
entropy

Article

Modification of the Logistic Map Using Fuzzy
Numbers with Application to Pseudorandom Number
Generation and Image Encryption

Lazaros Moysis 1 , Christos Volos 1,* , Sajad Jafari 2, Jesus M. Munoz-Pacheco 3 ,
Jacques Kengne 4 , Karthikeyan Rajagopal 5,6 and Ioannis Stouboulos 1

1 Laboratory of Nonlinear Systems—Circuits & Complexity (LaNSCom), Physics Department, Aristotle
University of Thessaloniki, 54124 Thessaloniki, Greece; lmousis@physics.auth.gr (L.M.);
stouboulos@physics.auth.gr (I.S.)

2 Nonlinear Systems and Applications, Faculty of Electrical and Electronics Engineering, Ton Duc Thang
University, Ho Chi Minh City 758307, Vietnam; sajad.jafari@tdtu.edu.vn

3 Faculty of Electronics Sciences, Autonomous University of Puebla, Puebla 72000, Mexico;
jesusm.pacheco@correo.buap.mx

4 Department of Electrical Engineering, University of Dschang, Dschang P.O. Box 134, Cameroon;
kengnemozart@yahoo.fr

5 Center for Nonlinear dynamics, Defence University, Mekelle 1020, Ethiopia; rkarthiekeyan@gmail.com
6 Institute of Energy, Mekelle University, Mekelle 6330, Ethiopia
* Correspondence: volos@physics.auth.gr

Received: 29 March 2020; Accepted: 16 April 2020; Published: 20 April 2020
����������
�������

Abstract: A modification of the classic logistic map is proposed, using fuzzy triangular numbers.
The resulting map is analysed through its Lyapunov exponent (LE) and bifurcation diagrams.
It shows higher complexity compared to the classic logistic map and showcases phenomena,
like antimonotonicity and crisis. The map is then applied to the problem of pseudo random bit
generation, using a simple rule to generate the bit sequence. The resulting random bit generator
(RBG) successfully passes the National Institute of Standards and Technology (NIST) statistical tests,
and it is then successfully applied to the problem of image encryption.
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1. Introduction

The field of chaos theory expands to numerous applications related to cryptography, secure
communications, engineering, physics, economics, robotics, control, and many more; see, for example,
References [1–5] and the references therein. Chaotic systems, being deterministic systems with a high
sensitivity to initial conditions and parameter changes, constitute an excellent basis for efficiently
modelling complex natural phenomena, as well as adding complexity to security related applications.

Due to the aforementioned applicability of chaotic systems, there is an ongoing demand for
introducing novel chaotic systems. This is usually done by considering an existing chaotic system
and modifying it, either by slightly altering a term in the system’s differential/difference equations,
or by adding more nonlinear terms, or even by adding more variables and changing the system to a
higher dimension.

The logistic map [6] is one of the most well-known one-dimensional discrete time chaotic systems
and one of the most heavily modified chaotic systems; see, for example, References [7–17]. The map has
only one parameter and a simple structure, which makes it suitable for many applications. In this work,
we propose a modified version of the classic logistic map by employing fuzzy triangular numbers to
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modify its behavior. The idea of passing the values of the logistic map through a fuzzy number is
mathematically very simple, yet it leads to a significant improvement of the chaotic behavior of the
map, with many chaos related phenomena appearing, like antimonotonicity and crisis. Fuzzy logic
and fuzzy sets are themselves a large field of study with innumerable applications in engineering and
more [18–20]. Specifically in dynamical systems, fuzzy sets have been combined with chaotic systems
in fuzzy dynamical systems; see, for example, References [15,21–28]. In the proposed modification of
the logistic map, the values of the map in each iteration are passed through a triangular fuzzy number,
which is a simple linear function that takes values on the interval [0, 1]. The resulting map presents
more complex chaos related phenomena compared to the classic map as mentioned above, as well as
achieves a higher value for its Lyapunov exponent. Furthermore, to showcase the applicability of the
map to chaos related applications, the problems of pseudo random bit generation [4,5,10,11,13,29–43]
and image encryption [4,7,9,14,15,33,35,39,44–48] are considered. It is seen that the bit sequence
generated from the modified map using a simple rule passes all 15 tests of the National Institute of
Standards and Technology (NIST) statistical test suite [49]. The bit sequence generated is then applied
to the problem of image encryption, and the resulting encrypted image is analysed for security using
methods like histogram analysis, correlation, and information entropy.

