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Abstract: A heat conduction model with an arrow-shaped high thermal conductivity channel
(ASHTCC) in a square heat generation body (SHGB) is established in this paper. By taking the
minimum maximum temperature difference (MMTD) as the optimization goal, constructal designs of
the ASHTCC are conducted based on single, two, and three degrees of freedom optimizations under
the condition of fixed ASHTCC material. The outcomes illustrate that the heat conduction performance
(HCP) of the SHGB is better when the structure of the ASHTCC tends to be flat. Increasing the thermal
conductivity ratio and area fraction of the ASHTCC material can improve the HCP of the SHGB. In
the discussed numerical examples, the MMTD obtained by three degrees of freedom optimization are
reduced by 8.42% and 4.40%, respectively, compared with those obtained by single and two degrees
of freedom optimizations. Therefore, three degrees of freedom optimization can further improve
the HCP of the SHGB. Compared the HCPs of the SHGBs with ASHTCC and the T-shaped one, the
MMTD of the former is reduced by 13.0%. Thus, the structure of the ASHTCC is proven to be superior
to that of the T-shaped one. The optimization results gained in this paper have reference values for
the optimal structure designs for the heat dissipations of various electronic devices.

Keywords: constructal theory; arrow-shaped high thermal conductivity channel; maximum
temperature difference minimization; multi-degree of freedom optimization; generalized
thermodynamic optimization

1. Introduction

Nowadays, electronic information technology is developing rapidly. Many new electronic
components are widely used in various aspects, such as national defense, industry, science and
technology, and social life. At present, arranging the high thermal conductivity channel (HTCC)
material is one of the common methods to dissipate the heat of the electronic component.

Bejan [1] stated the constructal law after further studying the formation of urban street networks,
and applied it to the optimization of the heat dissipation structure of an electronic device (ED) [2].
Since the introduction of the constructal theory [3–23], it has been applied to design various heat
dissipation bodies, such as rectangular [24–31], triangular [32–37], square [38–47] and discal [48–59]
bodies, pin-fins [60,61], fork-shaped fins [62,63], generating heat plate [64,65], radiant enclosures [66,67],
and heat storage systems [68] among others.

In the constructal designs of the square bodies, Lorenzini et al. [38] set up a heat conduction model
(HCM) with X-shaped HTCC in a square heat generation body (SHGB), optimized the structure of
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X-shaped HTCC with minimum hot spot temperature (HST), and found that the X-shaped HTCC was
evidently superior to the I-shaped one. Lorenzini et al. [38] further established a non-uniform HCM,
and showed that the heat conduction performance (HCP) of the new HTCC was about 10% higher
than that of the HTCC with uniform one. Hajmohammadi et al. [41,42] built the HCMs with three new
HTCCs in the SHGBs, and found that their dimensionless maximum temperature differences (DMTDs)
after constructal optimizations were lower than those with X- and I-shaped HTCCs. Feng et al. [43] set
up an HCM with “+” shaped HTCC in an SHGB, and reduced the DMTD of the SHGB by 12.11% after
the use of optimized HTCC with variable cross-section. Lorenzini et al. [44] established an I-shaped
HTCC model in an SHGB, and effectively reduced the HST of the SHGB after constructal design. Konan
and Cetkin [45] optimized the construct of a snowflake-shaped HTCC in an SHGB, and found that the
optimal construct of the HTCC with minimum DMTD was very close to the shape of a snowflake in
nature. Hajmohammadi and Rezaei [46] optimized the distributions of HTCCs with two branches in
an SHGB based on a local recursive algorithm. The result displayed that the optimized HST was lower
than those derived by most models of the discussed literature. Hajmohammadi et al. [47] built an
HCM with multistage irregular dendritic HTCC in an SHGB, and found that the HCP was improved
by up to 61% compared with the discussed optimal results in the literatures.

