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Abstract: We derive finite-length bounds for two problems with Markov chains: source coding
with side-information where the source and side-information are a joint Markov chain and channel
coding for channels with Markovian conditional additive noise. For this purpose, we point out
two important aspects of finite-length analysis that must be argued when finite-length bounds are
proposed. The first is the asymptotic tightness, and the other is the efficient computability of the
bound. Then, we derive finite-length upper and lower bounds for the coding length in both settings
such that their computational complexity is low. We argue the first of the above-mentioned aspects
by deriving the large deviation bounds, the moderate deviation bounds, and second-order bounds
for these two topics and show that these finite-length bounds achieve the asymptotic optimality in
these senses. Several kinds of information measures for transition matrices are introduced for the
purpose of this discussion.

Keywords: channel coding; Markov chain; finite-length analysis; source coding

1. Introduction

In recent years, finite-length analyses for coding problems have been attracting considerable
attention [1]. This paper focuses on finite-length analyses for two representative coding problems: One
is source coding with side-information for Markov sources, i.e., the Markov–Slepian–Wolf problem
on the system Xn with full side-information Yn at the decoder, where only the decoder observes the
side-information and the source and the side-information are a joint Markov chain. The other is channel
coding for channels with Markovian conditional additive noise. Although the main purpose of this
paper is finite-length analyses, we also present a unified approach we developed to investigate these
topics including asymptotic analyses. Since this discussion is spread across a number of subtopics,
we explain them separately in the Introduction.

1.1. Two Aspects of Finite-Length Analysis

We explain the motivations of this research by starting with two aspects of finite-length analysis
that must be argued when finite-length bounds are proposed. For concreteness, we consider channel
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coding here even though the problems treated in this paper are not restricted to channel coding.
To date, many types of finite-length achievability bounds have been proposed. For example, Verdú
and Han derived a finite-length bound by using the information-spectrum approach in order to
derive the general formula [2] (see also [3]), which we term as the information-spectrum bound.
One of the authors and Nagaoka derived a bound (for the classical-quantum channel) by relating the
error probability to binary hypothesis testing [4] (Remark 15) (see also [5]), which we refer to as the
hypothesis-testing bound. Polyanskiy et. al. derived the random coding union (RCU) bound and the
dependence testing (DT) bound [1] (a bound slightly looser (coefficients are worse) than the DT bound
can be derived from the hypothesis-testing bound of [4]). Moreover, Gallager’s bound [6] is known as
an efficient bound to derive the exponentially decreasing rate.

Here, we focus on two important aspects of finite-length analysis:

(A1) Computational complexity for the bound and
(A2) Asymptotic tightness for the bound.

Both aspects are required for the bound in finite-length analysis as follows. As the first aspect,
we consider the computational complexity for the bound. For the BSC (binary symmetric channel),
the computational complexity of the RCU bound is O(n2), and that of the DT bound is O(n) [7].
However, the computational complexities of these bounds are much larger for general DMCs (discrete
memoryless channels) or channels with memory. It is known that the hypothesis testing bound can
be described as a linear programming problem (e.g., see [8,9] (in the the case of a quantum channel,
the bound is described as a semi-definite programming problem)) and can be efficiently computed
under certain symmetry. However, the number of variables in the linear programming problem grows
exponentially with the block length, and it is difficult to compute in general. The computation of
the information-spectrum bound depends on the evaluation of the tail probability. The hypothesis
testing bound gives a tighter bound than the information-spectrum bound, as pointed out by [8],
and the computational complexity of the former is much smaller than that of the latter. However,
the computation of the tail probability continues to remain challenging unless the channel is a DMC.
For DMCs, the computational complexity of Gallager’s bound is O(1) since the Gallager function is an
additive quantity for DMCs. However, this is not the case if there is a memory (the Gallager bound for
finite-state channels was considered in [10] (Section 5.9), but a closed form expression for the exponent
was not derived). Consequently, no efficiently computable bound currently exists for channel coding
with Markov additive noise. The situation is the same for source coding with side-information.

Since the actual computation time may depend on the computational resource we can use for
numerical experiment, it is not possible to provide a concrete requirement of computational complexity.
However, in order to conduct a numerical experiment for a meaningful blocklength, it is reasonable to
require the computational complexity to be, at most, a polynomial order of the blocklength n.

Next, let us consider the second aspect, i.e., asymptotic tightness. Thus far, three kinds of
asymptotic regimes have been studied in information theory [1,11–16]:

• A large deviation regime in which the error probability ε asymptotically behaves as e−nr for some
r > 0;

• A moderate deviation regime in which ε asymptotically behaves as e−n1−2tr for some r > 0 and
t ∈ (0, 1/2); and

• A second-order regime in which ε is a constant.

We shall claim that a good finite-length bound should be asymptotically optimal for at least one
of the above-mentioned three regimes. In fact, the information-spectrum bound, the hypothesis-testing
bound, and the DT bound are asymptotically optimal in both the moderate deviation and second-order
regimes, whereas the Gallager bound is asymptotically optimal in the large deviation regime and
the RCU bound asymptotically optimal in all the regimes (Both the Gallager and RCU bounds are
asymptotically optimal in the large deviation regime only up to the critical rate). Recently, for
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DMCs, Yang and Meng derived an efficiently computable bound for low-density parity check (LDPC)
codes [17], which is asymptotically optimal in both the moderate deviation and second-order regimes.

1.2. Main Contribution for Finite-Length Analysis

We derive the finite-length achievability bounds on the problems by basically using the
exponential-type bounds (for channel coding, it corresponds to the Gallager bound.). In source
coding with side-information, the exponential-type upper bounds on error probability P̄e(Mn) for a
given message size Mn are described by using the conditional Rényi entropies as follows (cf. Lemmas 14
and 15):

P̄e(Mn) ≤ inf
− 1

2≤θ≤0
M

θ
1+θ
n e−

θ
1+θ H↑1+θ(Xn |Yn) (1)

and:

P̄e(Mn) ≤ inf
−1≤θ≤0

Mθ
ne−θH↓1+θ(Xn |Yn). (2)

Here, Xn is the information to be compressed and Yn is the side-information that can be accessed
only by the decoder. H↑1+θ(Xn|Yn) is the conditional Rényi entropy introduced by Arimoto [18], which

we shall refer to as the upper conditional Rényi entropy (cf. (12)). On the other hand, H↓1+θ(Xn|Yn)

is the conditional Rényi entropy introduced in [19], which we shall refer to as the lower conditional
Rényi entropy (cf. (7)). Although there are several other definitions of conditional Rényi entropies, we
only use these two in this paper; see [20,21] for an extensive review on conditional Rényi entropies.

