . . , eI(t)] ∈ RI is the model error; and t = [1, 2, . . . , T] ∈ Z+T is the sampling time index.
Numerator ai(t) ∈ R and denominator bi(t) ∈ R as represented by polynomials, regression term pn

k (t),
and pd

k(t) are products of past inputs, outputs, and errors, such as u1(t− 1)y2(t− 3), u1(t− 1)e2(t− 2),

y3
2(t− 1).θn =

[
θn

1 , θn
2 , . . . , θn

N

]
∈ RN, and θd =

[
θd

1, θd
2, . . . , θd

D

]
∈ RD are the parameter sets of ai(t) and

bi(t), respectively.
The task of parameter estimation is to extract the relevant parameter values from the measured

input and output data for a given model structure. To form a regression expression for parameter
estimation, multiplying ei(t) of both sides of Formula (1) gives

yi(t)bi(t) − ai(t) = bi(t)ei(t) (3)

To consider the neuro-computing approach for parameter estimation, a total non-linear model is
expressed into a non-completely connected feedforward neural network, as shown in Figure 1.
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We define the network with an on both sides, Formula (11) is obtainedinput layer, a hidden layer,
and an output layer, where:
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(i) The input layer consists of regression terms pn
k (t)(k = 1, . . . , N) and pd

k(t) (k = 1, . . . , D); here,
a neuron in the hidden layer is not connected to all the neurons in the input layer, that is,
the network is a non-completely connected feedforward neural network.

(ii) The action function of the neurons in the hidden layer is linear, and the output of the hidden
layer neurons is ai(t) or bi(t).

(iii) The action function of the output layer neurons is linear, and the output of the ith output layer
neuron is bi(t)ei(t).

(iv) The connection weights between the input layer neurons and the hidden layer neurons are the
parameters θn

k and θd
k of the model.

(v) The connection weight between the hidden layer neurons and the ith output layer neurons are −1
and the observed output yi(t).

Leung and Haykin proposed a rational function neural network [20] but did not define a
generalized total non-linear model structure or consider the relevant errors. Therefore, their parameter
estimation algorithm could not provide an unbiased estimation for noise damaged data, which was
essentially a special implementation of Zhu and Billings’s [7,8] methods in the case of no noise data.
The method proposed in this paper is a further study of the method in Zhu [18]. The characteristics of
a total non-linear model (1) are as follows:

(i) By setting parameter i = 1, Zhu’s [18] model can be a special case of the model in Formula (1).
(ii) The model is non-linear in parameters and regression terms, which was caused by denominator

polynomials.
(iii) When the denominator bi(t) of the model is close to 0, the output deviation would be large. In this

paper, considering this point, division operation was avoided in the action function of the neuron
when the neural network model was being built.

(iv) The structure of the neural network corresponding to the total non-linear model is a non-completely
connected feedforward neural network, or a partially connected feedforward neural network.
Therefore, the convergence of the network becomes a big problem, which is the difficulty of
this paper.

(v) The model has a wide range of application prospects. In many non-linear system modeling and
control applications, the total non-linear model has been gradually adopted. Some non-linear
models, such as the exponential model ex, which describes the change of dynamic rate constant
with temperature, cannot be directly used. The exponential model can be firstly transformed into

a non-linear model (ex =
1− x

2+
x2
12

1+ x
2+

x2
12

), and then, system identification can be implemented [19,21,22].

3. Gradient Descent Calculation of Parameter Estimation

For the convenience of the following derivations, set the output of neuron i in the output layer of
the neural network as fi(t).

fi(t) = bi(t)ei(t) (4)

Define the error measure function of one iteration of network as:

E(t) =
1
2

∑
(yi(t) − ŷi(t))

2 =
1
2

∑
(ei(t))

2 (5)

The Lyapunov method is often used to analyze the stability of a neural network [23]; similarly,
the network parameters are estimated by minimizing the network error based on the Lyapunov method.
It should be noted that when the total non-linear model is represented in the neural network structure
of Figure 1, the parameter estimation of the model can be described as the training of neural network
weight by minimizing the error E(t) in Formula (5).
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In order to train the weights of the network, the learning algorithm based on the gradient descent
is given by Formulas (6) and (7):