There are many possible geometry shapes of high thermal conductivity channels. The geometry
shape of a high thermal conductivity channel has important effects of the heat conduction performance,
and a more effective geometry shape is meaningful for engineering practice. Therefore, based on
Refs. [38–47], an HCM with an arrow-shaped HTCC (ASHTCC) in an SHGB will be established in this
paper. Aiming at the objective of DMTD, the construct of the ASHTCC in the SHGB will be optimized
by using constructal theory. Single, two, and three degrees of freedom optimizations will be introduced
and compared. The gained optimization results have reference values for the optimal structure designs
for the heat dissipations of various electronic devices.

2. Model Establishment

The physical and mathematical models are established as follows, respectively.

2.1. Physical Model

Figure 1 shows the HCM of an ASHTCC in a square heat generation body. The side length of the
SHGB is L. The heat generation rate per unit volume of the SHGB (thermal conductivity k0) is q′′′ . The
heat flows into the ASHTCC (thermal conductivity is kp), and then flows out of the SHGB from the
left side of the ASHTCC (constant temperature Tmin). The ratio of the thermal conductivities (TCs) is
defined as k̃ = kp/k0. As shown in Figure 1, the ASHTCC is composed of a triangular arrow tip and
rectangular arrow tail, the characteristic sizes of which are L1, L2, H1, and H2, respectively. It can be
concluded that the temperature of each point in the area of SHGB is higher than that of Tmin. Except
for the constant temperature at the left side of the ASHTCC, the other boundaries of the SHGB are
all adiabatic.

The area A0 of the ASHTCC can be expressed as: A0 = H1L1 + H2L2. The whole area of the SHGB
is L2. The area ratio φ of the HTCC material to the SHGB is:

φ =
H1L1 + H2L2

L2 = H̃1̃L1 + H̃2̃L2 (1)

where L1, L2, H1, and H2 are nondimensionalized as: L̃1 = L1/L, L̃2 = L2/L, H̃1 = H1/L, and
H̃2 = H2/L, respectively.
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where 1 1 /L L L= . 
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Figure 1. HCM of an ASHTCC in an SHGB.

2.2. Mathematical Model

Because the model in Figure 1 is symmetric with respect to the Y-axis, the temperature distributions
will be equal to each other at both sides of the Y-axis. Therefore, only half of the geometry (y ≥ 0)
will be simulated in the following. It is not a simple one-dimensional HCM due to the ASHTCC,
thus a numerical calculation method should be adopted. The two-dimensional dimensionless heat
conduction equations in a steady state and with constant thermal conductivity of the low and high TC
materials are

∂2T̃
∂x̃2 +

∂2T̃
∂ỹ2 + 1 = 0 (2)

k̃

∂2T̃
∂x̃2 +

∂2T̃
∂ỹ2

 = 0 (3)

where T̃ = (T − Tmin)/(q′′′L2/k0), k̃ = kp/k0, x̃ = x/L, and ỹ = y/L. The dimensionless boundary
constraints in the y ≥ 0 region are:

T̃ = 0, x̃ = 0, 0 ≤ ỹ < L̃1/2 (4)

∂T̃
∂x̃

= 0
{

x̃ = 0, L̃1/2 ≤ ỹ ≤ 1/2
x̃ = 1, 0 ≤ ỹ ≤ 1/2

(5)

∂T̃
∂ỹ

= 0
{

ỹ = 0, 0 ≤ x̃ ≤ 1
ỹ = 1/2, 0 ≤ x̃ ≤ 1

(6)

where L̃1 = L1/L.
Assuming that the contact thermal resistance between HTCC and low TC material is negligible,

the continuity equation of heat flux between kp and k0 materials is

(∂T/∂n)k0
= k̃(∂T/∂n)kp

(7)

The DMTD in the SHGB is defined as

∆T̃1 = (Tmax − Tmin)/(q′′′L2/k0) (8)

where Tmax is the HST in the SHGB.
The finite element software (Comsol Multiphysics) can be used to solve Equations (1)–(7).