It is important to note that this approach can be easily applied to any other one-dimensional
chaotic system, as well as further modified by considering different types of fuzzy numbers, like
trapezoidal, Gaussian, quadratic, exponential, or their combination. Thus, it is our belief that this
approach for modifying a chaotic system will lead to more interesting works in the future.

The rest of the work is structured as follows: Section 2 presents some preliminaries on fuzzy
numbers and the logistic map. In Section 3, the modified logistic map is proposed and its dynamical
behavior is explored. Section 4 studies the application of the map in random number generation. The
use of the produced bit sequence to the problem of image encryption is presented in Section 5. Finally,
Section 6 concludes the paper with a discussion on future works.

2. Mathematical Preliminaries

2.1. Fuzzy Numbers

This section presents some preliminaries on fuzzy numbers; see [18–20] for a full presentation.
There are slightly varying definitions for a fuzzy number, but in this work we consider a fuzzy number
as a function f : X → [0, 1] defined over a set X ⊆ R, such that:

• It is a normal fuzzy set, that is, there exists at least one x ∈ X, such that f (x) = 1.
• Its a-cuts f a = {x, f (x) ≥ a} are closed intervals ∀a ∈ [0, 1].
• f is piecewise continuous.

Note that some works define fuzzy numbers as having exactly one x0, such that f (x0) = 1.
The fuzzy numbers considered here are defined as f : [0, 1] → [0, 1] and have the following

triangular form:

fz(x) =

{
x
z , 0 ≤ x ≤ z
1−x
1−z , z ≤ x ≤ 1,

(1)

where z denotes the peak of the triangular fuzzy number. Examples for different values of z are shown
in Figure 1. For example, for the fuzzy number f0.5(x), it holds that f0.5(0.4) = 0.8, which can be
interpreted as the number 0.4 being equal to 0.5 with truth index 0.8.
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Figure 1. Examples of fuzzy trigonometric numbers for z = 0, 0.3, 0.5, 1.

2.2. The Logistic Map

The logistic map [6] is one of the most well-known discrete time 1D chaotic systems with a single
parameter, described by

xi+1 = rxi(1− xi), i = 0, 1, ..., (2)

where r is the system parameter that takes values in the interval [0, 1], as well as x0 ∈ [0, 1]. For
different values of the parameter r, the following three dynamics are observed:

• For r < 1, x decays to a fixed point x → 0.
• For 1 ≤ r ≤ 3, the previous point loses its stability and another fixed point appears x = 1/r.
• For 3 ≤ r ≤ 4 the system exhibits a rich behavior, going to chaos following a period doubling route.

Figure 2 shows the bifurcation diagram of the logistic map, and Figure 3 shows the diagram of its
Lyapunov exponent, given by [50]

LE = lim
n→∞

1
n

n

∑
i=1

ln | f ′(xi)|, (3)

which confirms the aforementioned dynamical behavior for various values of parameter r.

Figure 2. Bifurcation diagram of the logistic map.
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Figure 3. Diagram of Lyapunov exponent of the Logistics map.

3. Implementation of Fuzzy Numbers to Logistic Map

We propose the following fuzzy number logistic map, described by

xi+1 = fz (rxi(1− xi)) , (4)

where r the bifurcation parameter, and fz denotes the fuzzy triangular function described above,
centered at z. Thus, this modified logistic map has two parameters that can be tuned to affect the
system’s behavior.

To unmask the dynamical behavior of the system, its bifurcation diagram is plotted with respect
to parameter r. Examples for various values of z are given in Figures 4–8, where many interesting
phenomena are observed. First, it is easily seen in Figure 4 that for the two end values z = 0 and
z = 1, the behavior of the system is very similar to the classic logistic map, having periodic behavior
for values up until around 3.7, and then traversing to chaos through a period doubling route. For
intermediate values of the parameter z, the system exhibits chaotic behavior for a range of parameter
values r. The phenomenon of period doubling route to chaos appears in all cases, but also crisis
phenomena are observed, where the system exits from chaos abruptly. The chaotic behavior is verified
by the corresponding diagram of the Lyapunov Exponent (LE) of the system. Note that for z = 0 and
z = 1, the diagram of the LE is the same as with the classic logistic map.