∆θn
k = −ηn

∂E
∂θn

k
= −ηnei(t)

∂ei(t)
∂θn

k
(6)

∆θd
k = −ηd

∂E

∂θd
k

= −ηdei(t)
∂ei(t)

∂θd
k

(7)

where ηn and ηd are learning rates.
By deriving Formula (4) from θn

k on both sides, Formula (8) is obtained:

∂ fi(t)
∂θn

k
=
∂bi(t)
∂θn

k
ei(t) + bi(t)

∂ei(t)
∂θn

k

∂ei(t)
∂θn

k
=

1
bi(t)

(
∂ fi(t)
∂θn

k
−
∂bi(t)
∂θn

k
ei(t))=

1
bi(t)

∂ fi(t)
∂θn

k
=

1
bi(t)

∂(yi(t)bi(t) − ai(t))
∂θn

k

= −
1

bi(t)
∂ai(t)
∂θn

k
= −

pn
k (t)

bi(t)

(8)

Substituting Formula (8) into Formula (6) to get Formula (9), we can then get Formula (10):

∆θn
k = −ηnei(t)

∂ei(t)
∂θn

k
= ηnei(t)

pn
k (t)

bi(t)
(9)

θn
k (t + 1) = θn

k (t) + ∆θn
k= θn

k (t) + ηnei(t)
pn

k (t)

bi(t)
(10)

By deriving Formula (4) from θd
k on both sides, Formula (11) is obtained:

∂ fi(t)

∂θd
k

=
∂bi(t)

∂θd
k

ei(t) + bi(t)
∂ei(t)

∂θd
k

∂ei(t)

∂θd
k

=
1

bi(t)
(
∂ fi(t)

∂θd
k

−
∂bi(t)

∂θd
k

ei(t))

=
1

bi(t)
(
∂(yi(t)bi(t) − ai(t))

∂θd
k

−
∂bi(t)

∂θd
k

ei(t)) =
1

bi(t)
(yi(t)pd

k(t) − pd
k(t)ei(t))

=
1

bi(t)
(yi(t) − ei(t))pd

k(t) =
1

bi(t)
ai(t)
bi(t)

pd
k(t) =

ai(t)
b2

i (t)
pd

k(t)

(11)

Substituting Formula (11) into Formula (8) to get Formula (12), we then get Formula (13):

∆θd
k = −ηdei(t)

∂ei(t)

∂θd
k

= −ηdei(t)
ai(t)
b2

i (t)
pd

k(t) (12)

θd
k(t + 1) = θd

k(t) + ∆θd
k = θd

k(t) − ηdei(t)
ai(t)
b2

i (t)
pd

k(t) (13)

The gradient descent algorithm for parameter estimation of a total non-linear model is
summarized in Algorithm 1.
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Algorithm 1. Gradient Descent Algorithm

1: Initialization: The weights of the neural network (parameters of a total non-linear model) are set as random
little numbers with uniform distribution; the average value is zero, and the variance is small. Set the maximum
number of iterations T, the minimum error ε, and the maximum number of samples P.
2: Generate training sample set {X, Y} of the neural network according to Formula (1), where
X = {X1, X2, . . . , XI}, Y = {Y1, Y2, . . . , YI},
Xi 3{pn

1 (t), pn
2 (t), . . . , pn

N(t), pd
1,pd

2, . . . , pd
D}, Yi={yi(t)}.

3: Input a training sample p to the neural network.
4: Calculate the output value ai(k),yi(t)ei(t) and fi(t) of the neurons in the hidden layer and the output layer
according to Formulas (2), (3), and (4), respectively.
5: Adjust the weight of the neural network according to Formulas (10) and (13).
6: Calculate the error E(t) according to Formula (4) and calculate the total error according to Formula (14).