Although the above-mentioned conditional Rényi entropies are additive for i.i.d. random
variables, they are not additive for joint Markov chains over Xn and Yn, for which the derivation of
finite-length bounds for Markov chains are challenging. Because it is generally not easy to evaluate the
conditional Rényi entropies for Markov chains, we consider two assumptions in relation to transition
matrices: the first assumption, which we refer to as non-hidden, is that the Y-marginal process is a
Markov chain, which enables us to derive the single-letter expression of the conditional entropy rate
and the lower conditional Rényi entropy rate; the second assumption, which we refer to as strongly
non-hidden, enables us to derive the single-letter expression of the upper conditional Rényi entropy
rate; see Assumptions 1 and 2 of Section 2 for more detail ( Indeed, as explained later, our result
on the data compression can be converted to a result on the channel coding for a specific class of
channels. Under this conversion, we obtain certain assumptions for channels. As explained later, these
assumptions for channels are more meaningful from a practical point of view.) . Under Assumption 1,
we introduce the lower conditional Rényi entropy for transition matrices H↓,W1+θ(X|Y) (cf. (47)). Then,
we evaluate the lower conditional Rényi entropy for the Markov chain in terms of its transition matrix
counterpart. More specifically, we derive an approximation:

H↓1+θ(Xn|Yn) = nH↓,W1+θ(X|Y) + O(1), (3)

where an explicit form of the O(1) term is also derived. Using the evaluation (2) with this evaluation,
we obtain finite-length bounds under Assumption 1. Under a more restrictive assumption, i.e.,
Assumption 2, we also introduce the upper conditional Rényi entropy for a transition matrix H↑,W1+θ(X|Y)
(cf. (55)). Then, we evaluate the upper Rényi entropy for the Markov chain in terms of its transition
matrix counterpart. More specifically, we derive an approximation:

H↑1+θ(Xn|Yn) = nH↑,W1+θ(X|Y) + O(1), (4)

where an explicit form of the O(1) term is also derived. Using the evaluation (1) with this evaluation,
we obtain finite-length bounds that are tighter than those obtained under Assumption 1. It should
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be noted that, without Assumption 1, even the conditional entropy rate is challenging to evaluate.
For evaluation of the conditional entropy rate of the X process given the Y process, the assumption of
the X process being Markov seems to be not helpful. This is the reason why we consider the Y process
being Markov instead of the X process being Markov in this paper.

We also derive converse bounds by using the change of measure argument for Markov chains
developed by the authors in the accompanying paper on information geometry [22,23]. For this
purpose, we further introduce two-parameter conditional Rényi entropy and its transition matrix
counterpart (cf. (18) and (59)). This novel information measure includes the lower conditional Rényi
entropy and the upper conditional Rényi entropy as special cases. We clarify the relation among
bounds based on these quantities by numerically calculating the upper and lower bounds for the
optimal coding rate in source coding with a Markov source in Section 3.7. Owing to the second aspect
(A2), this calculation shows that our finite-length bounds are very close to the optimal value. Although
this numerical calculation contains a case with a very large size n = 1× 105, its calculation is not
as difficult because the calculation complexity behaves as O(1). That is, this calculation shows the
advantage of the first aspect (A1).

Here, we would like to remark about the terminologies because there are a few ways to express
exponential-type bounds. In statistics or large deviation theory, we usually use the cumulant generating
function (CGF) to describe exponents. In information theory, we employ the Gallager function or the
Rényi entropies. Although these three terminologies are essentially the same quantity and are related
by the change of variables, the CGF and the Gallager function are convenient for some calculations
because of their desirable properties such as convexity. On the other hand, the minimum entropy
and collision entropy are often used as alternative information measures of Shannon entropy in the
community of cryptography. Since the Rényi entropies are a generalization of the minimum entropy
and collision entropy, we can regard the Rényi entropies as information measures. The information
theoretic meaning of the CGF and the Gallager function are less clear. Thus, the Rényi entropies are
intuitively familiar to the readers’ of this journal. The Rényi entropies have an additional advantage
in that two types of bounds (e.g., (152) and (161)) can be expressed in a unified manner. Therefore,
we state our main results in terms of the Rényi entropies, whereas we use the CGF and the Gallager
function in the proofs. For the readers’ convenience, the relation between the Rényi entropies and
corresponding CGFs are summarized in Appendices A and B.

1.3. Main Contribution for Channel Coding

An intimate relationship is known to exist between channel coding and source coding with
side-information (e.g., [24–26]). In particular, for an additive channel, the error probability of
channel coding by a linear code can be related to the corresponding source coding problem with
side-information [24]. Chen et. al. also showed that the error probability of source coding with
side-information by a linear encoder can be related to the error probability of a dual channel coding
problem and vice versa [27] (see also [28]). Since these dual channels can be regarded as additive
channels conditioned on state information, we refer to these channels as conditional additive channels
(In [28], we termed these channels general additive channels, but we think “conditional” more suitably
describes the situation.). In this paper, we mainly discuss a conditional additive channel, in which the
additive noise is operated subject to a distribution conditioned on additional output information. Then,
we convert our obtained results of source coding with side-information to the analysis on conditional
additive channels. That is, using the aforementioned duality between channel coding and source
coding with side-information enables us to evaluate the error probability of channel coding for additive
channels. Then, we derive several finite-length analyses on additive channels.

For the same reason as source coding with side-information, we make two assumptions,
Assumptions 1 and 2, on the noise process of a conditional additive channel. In this context,
Assumption 1 means that the marginal system Yn deciding the behavior of the additive noise Xn is
a Markov chain. It should be noted that the Gilbert–Elliott channel [29,30] with state information
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available at the receiver can be regarded as a conditional additive channel such that the noise process
is a Markov chain satisfying both Assumptions 1 and 2 (see Example 6). Thus, we believe that
Assumptions 1 and 2 are quite reasonable assumptions.

In fact, our analysis is applicable for a broader class of channels known as regular channels [31].
The class of regular channels includes conditional additive channels as a special case, and it is known
as a class of channels that are similarly symmetrical. To show it, we propose a method to convert a
regular channel into a conditional additive channel such that our treatment covers regular channels.
Additionally, we show that the BPSK (binary phase shift keying)-AWGN (additive white Gaussian
noise) channel is included in conditional additive channels.

1.4. Asymptotic Bounds and Asymptotic Tightness for Finite-Length Bounds

We present asymptotic analyses of the large and moderate deviation regimes by deriving the
characterizations (for the large deviation regime, we only derive the characterizations up to the
critical rate) with the use of our finite-length achievability and converse bounds, which implies
that our finite-length bounds are tight in both of these deviation regimes. We also derive the
second-order rate. Although this rate can be derived by the application of the central limit theorem
to the information-spectrum bound, the variance involves the limit with respect to the block length
because of memory. In this paper, we derive a single-letter form of the variance by using the conditional
Rényi entropy for transition matrices (An alternative way to derive a single-letter characterization
of the variance for the Markov chain was shown in [32] (Lemma 20). It should also be noted that a
single-letter characterization can be derived by using the fundamental matrix [33]. The single-letter
characterization of the variance in [12] (Section VII) and [11] (Section III) contains an error, which is
corrected in this paper.).

As we will see in Theorems 11–14 and 22–25, our asymptotic results have the same forms as the
counterparts of the i.i.d. case (cf. [1,6,11–14]) when the information measures for distributions in the
i.i.d. case are replaced by the information measures for the transition matrices introduced in this paper.