It is also very important to note that in many cases the Lyapunov exponent achieves a maximum
value that is higher than 1, which is a lot higher than the value of the classic logistic map, which
achieves a maximum value of around 0.7. This is clearly seen in Figure 9, which depicts the Lyapunov
exponents of the system for various parameter values.

Similarly, considering the bifurcation diagrams of the system (4) with respect to parameter
z unveils even more interesting phenomena, as seen in Figures 10–15. Again, crisis phenomena
appear where the system suddenly enters to, or exists from, chaos. In addition, for some values
of the parameter r, the phenomenon of antimonotonicity appears, where the system enters chaos
through a period doubling route and also exits from chaos following a reverse period halving route
(Figures 13 and 14). Lastly, the phenomenon of constant chaos appears when the bifurcation parameter
is set to r = 4 (Figure 15). This means that the system will be chaotic for all values of the triangular
fuzzy number chosen.

In addition, Figures 16 and 17 give a closer look at the bifurcation diagrams with respect to z, for
r = 3.98 and r = 1.4, where the chaotic regions are interrupted by small windows of periodic behavior.
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Figure 4. Bifurcation diagram of x versus the bifurcation parameter r and corresponding diagram of
Lyapunov exponent for z = 0 (left) and z = 1 (right).

Figure 5. Bifurcation diagram of x versus the bifurcation parameter r and corresponding diagram of
Lyapunov exponent for z = 0.1.
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Figure 6. Bifurcation diagram of x versus the bifurcation parameter r and corresponding diagram of
Lyapunov exponent for z = 0.3.

Figure 7. Bifurcation diagram of x versus the bifurcation parameter r and corresponding diagram of
Lyapunov exponent for z = 0.5.
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Figure 8. Bifurcation diagram of x versus the bifurcation parameter r and corresponding diagram of
Lyapunov exponent for z = 0.7.

Figure 9. Diagram of Lyapunov exponents.
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Figure 10. Bifurcation diagram of x versus the bifurcation parameter z and corresponding diagram of
Lyapunov exponent for r = 1.4.

Figure 11. Bifurcation diagram of x versus the bifurcation parameter z and corresponding diagram of
Lyapunov exponent for r = 2.5.
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Figure 12. Bifurcation diagram of x versus the bifurcation parameter z and corresponding diagram of
Lyapunov exponent for r = 3.

Figure 13. Bifurcation diagram of x versus the bifurcation parameter z and corresponding diagram of
Lyapunov exponent for r = 3.4.
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Figure 14. Bifurcation diagram of x versus the bifurcation parameter z and corresponding diagram of
Lyapunov exponent for r = 3.87.

Figure 15. Bifurcation diagram of x versus the bifurcation parameter z and corresponding diagram of
Lyapunov exponent for r = 4.



Entropy 2020, 22, 474 11 of 20

Figure 16. Bifurcation diagram of (4) with respect to parameter z for r = 3.98.

Figure 17. Bifurcation diagram of (4) with respect to parameter z for r = 1.4.

4. Application to Random Bit Generation

To showcase the high implementability and robustness of the proposed chaotic system, the
application to random bit generation is considered. The proposed chaotic random bit generator is
created by taking the value of xi in each iteration, discarding its first 10 decimal digits, and then
comparing the resulting number with a threshold value, chosen here as 0.5. The bit value 1 is produced
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if the number is greater or equal to the threshold, and the bit value 0 is produced if it is not. Thus, the
RBG tactic has the following form:

di = 1010xi mod 1 (5)

bi =

{
1, if di ≥ 0.5

0, if di < 0.5.
(6)

To test if the generated sequence is truly random, the FIPS (Federal Information Processing
Standards) tests of the National Institute of Standards and Technology (NIST 800-22) are used [49].
All 15 given tests are considered. Each test results in a p-value, for which if p ≥ a the test is considered
successful, where a is the level of significance chosen.

The tests were applied to 20 sequences of 1.000.000 bits each, for a = 0.01, generated for three
different parameter values: (r = 4, z = 0.5), (r = 2, z = 0.3), and (r = 3.4, z = 0.8). The results are
shown in Tables 1–3, where it is seen that the sequence passes all tests for all three cases. For tests that
have multiple case runs, the result of the last run is printed. The choice of multiple parameter values
further showcases the versatility of the map.