E =
∑

E(t) (14)

7: p = p + 1
8: If p > P, then t = t + 1; otherwise, run step 3.
9: If E < ε or t > T, stop training; otherwise, run step 3.

4. Model Structure Detection

Model structure detection is to select important items from a rather large model set (usually
called the whole item set) and determine the sub-model with important items [18]. Because of the
powerful self-learning and associative memory function of an artificial neural network [24], it is the
first-choice tool to identify the model structure. When identifying systems with unknown structures,
it is important to avoid losing these important items in the final model. For the structure detection of a
total non-linear model, the connection weight estimation in the neural network, that is, the parameter
estimation of the total non-linear model, could be used to select the significant terms.

For the important and unimportant items in the whole model item set, the knock-out algorithm
is adopted. First, remove the items that lead to the increase of network error, and then knock out
the items with lighter weight according to the requirements of significance. Finally, test the error of
the non-linear model composed of the remaining items. The specific algorithm is summarized in
Algorithm 2.

Algorithm 2. Knock-Out Algorithm

1: Using the network structure shown in Figure 1, all the items contained in the whole items set are taken as
the input of the network.
2: The algorithm in Section 3 is used to train the network, and network error E1 is obtained.
3: A new network structure is obtained by randomly removing a network input. The algorithm in Section 3 is
used to train the new network, and network error E2 is obtained. If E2 ≤ E1, then E1 = E2. Otherwise, this
operation should be invalid (the input is reserved).
4: Another input is selected, and step 3 is executed again until all the input items are executed once.
5: The N connection weights between the input layer and the hidden layer are sorted in descending order.
The first n weights are selected to make the significance reach 95%. Meanwhile, Formulas (15) and (16) are met,
and the network input items corresponding to the first n weights are retained.∑n

i=1|wi|∑N
i=1|wi|

≥ 0.95 (15)

∑n−1
i=1 |wi|∑N
i=1|wi|

< 0.95 (16)
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In the above process, the neural network is not only used to estimate the parameters of the model
but also to detect the structure of the model and analyze the significance of the regression term.

5. Convergence Analysis of the Algorithm

Convergence proof:
Assuming that a connection weight of the neural network shown in Figure 1 is changed, this

weight can take any value. When the weight θn
k corresponds to the regression term parameter of the

numerator of the total non-linear model, the resulting network error changes as follows (remove the
lower corner marks in Formula (2) for the convenience of proof):

y(t) =
a(t)
b(t)

+ e(t) (17)

Substitute Formula (2) into Formula (1) to get Formula (18):

y(t) −

∑N
n=1 pn

k (t)θ
n
k

b(t)
= e(t) (18)

When θn
k is updated, (18) becomes (19):

y(t) −

∑N
n=1,n, j pn

k (t)θ
n
k + pn

k (t)(θ
n
k + ∆θn

k )

b(t)
= ẽ(t) (19)

ẽ(t) is the new error of the neural network after the weight has been updated. Subtract Formula (18)
from Formula (19) to get Formulas (20) and (21):

ẽ(t) − e(t) = −
pn

k (t)∆θ
n
k

b(t)
= −ηn(

pn
k (t)

b(t)
)

2

e(t)

ẽ(t) = (1− ηn(
pn

k (t)

b(t)
)2) e(t)

(20)

ẽ(t)2 = (1− ηn(
pn

k (t)

b(t)
)2)2e(t)2 (21)

In order to ensure ẽ(t)2
≤ e(t)2, −1 ≤ 1− ηn(

pn
k (t)
b(t) )

2
≤ 1, namely:

ηn(
pn

k (t)
b(t) )

2
≤ 2

ηn(
pn

k (t)
b(t) )

2
≥ 0

(22)

Solving Formula (22) gives:

0 ≤ ηn ≤
2b(t)2

pn
k (t)

2 (23)

When the changed weight θd
k corresponds to the regression parameter of the denominator of the

total non-linear model, the resulting network error change is as follows:

y(t) −
a(t)∑D

d=1 pd
k(t)θ

d
k

= e(t) (24)
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y(t) −
a(t)∑D

d=1,d, j pd
k(t) + pd

k(t)(θ
d
k + ∆θd

k)
= ẽ(t) (25)

Subtracting Formula (24) from Formula (25) gives b̃(t) as the new denominator of the neural
network after the weight has been updated.