We determine the asymptotic tightness for finite-length bounds by summarizing the relation
between the asymptotic results and the finite-length bounds in Table 1. The table also describes the
computational complexity of the finite-length bounds. “Solved∗” indicates that those problems are
solved up to the critical rates. “Ass. 1” and “Ass. 2” indicate that those problems are solved either under
Assumption 1 or Assumption 2. “O(1)” indicates that both the achievability and converse parts of those
asymptotic results are derived from our finite-length achievability bounds and converse bounds whose
computational complexities are O(1). “Tail” indicates that both the achievability and converse parts of
those asymptotic results are derived from the information-spectrum-type achievability bounds and
converse bounds of which the computational complexities depend on the computational complexities
of the tail probabilities.

In general, the exact computations of tail probabilities are difficult, although they may be feasible
for a simple case such as an i.i.d. case. One way to compute tail probabilities approximately is to
use the Berry–Esséen theorem [34] (Theorem 16.5.1) or its variant [35]. This direction of research is
still ongoing [36,37], and an evaluation of the constant was conducted [37], although its tightness
has not been clarified. If we can derive a tight Berry–Esséen-type bound for the Markov chain, this
would enable us to derive a finite-length bound that is asymptotically tight in the second-order regime.
However, the approximation errors of Berry–Esséen-type bounds converge only in the order of 1/

√
n

and cannot be applied when ε is rather small. Even in cases in which the exact computations of
tail probabilities are possible, the information-spectrum-type bounds are looser than the exponential
type bounds when ε is rather small, and we need to use appropriate bounds depending on the size
of ε. In fact, this observation was explicitly clarified in [38] for random number generation with
side-information. Consequently, we believe that our exponential-type finite-length bounds are very
useful. It should be also noted that, for source coding with side-information and channel coding for
regular channels, even the first-order results have not been revealed as far as the authors know, and
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they are clarified in this paper (General formulae for those problems were known [2,3], but single-letter
expressions for Markov sources or channels were not clarified in the literature. For the source coding
without side-information, the single-letter expression for entropy rate of Markov source is well known
(e.g., see [39]).).

Table 1. Summary of asymptotic results and finite-length bounds to derive asymptotic results under
Assumptions 1 and 2, which are abbreviated to Ass. 1 and Ass. 2.

Problem First-Order Large Deviation Moderate Deviation Second-Order

SC with SI Solved (Ass. 1) Solved∗ (Ass. 2) Solved (Ass. 1), Solved (Ass. 1)
O(1) O(1) Tail

CC for Conditional Solved (Ass. 1) Solved∗ (Ass. 2) Solved (Ass. 1) Solved (Ass. 1)
Additive Channels O(1) O(1) Tail

1.5. Related Work on Markov Chains

Since related work concerning the finite-length analysis is reviewed in Section 1.1, we only review
work related to the asymptotic analysis here. Some studies on Markov chains for the large deviation
regime have been reported [40–42]. The derivation in [40] used the Markov-type method. A drawback
of this method is that it involves a term that stems from the number of types, which does not affect the
asymptotic analysis, but does hurt the finite-length analysis. Our achievability is derived by following
a similar approach as in [41,42], i.e., the Perron–Frobenius theorem, but our derivation separates the
single-shot part and the evaluation of the Rényi entropy, and thus is more transparent. Furthermore,
the converse part of [41,42] is based on the Shannon–McMillan–Breiman limiting theorem and does
not yield finite-length bounds.

For the second-order regime, Polyanskiy et. al. studied the second-order rate (dispersion) of the
Gilbert–Elliott channel [43]. Tomamichel and Tan studied the second-order rate of channel coding with
state information such that the state information may be a general source and derived a formula for
the Markov chain as a special case [32]. Kontoyiannis studied the second-order variable length source
coding for the Markov chain [44]. In [45], Kontoyiannis and Verdú derived the second-order rate of
lossless source coding under the overflow probability criterion.

For channel coding of the i.i.d. case, Scarlett et al. derived a saddle-point approximation, which
unifies all three regimes [46,47].

1.6. Organization of the Paper

In Section 2, we introduce the information measures and their properties that will be used in
Sections 3 and 4. Then, source coding with side-information and channel coding is discussed in
Sections 3 and 4, respectively. As we mentioned above, we state our main result in terms of the Rényi
entropies, and we use the CGFs and the Gallager function in the proofs. We explain how to cover the
continuous case in Remarks 1 and 5. In Appendices A and B, the relation between the Rényi entropies
and corresponding CGFs are summarized. The relation between the Rényi entropies and the Gallager
function are explained as necessary. Proofs of some technical results are also provided in the remaining
Appendices.

1.7. Notations

For a set X , the set of all distributions on X is denoted by P(X ). The set of all sub-normalized
non-negative functions on X is denoted by P̄(X ). The cumulative distribution function of the standard
Gaussian random variable is denoted by:

Φ(t) =
∫ t

−∞

1√
2π

exp
[
− x2

2

]
dx. (5)
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Throughout the paper, the base of the logarithm is the natural base e.

2. Information Measures

Since this paper discusses the second-order tightness, we need to discuss the central limit theorem
for the Markov process. For this purpose, we usually employ advanced mathematical methods
from probability theory. For example, the paper [48] (Theorem 4) showed the Markov version of the
central limit theorem by using a martingale stopping technique. Lalley [49] employed the regular
perturbation theory of operators on the infinite-dimensional space [50] (Chapter 7, #1, Chapter 4,
#3, and Chapter 3, #5). The papers [51,52] and [53] (Lemma 1.5 of Chapter 1) employed the spectral
measure, while it is hard to calculate the spectral measure in general even in the finite-state case.
Further, the papers [36,51,54,55] showed the central limit theorem by using the asymptotic variance,
but they did not give any computable expression of the asymptotic variance without the infinite sum.
In summary, to derive the central limit theorem with the variance of a computable form, these papers
needed to use very advanced mathematics beyond calculus and linear algebra.

To overcome the difficulty of the Markov version of the central limit theorem, we employed the
method used in our recent paper [23]. The paper [23] employed the method based on the cumulant
generating function for transition matrices, which is defined by the Perron eigenvalue of a specific
non-negative-entry matrix. Since a Perron eigenvalue can be explained in the framework of linear
algebra, the method can be described with elementary mathematics. To employ this method, we need
to define the information measure in a way similar to the cumulant generating function for transition
matrices. That is, we define the information measures for transition matrices, e.g., the conditional
Rényi entropy for transition matrices, etc, by using Perron eigenvalues.

Fortunately, these information measures for transition matrices are very useful even for large
deviation-type evaluation and finite-length bounds. For example, our recent paper [23] derived
finite-length bounds for simple hypothesis testing for the Markov chain by using the cumulant
generating function for transition matrices. Therefore, using these information measures for transition
matrices, this paper derives finite-length bounds for source coding and channel coding with Markov
chains and discusses their asymptotic bounds with large deviation, moderate deviation, and the
second-order type.