Combining with Equation (8), the DMTD can be obtained. Under the condition that the area ratio
φ of the HTCC material in Equation (1) is given, the dimensionless height H̃2 of the arrow tip can
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be expressed by the dimensionless width L̃1 of the arrow tail, dimensionless bottom length L̃2 of the
arrow tip, and dimensionless length H̃1 of the arrow tail. Finally, the DMTD is related to the structure
parameters L̃1, L̃2 and H̃1 (̃L1 = L1/L, L̃2 = L2/L and H̃1 = H1/L), respectively.

3. Constructal Design of the ASHTCC

Three degrees of freedom are considered in the constructal design problem of the ASHTCC.
Constructal designs of the ASHTCC based on single, double, and three degrees of freedom optimizations
will be successively conducted as follows. The initial parameters are set as follows: The constant
temperature Tmin = 300 K, the heat generation rate q′′′ = 500

(
W/m3

)
, and the low thermal conductivity

of materials k0 = 2(W/m ·K).

3.1. Constructal Design Based on Single Degree of Freedom Optimization

For the fixed L̃2 and H̃1, the DMTD is selected as the performance index, and the constructal design
of the ASHTCC is conducted by varying the width L̃1, i.e., single degree of freedom optimization
(SDFO). The relevant parameters in the calculations are given as follows: the area ratio of the HTCC
material is φ = 0.1, dimensionless bottom length is L̃2 = 0.4, dimensionless height is H̃2 = 0.1, and TC
ratio is k̃0 = 200.

Figure 2 shows the influence of the TC ratio k̃ on the relationship between the DMTD ∆T̃1 and
dimensionless width L̃1 of the ASHTCC with φ = 0.1. From Figure 2, under the conditions of area ratio
φ = 0.1 and dimensionless arrow tip area L̃2H̃2 = 0.04, the minimum value of ∆T̃1 can be obtained by
selecting reasonable L̃1. When L̃1 is close to L̃1 = 0.1, the HCP of the SHGB is better. In addition, when
L̃1 remains constant, ∆T̃1 gradually decreases with the increase in k̃. This illustrates that increasing the
TC ratio can also improve the HCP of the SHGB.
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Figure 2. Influence of k̃ on the relationship between ∆T̃1 and L̃1 with φ = 0.1.

Figure 3 shows the influence of the area ratio φ of HTCC material on the relationship between the
DMTD ∆T̃1 and dimensionless width L̃1 of the ASHTCC with k̃ = 200. When φ changes in a small
range, the heat generation rate of the SHGB will slightly change, which is ignored in the following
analyses. From Figure 3, it can be seen that when φ increases, the minimum value of the DMTD ∆T̃1

decreases and L̃1,opt increases gradually. This indicates that the larger the HTCC area is, the better the
HCP of the SHGB becomes. For approximately the same heat generation rate of the SHGB, when the
area ratio increases from φ = 0.10 to φ = 0.13, the minimum DMTD decreases by 20.21%, and the HCP
of the SHGB becomes better. When φ = 0.1 and k̃ = 300, the minimum DMTD of the SHGB obtained
by finite element method is ∆T̃1,m = 0.088, and the temperature profile corresponding to the optimal
construct is shown in Figure 4.
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3.2. Constructal Design Based on Two Degrees of Freedom Optimization

The dimensionless bottom length L̃2 and dimensionless length H̃1 are fixed in Section 3.1, and the
constructal design of the ASHTCC will be conducted by varying the width L̃1 and bottom length L̃2

simultaneously in this section. In the two degrees of freedom optimization (TWDFO), the arrow tip
area remains unchanged at L̃2H̃2 = 0.04.