In addition, Figure 18 shows the sensitivity of the system to initial conditions and parameters.
It is seen that small changes lead to different trajectories and bit sequence after a very short number
of iterations. In addition, Figure 19 depicts the autocorrelation and cross-correlation plots for a bit
sequence of length 104, generated for parameter values (r = 4, z = 0.5). For random sequences, the
auto-correlation should have a delta like form, and the cross-correlation should be close to zero [5,13].
This is indeed verified. For the cross-correlation, two random bit sequences were generated, where the
initial conditions of the two chaotic maps used are chosen as x0 and y0 = x0 + 10−16. Finally, Figure 20
depicts the percentage of 1s in the bit sequence, with respect to the sequence length. This diagram
shows that there exits 0–1 balancedness in the sequence, which is another desired property.

Table 1. National Institute of Standards and Technology (NIST) statistical test results, with a = 0.01,
and r = 4, z = 0.5.

If p ≥ α, the Test Is Successful

No. Statistical Test p-Value Proportion Result

1 Frequency 0.437274 20/20 success

2 Block Frequency 0.964295 20/20 success

3 Cumulative Sums 0.534146 20/20 success

4 Runs 0.911413 20/20 success

5 Longest Run 0.534146 19/20 success

6 Rank 0.834308 19/20 success

7 FFT 0.534146 20/20 success

8 Non-Overlapping Template 0.534146 20/20 success

9 Overlapping Template 0.534146 19/20 success

10 Universal 0.964295 19/20 success

11 Approximate Entropy 0.534146 19/20 success

12 Random Excursions 0.911413 10/10 success

13 Random Excursions Variant 0.066882 10/10 success

14 Serial 0.437274 20/20 success

15 Linear Complexity 0.964295 20/20 success
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Table 2. NIST statistical test results, with a = 0.01, and r = 2, z = 0.3.

If p ≥ α, the Test Is Successful

No. Statistical Test p-Value Proportion Result

1 Frequency 0.637119 19/20 success

2 Block Frequency 0.122325 20/20 success

3 Cumulative Sums 0.090936 19/20 success

4 Runs 0.964295 20/20 success

5 Longest Run 0.350485 20/20 success

6 Rank 0.350485 20/20 success

7 FFT 0.275709 20/20 success

8 Non-Overlapping Template 0.066882 20/20 success

9 Overlapping Template 0.739918 20/20 success

10 Universal 0.834308 20/20 success

11 Approximate Entropy 0.275709 20/20 success

12 Random Excursions 0.437274 11/11 success

13 Random Excursions Variant 0.637119 11/11 success

14 Serial 0.637119 19/20 success

15 Linear Complexity 0.090936 20/20 success

Table 3. NIST statistical test results, with a = 0.01, and r = 3.4, z = 0.8.

If p ≥ α, the Test Is Successful

No. Statistical Test p-Value Proportion Result

1 Frequency 0.275709 18/20 success

2 Block Frequency 0.437274 20/20 success

3 Cumulative Sums 0.637119 19/20 success

4 Runs 0.275709 20/20 success

5 Longest Run 0.122325 20/20 success

6 Rank 0.437274 20/20 success

7 FFT 0.090936 20/20 success

8 Non-Overlapping Template 0.213309 20/20 success

9 Overlapping Template 0.834308 19/20 success

10 Universal 0.437274 20/20 success

11 Approximate Entropy 0.004301 20/20 success

12 Random Excursions 0.035174 14/14 success

13 Random Excursions Variant 0.066882 14/14 success

14 Serial 0.437274 20/20 success

15 Linear Complexity 0.964295 20/20 success
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(a)

(b)

(c)

Figure 18. Sensitivity to initial conditions and parameter changes for (a) different initial conditions
(r = 4, z = 0.5), (b) different z, (x0 = y0 = 0.1, r = 4), and (c) different r, (x0 = y0 = 0.1, z = 0.5).
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Figure 19. Auto-correlation and cross-correlation of the proposed RBG, for (r = 4, z = 0.5).

Figure 20. Occurrence of 1’s in the sequence the proposed PRBG, for (r = 4, z = 0.5).