Since they are natural extensions of information measures for single-shot setting, we first review
information measures for the single-shot setting in Section 2.1. Next, we introduce information
measures for transition matrices in Section 2.2. Then, we show that information measures for Markov
chains can be approximated by information measures for transition matrices generating those Markov
chains in Section 2.3.

2.1. Information Measures for the Single-Shot Setting

In this section, we introduce conditional Rényi entropies for the single-shot setting. For more
a detailed review of conditional Rényi entropies, see [21]. For a correlated random variable (X, Y)
on X ×Y with probability distribution PXY and a marginal distribution QY on Y , we introduce the
conditional Rényi entropy of order 1 + θ relative to QY as:

H1+θ(PXY|QY) := −1
θ

log ∑
x,y

PXY(x, y)1+θQY(y)−θ , (6)

where θ ∈ (−1, 0)∪ (0, ∞). The conditional Rényi entropy of order zero relative to QY is defined by the
limit with respect to θ. When X has no side-information, it is nothing but the ordinary Rényi entropy,
and it is denoted by H1+θ(X) = H1+θ(PX) throughout the paper.
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One of the important special cases of H1+θ(PXY|QY) is the case with QY = PY, where PY is the
marginal of PXY. We shall call this special case the lower conditional Rényi entropy of order 1 + θ and
denote ( this notation was first introduced in [56]):

H↓1+θ(X|Y) := H1+θ(PXY|PY) (7)

= −1
θ

log ∑
x,y

PXY(x, y)1+θ PY(y)−θ . (8)

When we consider the second-order analysis, the variance of the entropy density plays an
important role:

V(X|Y) := Var

[
log

1
PX|Y(X|Y)

]
. (9)

We have the following property, which follows from the correspondence between the conditional
Rényi entropy and the cumulant generating function (cf. Appendix B).

Lemma 1. We have:

lim
θ→0

H↓1+θ(X|Y) = H(X|Y) (10)

and (as seen in the proof (cf. (A26)), the left-hand side of (11) corresponds to the second derivative of the
cumulant generating function):

lim
θ→0

2
[

H(X|Y)− H↓1+θ(X|Y)
]

θ
= V(X|Y). (11)

Proof. (10) follows from the relation in (A25) and the fact that the first-order derivative of the cumulant
generating function is the expectation. (11) follows from (A25), (10) and (A26).

The other important special case of H1+θ(PXY|QY) is the measure maximized over QY. We shall
call this special case the upper conditional Rényi entropy of order 1 + θ and denote (Equation (13) for
−1 < θ < 0 follows from the Hölder inequality, and Equation (13) for 0 < θ follows from the reverse
Hölder inequality [57] (Lemma 8). Similar optimization has appeared in the context of Rényi mutual
information in [58] (see also [59]).):

H↑1+θ(X|Y) := max
QY∈P(Y)

H1+θ(PXY|QY) (12)

= H1+θ(PXY|P
(1+θ)
Y ) (13)

= −1 + θ

θ
log ∑

y
PY(y)

[
∑
x

PX|Y(x|y)1+θ

] 1
1+θ

, (14)

where:

P(1+θ)
Y (y) :=

[
∑x PXY(x, y)1+θ

] 1
1+θ

∑y′
[
∑x PXY(x, y′)1+θ

] 1
1+θ

. (15)

For this measure, we also have the same properties as Lemma 1. This lemma will be proven in
Appendix C.
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Lemma 2. We have:

lim
θ→0

H↑1+θ(X|Y) = H(X|Y) (16)

and:

lim
θ→0

2
[

H(X|Y)− H↑1+θ(X|Y)
]

θ
= V(X|Y). (17)

When we derive converse bounds, we need to consider the case such that the order of the Rényi
entropy is different from the order of conditioning distribution defined in (15). For this purpose, we
introduce two-parameter conditional Rényi entropy, which connects the two kinds of conditional
Rényi entropies H↓1+θ(X|Y) and H↑1+θ(X|Y) in the way as Statements 10 and 11 of Lemma 3:

H1+θ,1+θ′(X|Y) (18)

:= H1+θ(PXY|P
(1+θ′)
Y ) (19)

= −1
θ

log ∑
y

PY(y)

[
∑
x

PX|Y(x|y)1+θ

] [
∑
x

PX|Y(x|y)1+θ′
] −θ

1+θ′

+
θ′

1 + θ′
H↑1+θ′(X|Y). (20)

Next, we investigate some properties of the measures defined above, which will be proven in
Appendix D.

Lemma 3.

1. For fixed QY, θH1+θ(PXY|QY) is a concave function of θ, and it is strict concave iff
Var

[
log QY(Y)

PXY(X,Y)

]
> 0.

2. For fixed QY, H1+θ(PXY|QY) is a monotonically decreasing (Technically, H1+θ(PXY|QY) is always
non-increasing, and it is monotonically decreasing iff strict concavity holds in Statement 1. Similar
remarks are also applied for other information measures throughout the paper.) function of θ.

3. The function θH↓1+θ(X|Y) is a concave function of θ, and it is strict concave iff V(X|Y) > 0.
4. H↓1+θ(X|Y) is a monotonically decreasing function of θ.
5. The function θH↑1+θ(X|Y) is a concave function of θ, and it is strict concave iff V(X|Y) > 0.
6. H↑1+θ(X|Y) is a monotonically decreasing function of θ.
7. For every θ ∈ (−1, 0) ∪ (0, ∞), we have H↓1+θ(X|Y) ≤ H↑1+θ(X|Y).
8. For fixed θ′, the function θH1+θ,1+θ′(X|Y) is a concave function of θ, and it is strict concave iff

V(X|Y) > 0.
9. For fixed θ′, H1+θ,1+θ′(X|Y) is a monotonically decreasing function of θ.

10. We have:

H1+θ,1(X|Y) = H↓1+θ(X|Y). (21)

11. We have:

H1+θ,1+θ(X|Y) = H↑1+θ(X|Y). (22)

12. For every θ ∈ (−1, 0) ∪ (0, ∞), H1+θ,1+θ′(X|Y) is maximized at θ′ = θ.

The following lemma expresses explicit forms of the conditional Rényi entropies of order zero.
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Lemma 4. We have:

lim
θ→−1

H1+θ(PXY|QY) = H0(PXY|QY) (23)

:= log ∑
y

QY(y)|supp(PX|Y(·|y))|, (24)

lim
θ→−1

H↑1+θ(X|Y) = H↑0 (X|Y) (25)

:= log max
y∈supp(PY)

|supp(PX|Y(·|y))|, (26)

lim
θ→−1

H↓1+θ(X|Y) = H↓0 (X|Y) (27)

:= log ∑
y

PY(y)|supp(PX|Y(·|y))|. (28)

Proof. See Appendix E.