Figure 5 shows the influences of TC ratio k̃ on the optimal results (∆T̃1,mm, L̃1,opt and L̃2,opt) of
TWDFO with φ = 0.1. From Figure 5, it can be seen that the optimal construct of the ASHTCC after
TWDFO is L̃1,opt ≈ 0.1 and L̃2,opt ≈ 0.499. In this case, the HTCC shape becomes flat. When the TC

ratio k̃ increases, the changes of L̃1,opt and L̃2,opt are not obvious, while the double minimum DMTD
∆T̃1,mm decreases gradually. Figure 6 further shows the influences of the area ratio φ of HTCC material
on the optimal results (∆T̃1,mm, L̃1,opt and L̃2,opt) of TWDFO with k̃ = 200. According to Figure 6, when
the area ratio φ increases, the change of L̃2,opt is not obvious, and L̃1,opt increases gradually, however

∆T̃1,mm decreases gradually. When φ = 0.1 and k̃= 300, the double minimum DMTD of the SHGB
obtained by finite element method is ∆T̃1,mm = 0.086, and the temperature profile corresponding to
the optimal construct is shown in Figure 7.
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3.3. Constructal Design Based on Three Degrees of Freedom Optimization

The dimensionless length H̃1 is fixed in Section 3.2, and the constructal design of the ASHTCC
will be further conducted by varying the width L̃1, bottom length L̃2, and dimensionless length H̃1

simultaneously in this section, i.e., the three degrees of freedom optimization (THDFO).
Figure 8 shows the influences of the TC ratio k̃ on the optimal results (∆T̃1,mmm, L̃1,opt, L̃2,opt and

H̃1,opt) of THDFO with φ = 0.1. From Figure 8, it can be seen that the optimal construct of the ASHTCC
after THDFO is L̃1,opt = 0.197, L̃2,opt = 0.488 and H̃1,opt = 0.645. This illustrates that the HCP of the

SHGB is still better when the shape of the HTCC tends to be flat. When k̃ increases, the changes of
L̃1,opt, L̃2,opt, and H̃1,opt are not obvious, while the triple minimum DMTD ∆T̃1,mmm decreases gradually.

When the TC ratio increases from k̃ = 100 to k̃ = 600, the triple minimum DMTD decreases from
∆T̃1,mmm = 0.101 to ∆T̃1,mmm = 0.079. ∆T̃1,mmm is decreased by 21.8%, and the HCP of the SHGB is
significantly improved.
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Figure 8. Influences of k̃ on the optimal results of THDFO with φ = 0.1.

Figure 9 shows the influences of the area ratio φ on the optimal results (∆T̃1,mmm, L̃1,opt, L̃2,opt

and H̃1,opt) of THDFO with φ = 0.1. From Figure 9, when the area ratio φ increases, the change of
L̃2,opt is not obvious, L̃1,opt increases gradually, and ∆T̃1,mmm decreases gradually. When the area ratio
increases from φ = 0.10 to φ = 0.15, the triple minimum DMTD decreases from ∆T̃1,mmm = 0.087 to
∆T̃1,mmm = 0.074. ∆T̃1,mmm is decreased by 14.9%, and the HCP of the SHGB is significantly improved.
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3.4. Performance Comparison for Different Degrees of Freedom

Under the conditions of φ = 0.1 and k̃ = 200, the optimal constructs and corresponding
temperature profiles of the ASHTCC obtained by single, double, and three degrees of freedom
optimizations are shown in Figure 10, respectively. From the temperature profiles, it can be seen that
the HSTs in the SHGBs are 323.7 K, 322.8 K, and 321.7 K, and the corresponding DMTDs are 0.095,
0.091, and 0.087, respectively. The DMTD of the SHGB after THDFO is respectively reduced by 4.40%
and 8.42% compared with those after TWDFO and SDFO. It can be seen that the optimal structure of
the ASHTCC obtained by THDFO significantly reduces the HST and improves the HCP of the SHGB.
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Figure 10. Temperature profiles corresponding to the optimal constructs obtained by single, double
and three degrees of freedom optimizations with k̃ = 200 and φ = 0.1.