As for the key space, it is known that a system should have a key space larger than 2100 to resist
brute force attacks [51], although some more recent works require a lower bound of 2128 [5,38,48]. The
proposed system has two key parameters r and z, as well as the initial value x0. Assuming z = 4,
for which the system exhibits constant chaos, the key space for a 16-digit accuracy is 1016 × 1016 =

1032 ≈ (103)10.6 ≈ (210)10.6 = 2106, which is higher than the minimum value 2100, but lower than
2128. An upper bound for the key space though can be computed by considerinrg the full spectrum
of both parameters, which gives 1016 × 1016 × 1016 ≈ 2160. Since the system is not chaotic for every
combination of r, z, the real key space is between these two values.

5. Application to Image Encryption

The proposed RBG is further applied to the problem of image encryption, using the method
proposed in [4]. The design consists of the following steps:

Step 1. An m× n grayscale image is read as a matrix whose elements represent the gray value of each
pixel, taking integer values in 0-255. The values are then converted to binary numbers and the
matrix columns are reshaped to a single row vector A.

Step 2. The resulting binary row vector A is combined with a binary vector B of equal length produced
by the proposed RBG using the XOR command, resulting in the encrypted message C = A⊕ B.
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Step 3. The encrypted sequence C can be transmitted safely and the original image can be reconstructed
at the receiver end by taking A = C⊕ B and following the reverse procedure of Step 1.

The above procedure is showcased using a 512× 512 image of Lenna. The original image and the
encrypted and decrypted ones are shown in Figure 21.

In order to study the security of the encryption design, several tests are performed on the
encrypted image. First, the histograms of the original and encrypted images are computed, as shown
in Figure 22. In contrast to the original image, the encrypted image has a uniform histogram, which
makes it strong against statistical attacks.

Next, the correlation between adjacent vertical, horizontal and diagonal pixels is tested for the
original and encrypted images and the results are shown in Figure 23. Here, 10000 randomly selected
pairs of adjacent pixels are taken, and it is seen that in contrast to the original image, adjacent pixels in
the encrypted one are uncorrelated. This is also verified by the values of the correlation coefficient
γ shown in Table 4, were it is observed that for the encrypted image the value is close to zero. The
correlation coefficient is computed using the following formulas:

E(x) =
1
N

N

∑
i=1

xi, (7)

D(x) =
1
N

N

∑
i=1

(xi − E(x))2, (8)

cov(x, y) =
1
N

N

∑
i=1

(xi − E(x))(yi − E(y)), (9)

γ(x, y) =
cov(x, y)√

D(x)
√

D(y)
, (10)

where x, y are the gray values of two adjacent pixels, and N the number of adjacent pairs of
pixels considered.

Finally, the information entropy is computed, which measures the randomness of a given signal,
given by

H(S) = −
N−1

∑
i=0

p(si) log2 p(si), (11)

where p(si) is the possibility of appearance for the symbol si. The information entropy of an encrypted
image should be close to 8. The information entropy of the original image is 7.4450, while for the
encrypted image is 7.9670, so the encrypted image has a value closer to 8, which means that the
information signal is safer against entropy attacks.

Figure 21. (a) Original image, (b) encrypted, and (c) decrypted.
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Figure 22. Histograms of the plain and encrypted image.

(a)

(b)

Figure 23. Cont.
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(c)

Figure 23. Correlation analysis of two (a) horizontal, (b) vertical and (c) diagonal adjacent pixels for
the original (left) and encrypted (right) image.

Table 4. Correlation coefficients of two adjacent pixels in the original and encrypted image.

Original Encrypted

Horizontal 0.9843 0.0046

Vertical 0.9724 0.0063

Diagonal 0.9573 0.0023

6. Conclusions

In this work, the logistic map was modified through the use of fuzzy triangular numbers, to give a
new modified logistic map that exhibits a plethora of chaos related phenomena, for different parameter
values. It was shown that the modified logistic map also reaches a higher Lyapunov exponent
compared to the logistic map. The map was then applied to the problem of random bit generation,
yielding positive results. It is important to note that this simple technique to increase the complexity of
a chaotic map can easily be implemented to many other chaotic systems. In addition, using different
fuzzy numbers other than triangular can lead to many modifications of this technique. These are both
promising research topics for future works.
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