The definition (6) guarantees the existence of the derivative of d[θH1+θ(PXY |QY)]
dθ . From Statement 1 of

Lemma 3, d[θH1+θ(PXY|QY)]/dθ is monotonically decreasing. Thus, the inverse function (Throughout
the paper, the notations θ(a) and a(R) are reused for several inverse functions. Although the
meanings of those notations are obvious from the context, we occasionally put superscript Q, ↓ or ↑ to
emphasize that those inverse functions are induced from corresponding conditional Rényi entropies.
This definition is related to the Legendre transform of the concave function θ 7→ θH↓1+θ(X|Y).) of
θ 7→ d[θH1+θ(PXY|QY)]/dθ exists so that the function θ(a) = θQ(a) is defined as:

d[θH1+θ(PXY|QY)]

dθ

∣∣∣∣
θ=θ(a)

= a (29)

for a < a ≤ a, where a = aQ := limθ→∞ d[θH1+θ(PXY|QY)]/dθ and a = aQ :=
limθ→−1 d[θH1+θ(PXY|QY)]/dθ. Let:

R(a) = RQ(a) := (1 + θ(a))a− θ(a)H1+θ(a)(PXY|QY). (30)

Since:

R′(a) =
dR′(a)

da

=
dθ(a)

da
a + 1 + θ(a)− d(θH1+θ(PXY|QY))

dθ

dθ(a)
da

=
dθ(a)

da
a + 1 + θ(a)− a

dθ(a)
da

= 1 + θ(a), (31)

R(a) is a monotonic increasing function of a < a ≤ R(a). Thus, we can define the inverse function
a(R) = aQ(R) of R(a) by:

(1 + θ(a(R)))a(R)− θ(a(R))H1+θ(a(R))(PXY|QY) = R (32)

for R(a) < R ≤ H0(PXY|QY).
For θH↓1+θ(X|Y), by the same reason as above, we can define the inverse functions θ(a) = θ↓(a)

and a(R) = a↓(R) by:

d[θH↓1+θ(X|Y)]
dθ

∣∣∣∣
θ=θ(a)

= a (33)
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and:

(1 + θ(a(R)))a(R)− θ(a(R))H↓1+θ(a(R))(X|Y) = R, (34)

for R(a) < R ≤ H↓0 (X|Y). For θH↑1+θ(X|Y), we also introduce the inverse functions θ(a) = θ↑(a) and
a(R) = a↑(R) by:

dθH↑1+θ(X|Y)
dθ

∣∣∣∣
θ=θ(a)

= a (35)

and:

(1 + θ(a(R)))a(R)− θ(a(R))H↑1+θ(a(R))(X|Y) = R (36)

for R(a) < R ≤ H↑0 (X|Y).

Remark 1. Here, we discuss the possibility for extension to the continuous case. Since the entropy in the
continuous case diverges, we cannot extend the information quantities to the case when X is continuous.
However, it is possible to extend these quantities to the case when Y is continuous, but X is a discrete finite set.
In this case, we prepare a general measure µ (like the Lebesgue measure) on Y and probability density function
pY and qY such that the distributions PY and QY are given as pY(y)µ(dy) and qY(y)µ(dy), respectively.
Then, it is sufficient to replace ∑, Q(y), and PXY(x, y) by

∫
Y µ(dy), PX|Y(x|y)pY(y), and qY(y), respectively.

Hence, in the n-independent and identically distributed case, these information measures are given as n times
the original information measures.

One might consider the information quantities for transition matrices given in the next subsection for this
continuous case. However, this is not so easy because it needs a continuous extension of the Perron eigenvalue.

2.2. Information Measures for the Transition Matrix

Let {W(x, y|x′, y′)}((x,y),(x′ ,y′))∈(X×Y)2 be an ergodic and irreducible transition matrix.
The purpose of this section is to introduce transition matrix counterparts of those measures in
Section 2.1. For this purpose, we first need to introduce some assumptions on transition matrices:

Assumption 1 (Non-hidden). We say that a transition matrix W is non-hidden (with respect to Y) if the
Y-marginal process is a Markov process, i.e., (The reason for the name “non-hidden” is the following. In general,
the Y-marginal process is a hidden Markov process. However, when the condition (37) holds, the Y-marginal
process is a Markov process. Hence, we call the condition (37) non-hidden.):

∑
x

W(x, y|x′, y′) = W(y|y′) (37)

for every x′ ∈ X and y, y′ ∈ Y . This condition is equivalent to the existence of the following decomposition of
W(x, y|x′, y′):

W(x, y|x′, y′) = W(y|y′)W(x|x′, y′, y). (38)

Assumption 2 (Strongly non-hidden). We say that a transition matrix W is strongly non-hidden (with
respect to Y) if, for every θ ∈ (−1, ∞) and y, y′ ∈ Y (The reason for the name “strongly non-hidden” is the
following. When we compute the upper conditional Rényi entropy rate of the Markov source, the effect of the
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Y process may propagate infinitely even if it is non-hidden. When (39) holds, the effect of the Y process in the
computation of the upper conditional Rényi entropy rate is only one step.):

Wθ(y|y′) := ∑
x

W(x, y|x′, y′)1+θ (39)

is well defined, i.e., the right-hand side of (39) is independent of x′.

Assumption 1 requires (39) to hold only for θ = 0, and thus, Assumption 2 implies Assumption 1.
However, Assumption 2 is a strictly stronger condition than Assumption 1. For example, let us consider
the case such that the transition matrix is a product form, i.e., W(x, y|x′, y′) = W(x|x′)W(y|y′). In this
case, Assumption 1 is obviously satisfied. However, Assumption 2 is not satisfied in general.

Assumption 2 has another expression as follows.

Lemma 5. Assumption 2 holds if and only if, for every x′ 6= x̃′, there exists a permutation πx′ ;x̃′ on X such
that W(x|x′, y′, y) = W(πx′ ;x̃′(x)|x̃′, y′, y).

Proof. Since the part “if” is trivial, we show the part “only if” as follows. By noting (38), Assumption 2
can be rephrased as:

∑
x

W(x|x′, y′, y)1+θ (40)

does not depend on x′ for every θ ∈ (−1, ∞). Furthermore, this condition can be rephrased as follows.
For x′ 6= x̃′, if the largest values of {W(x|x′, y′)}x∈X and {W(x|x̃′, y′)}x∈X are different, say the former
is larger, then ∑x W(x|x′, y′)1+θ > ∑x W(x|x̃′, y′)1+θ for sufficiently large θ, which contradicts the fact
that (40) does not depend on x′. Thus, the largest values of {W(x|x′, y′)}x∈X and {W(x|x̃′, y′)}x∈X
must coincide. By repeating this argument for the second largest value of {W(x|x′, y′)}x∈X and
{W(x|x̃′, y′)}x∈X , and so on, we find that Assumption 2 implies that for every x′ 6= x̃′, there exists a
permutationπx′ ;x̃′ on X such that W(x|x′, y′, y) = W(πx′ ;x̃′(x)|x̃′, y′, y).