4. Performance Comparison of the Square Heat Generation Bodies with Arrow- and T-Shaped
High Thermal Conductivity Channels

To compare the HCP of the square heat generation body with ASHTCC to those with the other
HTCCs, the optimal temperature profile of the SHGB with T-shaped HTCC is shown in Figure 11 as an
example. From Figure 11, it can be seen that the triple minimum DMTD of the SHGB with T-shaped
HTCC is ∆T̃1,mmm= 0.100. Compared the HCP of the SHGB in Figure 10c with that in Figure 11,
the DMTD of the former is reduced by 13.0%. Therefore, the ASHTCC exhibits better HCP than the
T-shaped HTCC.
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Figure 11. Optimal temperature profile of the SHGB with T-shaped HTCC, k̃ = 200 and φ = 0.1.

5. Conclusions

A heat conduction model with ASHTCC in a square heat generation body is built in this paper.
Constructal designs of the ASHTCC are conducted based on single, two, and three degrees of freedom
optimizations with the objective of minimum DMTD. Optimal constructs of the ASHTCC and optimal
temperature profiles are gained. The results are summarized as follows:

(1) For the SDFO, under the conditions of area ratio φ = 0.1 and dimensionless arrow tip area
L̃2H̃2 = 0.04, when L̃1 is close to L̃1 = 0.1, the HCP of the SHGB is better. When the area ratio increases
from φ = 0.10 to φ = 0.13, the minimum DMTD decreases by 20.21%, and the HCP of the SHGB
becomes better.

(2) For the TWDFO, the optimal construct of the ASHTCC is L̃1,opt ≈ 0.1 and L̃2,opt ≈ 0.499. In this

case, the shape of the HTCC becomes flat. When the TC ratio k̃ increases, the changes of L̃1,opt and
L̃2,opt are not obvious, while the double minimum DMTD ∆T̃1,mm decreases gradually. When the area
ratio φ increases, the change of L̃2,opt is not obvious, and L̃1,opt increases gradually, however ∆T̃1,mm

decreases gradually.
(3) For the THDFO, the optimal construct of the ASHTCC is L̃1,opt = 0.197, L̃2,opt = 0.488 and

H̃1,opt = 0.645. This illustrates that the HCP of the SHGB is still better when the shape of the HTCC
tends to be flat. The DMTD of the SHGB after THDFO is respectively reduced by 4.40% and 8.42%
compared with those after TWDFO and SDFO.

(4) Comparing the HCP of the SHGB in Figure 10c with that in Figure 11, the DMTD of the former
is reduced by 13.0%. Therefore, the ASHTCC exhibits better HCP than the T-shaped HTCC.

In this paper, the construct of an elemental ASHTCC in the SHGB is optimized. The first-order
ASHTCC can be composed of several elemental ASHTCCs. At the same time, the arc structure
can be used to replace the cusp structure at the arrow tip. The constructal optimizations of the
HTCCs in the SHGB will be further conducted in our future studies by considering the additional
model improvements, and better HCPs of the electronic devices will be obtained. Moreover, other
optimization objectives, such as entropy generation minimization [69–75], will also be conducted.
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Abbreviations

ASHTCC Arrow-shaped high thermal conductivity channel
DMTD Dimensionless maximum temperature difference
HCM Heat conduction model
HCP Heat conduction performance
HST Hot spot temperature
HTCC High thermal conductivity channel
SDFO Single degree of freedom optimization
SHGB Square heat generation body
TC Thermal conductivity
TWDFO Two degrees of freedom optimization
THDFO Three degrees of freedom optimization
Nomenclature
A0 Area, m2

k Thermal conductivity, W/m/K
k̃ Ratio of the thermal conductivity
L Side length of the SHGB, m
L1, L2, H1, H2 Characteristic sizes of the ASHTCC, m
L̃1, L̃2, H̃1, H̃2 Nondimensional characteristic sizes of the ASHTCC
T Temperature, K
q′′′ Heat generation rate in the SHGB, W/m3

φ Area ratio of the HTCC
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