ẽ(t) − e(t) =
(̃b(t) − b(t))a(t)

b̃(t)b(t)
= pd

k(t)∆θ
d
k

a(t)

b̃(t)b(t)
= −ηde(t)

∂e(t)

∂θd
k

pd
k(t)

a(t)

b̃(t)b(t)
= −ηde(t)

a(t)2

b̃(t)b(t)3
pd

k(t)
2 (26)

ẽ(t)2 = (1− ηd
a(t)2

b̃(t)b(t)3
pd

k(t)
2)

2

e(t)2 (27)

In order to satisfy ẽ(t)2
≤ e(t)2, namely, −1 ≤ 1− ηd

a(t)2

b̃(t)b(t)3 pd
k(t)

2
≤ 1, that is:


ηd

a(t)2

b̃(t)b(t)3 pd
k(t)

2
≤ 2

ηd
a(t)2

b̃(t)b(t)3 pd
k(t)

2
≥ 0

(28)

Because the learning coefficient is too large, the training effect of the network is not effective;
accordingly, we take 0 ≤ ηn ≤ 1 to get b̃(t)b(t) > 0, and thus, it has:

0 ≤ ηd ≤
2̃b(t)b(t)3

a(t)2pd
k(t)

2 (29)

To sum up, the network is convergent when the following conditions are met:

1. 0 ≤ ηn ≤
2b(t)2

pn
k (t)

2

2. 0 ≤ ηd ≤
2̃b(t)b(t)3

a(t)2pd
k(t)

2

Under these two conditions, this algorithm provides a convergence estimate for the parameters of
the total non-linear model.

6. Simulation Results and Discussions

Consider a representative example of a total non-linear model:

y1(t) =
0.5y1(t− 1) + 0.8y3

2(t− 2) + u1(t− 1)

1 + y2
1(t− 1) + u2

2(t− 1)
+ r1(t)=

θ1y1(t− 1) + θ2y3
2(t− 2) + θ3u1(t− 1)

1 + θ4y2
1(t− 1) + θ5u2

2(t− 1)
+ r1(t) (30)

y2(t) =
0.2y2(t− 1) − 0.5y2

1(t− 2) + u2(t− 1)

1 + y2
2(t− 1) + u2

2(t− 1)
+ r2(t)=

θ6y2(t− 1) − θ7y2
1(t− 2) + θ8u2(t− 1)

1 + θ9y2
2(t− 1) + θ10u2

2(t− 1)
+ r2(t) (31)

Because the disturbance of input data will cause interference to the estimation of parameters [25],
in this section, the parameter estimation for different inputs was selected. Firstly, for the simulation
system without noise, 2000 pairs of input/output data were used as data sets for uniform sampling
in 20 cycles, and the learning rate was designed as a linear attenuation sequence (in 50 iterations,
the learning rate decreases from η0 = 0.5 to ηend = 0.02). The algorithm in this paper was used to
estimate 10 parameters at the same time. Table 1, after 50 iterations, shows the estimated values and
mean square deviation of parameters.
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Table 1. Parameter estimation of a noiseless system.

u1(t) u2(t) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 MSE

sine sine 0.5002 0.8025 1.0003 1.0034 1.0000 0.2006 0.5010 1.0004 1.0018 0.9991 2.351E-06
sine square 0.5000 0.8000 1.0000 1.0000 1.0000 0.1996 0.4982 1.0182 0.9677 1.0473 0.0003

square square 0.4973 0.8760 1.0110 1.0031 1.0153 0.2013 0.5072 1.0354 0.9744 1.0840 0.0015