Now, we fix an element x0 ∈ X and transform a sequence of random numbers
(X1, Y1, X2, Y2, . . . , Xn, Yn) to the sequence of random numbers (X′1, Y′1, X′2, Y′2, . . . , X′n, Y′n) :=
(X1, Y1, π−1

x0;X1
(X2), Y2, . . . , π−1

x0;X1
(Xn), Yn). Then, letting W ′(x|y′, y) := W(x|x0, y′, y), we have

PX′i ,Y
′
i |X
′
i−1,Y′i−1

= W ′(y′i|y′i−1)W(x′i |y′i, y′i−1). That is, essentially, the transition matrix of this case can
be written by the transition matrix W(y′i|y′i−1)W

′(x′i |y′i, y′i−1). Therefore, the transition matrix can be
written by using the positive-entry matrix Wx′i

(y′i|y′i−1) := W(y′i|y′i−1)W
′(x′i |y′i, y′i−1).

The following are non-trivial examples satisfying Assumptions 1 and 2.

Example 1. Suppose that X = Y is a module (an additive group). Let P and Q be transition matrices on X .
Then, the transition matrix given by:

W(x, y|x′, y′) = Q(y|y′)P(x− y|x′ − y′) (41)

satisfies Assumption 1. Furthermore, if transition matrix P(z|z′) can be written as:

P(z|z′) = PZ(πz′(z)) (42)

for permutation πz′ and a distribution PZ on X , then transition matrix W defined by (41) satisfies Assumption 2
as well.
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Example 2. Suppose thatX is a module and W is (strongly) non-hidden with respect to Y . Let Q be a transition
matrix on Z = X . Then, the transition matrix given by:

V(x, y, z|x′, y′, z′) = W(x− z, y|x′ − z′, y)Q(z|z′) (43)

is (strongly) non-hidden with respect to Y ×Z .

The following is also an example satisfying Assumption 2, which describes a noise process of an
important class of channels with memory (cf. the Gilbert-Elliot channel in Example 6).

Example 3. Let X = Y = {0, 1}. Then, let:

W(y|y′) =
{

1− qy′ if y = y′

qy′ if y 6= y′
(44)

for some 0 < q0, q1 < 1, and let:

W(x|x′, y′, y) =

{
1− py if x = 0
py if x = 1

(45)

for some 0 < p0, p1 < 1. By choosing πx′ ;x̃′ to be the identity, this transition matrix satisfies the condition
given in Remark 5, which is equivalent to Assumption 2.

First, we introduce information measures under Assumption 1. In order to define a transition
matrix counterpart of (7), let us introduce the following tilted matrix:

W̃θ(x, y|x′, y′) := W(x, y|x′, y′)1+θW(y|y′)−θ . (46)

Here, we should notice that the tilted matrix W̃θ is not normalized, i.e., is not a transition matrix. Let λθ

be the Perron–Frobenius eigenvalue of W̃θ and P̃θ,XY be its normalized eigenvector. Then, we define
the lower conditional Rényi entropy for W by:

H↓,W1+θ(X|Y) := −1
θ

log λθ , (47)

where θ ∈ (−1, 0) ∪ (0, ∞). For θ = 0, we define the lower conditional Rényi entropy for W by:

HW(X|Y) = H↓,W1 (X|Y) (48)

:= lim
θ→0

H↓,W1+θ(X|Y), (49)

and we just call it the conditional entropy for W. In fact, the definition of HW(X|Y) above
coincides with:

− ∑
x′ ,y′

P0,XY(x′, y′)∑
x,y

W(x, y|x′, y′) log
W(x, y|x′, y′)

W(y|y′) , (50)

where P0,XY is the stationary distribution of W (cf. [60] (Equation (30))). For θ = −1, H↓,W0 (X|Y) is also
defined by taking the limit. When X has no side-information, the Rényi entropy HW

1+θ(X) for W is

defined as a special case of H↓,W1+θ(X|Y).
As a counterpart of (11), we also define (Since the limiting expression in (51) coincides with the

second derivative of the CGF (cf. (A30)) and since the second derivative of the CGF exists (cf. [22]
(Appendix D)), the variance in (51) is well defined. While the definition (51) contains the limit θ → 0, it
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can be calculated without this type of limit by using the fundamental matrix [61] (Theorem 4.3.1), [23]
(Theorem 7.7 and Remark 7.8).):

VW(X|Y) := lim
θ→0

2
[

HW(X|Y)− H↓,W1+θ(X|Y)
]

θ
. (51)

Remark 2. When transition matrix W satisfies Assumption 2, H↓,W1+θ(X|Y) can be written as:

H↓,W1+θ(X|Y) = −1
θ

log λ′θ , (52)

where λ′θ is the Perron–Frobenius eigenvalue of Wθ(y|y′)W(y|y′)−θ . In fact, for the left Perron–Frobenius
eigenvector Q̂θ of Wθ(y|y′)W(y|y′)−θ , we have:

∑
x,y

Q̂θ(y)W(x, y|x′, y′)1+θW(y|y′)−θ = λ′θQθ(y′), (53)

which implies that λ′θ is the Perron–Frobenius eigenvalue of W̃θ . Consequently, we can evaluate H↓,W1+θ(X|Y) by
calculating the Perron–Frobenius eigenvalue of the |Y| × |Y| matrix instead of the |X ||Y| × |X ||Y| matrix
when W satisfies Assumption 2.

Next, we introduce information measures under Assumption 2. In order to define a transition
matrix counterpart of (12), let us introduce the following |Y| × |Y|matrix:

Kθ(y|y′) := Wθ(y|y′)
1

1+θ , (54)

where Wθ is defined by (39). Let κθ be the Perron–Frobenius eigenvalue of Kθ . Then, we define the
upper conditional Rényi entropy for W by:

H↑,W1+θ(X|Y) := −1 + θ

θ
log κθ , (55)

where θ ∈ (−1, 0) ∪ (0, ∞). For θ = −1 and θ = 0, H↑,W1+θ(X|Y) is defined by taking the limit. We have
the following properties, which will be proven in Appendix F.

Lemma 6. We have:

lim
θ→0

H↑,W1+θ(X|Y) = HW(X|Y) (56)

and:

lim
θ→0

2
[

HW(X|Y)− H↑,W1+θ(X|Y)
]

θ
= VW(X|Y). (57)

Now, let us introduce a transition matrix counterpart of (18). For this purpose, we introduce the
following |Y| × |Y|matrix:

Nθ,θ′(y|y′) := Wθ(y|y′)Wθ′(y|y′)
−θ

1+θ′ . (58)

Let νθ,θ′ be the Perron–Frobenius eigenvalue of Nθ,θ′ . Then, we define the two-parameter
conditional Rényi entropy by:

HW
1+θ,1+θ′(X|Y) := −1

θ
log νθ,θ′ +

θ′

1 + θ′
H↑,W1+θ′(X|Y). (59)
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Remark 3. Although we defined H↓,W1+θ(X|Y) and H↑,W1+θ(X|Y) by (47) and (55), respectively, we can
alternatively define these measures in the same spirit as the single-shot setting by introducing a transition matrix
counterpart of H1+θ(PXY|QY) as follows. For the marginal W(y|y′) of W(x, y|x′, y′), let Y2

W := {(y, y′) :
W(y|y′) > 0}. For another transition matrix V on Y , we define Y2

V in a similar manner. For V satisfying

Y2
W ⊂ Y2

V , we define (although we can also define HW|V
1+θ (X|Y) even if Y2

W ⊂ Y2
V is not satisfied (see [22] for

the detail), for our purpose of defining H↓,W1+θ(X|Y) and H↑,W1+θ(X|Y), other cases are irrelevant):

HW|V
1+θ (X|Y) := −1

θ
log λ

W|V
θ (60)

for θ ∈ (−1, 0) ∪ (0, ∞), where λ
W|V
θ is the Perron–Frobenius eigenvalue of:

W(x, y|x′, y′)1+θV(y|y′)−θ . (61)

By using this measure, we obviously have:

H↓,W1+θ(X|Y) = HW|W
1+θ (X|Y). (62)

Furthermore, under Assumption 2, the relation:

H↑,W1+θ(X|Y) = max
V

HW|V
1+θ (X|Y) (63)

holds (see Appendix G for the proof), where the maximum is taken over all transition matrices satisfying
Y2

W ⊂ Y2
V .

Next, we investigate some properties of the information measures introduced in this section. The
following lemma is proven in Appendix H.

Lemma 7.

1. The function θH↓,W1+θ(X|Y) is a concave function of θ, and it is strict concave iff VW(X|Y) > 0.
2. H↓,W1+θ(X|Y) is a monotonically decreasing function of θ.
3. The function θH↑,W1+θ(X|Y) is a concave function of θ, and it is strict concave iff VW(X|Y) > 0.
4. H↑,W1+θ(X|Y) is a monotonically decreasing function of θ.
5. For every θ ∈ (−1, 0) ∪ (0, ∞), we have H↓,W1+θ(X|Y) ≤ H↑,W1+θ(X|Y).
6. For fixed θ′, the function θHW

1+θ,1+θ′(X|Y) is a concave function of θ, and it is strict concave iff
VW(X|Y) > 0.

7. For fixed θ′, HW
1+θ,1+θ′(X|Y) is a monotonically decreasing function of θ.

8. We have:

HW
1+θ,1(X|Y) = H↓,W1+θ(X|Y). (64)

9. We have:

HW
1+θ,1+θ(X|Y) = H↑,W1+θ(X|Y). (65)

10. For every θ ∈ (−1, 0) ∪ (0, ∞), HW
1+θ,1+θ′(X|Y) is maximized at θ′ = θ, i.e.,

d[HW
1+θ,1+θ′(X|Y)]

dθ′

∣∣∣∣
θ′=θ

= 0. (66)
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From Statement 1 of Lemma 7, d[θH↓,W1+θ(X|Y)]/dθ is monotonically decreasing. Thus, we can

define the inverse function θW(a) = θ↓,W(a) of d[θH↓,W1+θ(X|Y)]/dθ by:

d[θH↓,W1+θ(X|Y)]
dθ

∣∣∣∣
θ=θW (a)

= a (67)

for a < a ≤ a, where a := limθ→∞ d[θH↓,W1+θ(X|Y)]/dθ and a := limθ→−1 d[θH↓,W1+θ(X|Y)]/dθ. Let:

RW(a) := (1 + θ(a))a− θ(a)H↓,W1+θ(a)(X|Y). (68)

Since

RW ′(a) = (1 + θ(a)), (69)

RW(a) is a monotonic increasing function of a < a < RW(a). Thus, we can define the inverse
function aW(R) = a↓,W(R) of RW(a) by:

(1 + θ(aW(R)))aW(R)− θW(aW(R))H↓,W1+θW (aW (R))(X|Y) = R (70)

for RW(a) < R < H↓,W0 (X|Y), where H↓,W0 (X|Y) := limθ→−1 H↓,W1+θ(X|Y).
For θH↑,W1+θ(X|Y), by the same reason, we can define the inverse function θW(a) = θ↑,W(a) by:

d[θHW
1+θ,1+θW (a)(X|Y)]

dθ

∣∣∣∣
θ=θW (a)

=
d[θH↑,W1+θ(X|Y)]

dθ

∣∣∣∣
θ=θW (a)

= a, (71)

and the inverse function aW(R) = a↑,W(R) of:

RW(a) := (1 + θW(a))a− θW(a)H↑,W1+θW (a)(X|Y) (72)

by:

(1 + θW(aW(R)))aW(R)− θW(aW(R))H↑,W1+θW (aW (R))(X|Y) = R, (73)

for R(a) < R < H↑,W0 (X|Y), where H↑,W0 (X|Y) := limθ→−1 H↑,W1+θ(X|Y). Here, the first equality in (71)
follows from (66).

Since θ 7→ θH↓,W1+θ(X|Y) is concave, the supremum of [−θR + θH↓,W1+θ(X|Y)] is attained at the

stationary point. Furthermore, note that −1 ≤ θ↓,W(R) ≤ 0 for HW(X|Y) ≤ R ≤ H↓,W0 (X|Y). Thus,
we have the following property.

Lemma 8. The function θW(R) defined in (67) satisfies:

sup
−1≤θ≤0

[−θR + θH↓,W1+θ(X|Y)] = −θW(R)R + θW(R)H↓,W1+θW (R)(X|Y) (74)

for HW(X|Y) ≤ R ≤ H↓,W0 (X|Y).

Furthermore, we have the following characterization for another type of maximization.
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Lemma 9. The function θW(aW(R)) defined by (70) satisfies:

sup
−1≤θ≤0

−θR + θH↓,W1+θ(X|Y)
1 + θ

= −θW(aW(R))aW(R) + θW(aW(R))H↓,W1+θW (aW (R))(X|Y) (75)

for HW(X|Y) ≤ R ≤ H↓,W0 (X|Y), and the function θ(a(R)) defined in (73) satisfies:

sup
−1≤θ≤0

−θR + θH↑,W1+θ(X|Y)
1 + θ

= −θW(aW(R))aW(R) + θW(aW(R))H↑,W1+θW (aW (R))(X|Y) (76)

for HW(X|Y) ≤ R ≤ H↑,W0 (X|Y).

Proof. See Appendix I.

Remark 4. The combination of (49), (51), and Lemma 6 guarantees that both the conditional Rényi entropies
expand as:

H↓,W1+θ(X|Y) = HW(X|Y)− 1
2
VW(X|Y)θ + o(θ), (77)

H↑,W1+θ(X|Y) = HW(X|Y)− 1
2
VW(X|Y)θ + o(θ) (78)

around θ = 0. Thus, the difference of these measures significantly appears only when |θ| is rather large. For
the transition matrix of Example 3 with q0 = q1 = 0.1, p0 = 0.1, and p1 = 0.4, we plotted the values of the
information measures in Figure 1. Although the values at θ = −1 coincide in Figure 1, note that the values at
θ = −1 may differ in general.