The inputs u1(t) and u2(t) of the system are either a sine wave or square wave with an amplitude
of 2. Figure 2 shows the difference between the measured value y1(t) (the real output value of
Formula (6.1)) and the output value ŷ1(t) obtained using the parameter estimator when inputs u1(t)
and u2(t) are both sine waves. In the same way, Figure 3 shows the difference between measured
value y2(t) and output value ŷ2(t) when inputs u1(t) and u2(t) are both sine waves. Figure 4 shows
the difference between measured value y1(t) and output value ŷ1(t) when input u1(t) is a sine wave
and u2(t) is a square wave.
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Figure 5 shows the difference between measured value y2(t) and output value ŷ2(t) when input
u1(t) is a sine wave and u2(t) is square wave. Figure 6 shows the difference between measured value
y1(t) and output value ŷ1(t) when input u1(t) and u2(t) are both square waves. Figure 7 shows the
difference between measured value y2(t) and output value ŷ2(t) when input u1(t) and u2(t) are both
square waves. It can be seen that when the inputs are both sine waves, the accuracy of parameter
estimation is the highest, while when the inputs are square waves, the estimation accuracy of the
parameters is relatively lower. This is because when the inputs are square waves, the output of the
system has an overshoot, that is to say, the observation value of the system itself has an error. Training
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the network with error data will certainly lead to an error of parameter estimation; especially the
estimation error of θ2 is the highest. Here, θ2 is the parameter of y3

2(t− 2) because y3
2(t− 2) is the third

power of the output, which further amplifies the error. Substituting the value of y3
2(t− 2) into the

update of θ2 would inevitably lead to an estimation error.Entropy 2020, 22, x 10 of 16 
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For a system with noise interference, it is more difficult to estimate its parameters because of the
error of the measured value itself [26,27]. In order to further verify the performance of the estimator,
a system with noise was selected for parameter estimation, that is, by adding a noise signal to the
original system. The noises r1(t) and r2(t) were random uniform sequences, where each mean value
was zero, each variance was 0.1, and each signal-to-noise ratio was 10. We repeated the previous
experiment for the system with noise, and the experimental results are shown in Table 2. The difference
between the measured value and the estimated value of the system output is shown in Figures 8–13.

In order to detect the structure of the model, 20 items including 10 items in Formula (6.1) were
used as the whole items set of models. The newly added numerator term is of order 1, the denominator
term is of order 2, and the input lag and output lag are both of order 1. Using the knock-out algorithm
in Section 4, the final 10 items of the model are in good agreement with those in Formula (6.1).

From the above experimental results, the estimation accuracy of the algorithm proposed in
this paper is acceptable, and the mean square deviations are all less than 0.003. This level of error
is acceptable.

Table 2. Parameter estimation of a noisy system.

u1(t) u2(t) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 MSE

sine sine 0.5003 0.8041 1.0005 1.0054 1.0001 0.2008 0.5014 1.0005 1.0016 0.9987 5.342E-06
sine square 0.5000 0.8001 1.0000 1.0001 1.0000 0.2045 0.5019 1.073 1.1364 1.0898 0.0032

square square 0.4953 0.8765 1.0085 1.0327 1.0095 0.2969 0.7030 0.9971 1.0007 0.9953 0.0058
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7. Conclusions

In this paper, the parameter estimation of a SISO rational model was extended to that of a MIMO
total non-linear model. A method of parameter estimation of a MIMO non-linear rational model based
on a gradient descent algorithm was proposed, and the convergence condition was proposed for the
asymmetry of the network. It was proven that the estimator is properly effective by mathematical
derivation and simulation. This estimation method has a strong generalization property and could
be widely used in many fields, such as non-linear system modeling and control applications. Some
systems that could not directly use this method, such as the exponential model describing the change
of the kinetic rate constant with the temperature, could first be converted into a rational model and
then use the developed estimation method. Some of the future work could be foreseen as (1) estimating
the parameters of the state space model based on an artificial neural network, (2) estimating the
parameters of a MIMO state space model, (3) estimating the parameters of the non-linear state space
model, and (4) estimating the parameters of total non-linear spatial state models.
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