In Example 1, we mentioned that the transition matrix W in (41) satisfies Assumption 2 when transition
matrix P is given by (42). By computing the conditional Rényi entropies for this special case, we have:

H↑,W1+θ(X|Y) = H↓,W1+θ(X|Y) (79)

= H1+θ(PZ), (80)

i.e., the two kinds of conditional Rényi entropies coincide.
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Figure 1. A comparison of H↑,W1+θ(X|Y) (upper red curve) and H↓,W1+θ(X|Y) (lower blue curve) for the
transition matrix of Example 3 with q0 = q1 = 0.1, p0 = 0.1, and p1 = 0.4. The horizontal axis is θ, and
the vertical axis is the values of the information measures (nats).
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Now, let us consider the asymptotic behavior of H↓,W1+θ(X|Y) around θ = 0. When θ(a) is close to
zero, we have:

θW(a)H↓,W1+θW (a)(X|Y) = θW(a)HW(X|Y)− 1
2
VW(X|Y)θW(a)2 + o(θW(a)2). (81)

Taking the derivative, (67) implies that:

a = HW(X|Y)− VW(X|Y)θW(a) + o(θW(a)). (82)

Hence, when R is close to HW(X|Y), we have:

R = (1 + θW(aW(R))aW(R)− θW(aW(R))H↓,W1+θW (aW (R))(X|Y) (83)

= HW(X|Y)−
(

1 +
θW(aW(R))

2

)
θW(aW(R))VW(X|Y) + o(θW(aW(R)), (84)

i.e.,

θW(aW(R)) =
−R + HW(X|Y)

VW(X|Y)
+ o

(
R− HW(X|Y)

VW(X|Y)

)
. (85)

Furthermore, (81) and (82) imply:

− θW(aW(R))aW(R) + θW(aW(R))H↓,W1+θW (aW (R))(X|Y) (86)

= VW(X|Y) θW(aW(R))2

2
+ o(θW(aW(R))2) (87)

=
VW(X|Y)

2

(
R− HW(X|Y)

VW(X|Y)

)2

+ o

((
R− HW(X|Y)

VW(X|Y)

)2)
. (88)

2.3. Information Measures for the Markov Chain

Let (X, Y) be the Markov chain induced by transition matrix W and some initial distribution PX1Y1 .
Now, we show how information measures introduced in Section 2.2 are related to the conditional
Rényi entropy rates. First, we introduce the following lemma, which gives finite upper and lower
bounds on the lower conditional Rényi entropy.

Lemma 10. Suppose that transition matrix W satisfies Assumption 1. Let vθ be the eigenvector of WT
θ

with respect to the Perron–Frobenius eigenvalue λθ such that minx,y vθ(x, y) = 1 (since the eigenvector
corresponding to the Perron–Frobenius eigenvalue for an irreducible non-negative matrix has always strictly
positive entries [62] (Theorem 8.4.4, p. 508), we can choose the eigenvector vθ satisfying this condition).
Let wθ(x, y) := PX1Y1(x, y)1+θ PY1(y)

−θ . Then, for every n ≥ 1, we have:

(n− 1)θH↓,W1+θ(X|Y) + δ(θ) ≤ θH↓1+θ(Xn|Yn) ≤ (n− 1)θH↓,W1+θ(X|Y) + δ(θ), (89)

where:

δ(θ) := − log〈vθ |wθ〉+ log max
x,y

vθ(x, y), (90)

δ(θ) := − log〈vθ |wθ〉, (91)

and 〈vθ |wθ〉 is defined as ∑x,y vθ(x, y)wθ(x, y).

Proof. This follows from (A29) and Lemma A2.
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From Lemma 10, we have the following.

Theorem 1. Suppose that transition matrix W satisfies Assumption 1. For any initial distribution, we have
(When there is no side-information, (93) reduces to the well-known expression of the entropy rate of the Markov
process [39]. Without Assumption 1, it is not clear if (93) holds or not.):

lim
n→∞

1
n

H↓1+θ(Xn|Yn) = H↓,W1+θ(X|Y), (92)

lim
n→∞

1
n

H(Xn|Yn) = HW(X|Y). (93)

We also have the following asymptotic evaluation of the variance, which follows from Lemma A3
in Appendix A.

Theorem 2. Suppose that transition matrix W satisfies Assumption 1. For any initial distribution, we have:

lim
n→∞

1
n
V(Xn|Yn) = VW(X|Y). (94)

Theorem 2 is practically important since the limit of the variance can be described by a single-letter
characterized quantity. A method to calculate VW(X|Y) can be found in [23].

Next, we show the lemma that gives the finite upper and lower bounds on the upper conditional
Rényi entropy in terms of the upper conditional Rényi entropy for the transition matrix.

Lemma 11. Suppose that transition matrix W satisfies Assumption 2. Let vθ be the eigenvector of KT
θ with

respect to the Perron–Frobenius eigenvalue κθ such that miny vθ(y) = 1. Let wθ be the |Y|-dimensional vector
defined by:

wθ(y) :=

[
∑
x

PX1Y1(x, y)1+θ

] 1
1+θ

. (95)

Then, we have:

(n− 1)
θ

1 + θ
H↑,W1+θ(X|Y) + ξ(θ) ≤ θ

1 + θ
H↑1+θ(Xn|Yn) ≤ (n− 1)

θ

1 + θ
H↑,W1+θ(X|Y) + ξ(θ), (96)

where:

ξ(θ) := − log〈vθ |wθ〉+ log max
y

vθ(y), (97)

ξ(θ) := − log〈vθ |wθ〉. (98)

Proof. See Appendix J.

From Lemma 11, we have the following.

Theorem 3. Suppose that transition matrix W satisfies Assumption 2. For any initial distribution, we have:

lim
n→∞

1
n

H↑1+θ(Xn|Yn) = H↑,W1+θ(X|Y). (99)

Finally, we show the lemma that gives the finite upper and lower bounds on the two-parameter
conditional Rényi entropy in terms of the two-parameter conditional Rényi entropy for the
transition matrix.
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Lemma 12. Suppose that transition matrix W satisfies Assumption 2. Let vθ,θ′ be the eigenvector of NT
θ,θ′ with

respect to the Perron–Frobenius eigenvalue νθ,θ′ such that miny vθ,θ′(y) = 1. Let wθ,θ′ be the |Y|-dimensional
vector defined by:

wθ,θ′(y) :=

[
∑
x

PX1Y1(x, y)1+θ

] [
∑
x

PX1Y1(x, y)1+θ′
] −θ

1+θ′

. (100)

Then, we have:

(n− 1)θHW
1+θ,1+θ′(X|Y) + ζ(θ, θ′) ≤ θH1+θ,1+θ′(Xn|Yn) ≤ (n− 1)θHW

1+θ,1+θ′(X|Y) + ζ(θ, θ′), (101)

where:

ζ(θ, θ′) := − log〈vθ,θ′ |wθ,θ′〉+ log max
y

vθ,θ′(y) + θξ(θ′), (102)

ζ(θ, θ′) := − log〈vθ,θ′ |wθ,θ′〉+ θξ(θ′) (103)

for θ > 0 and:

ζ(θ, θ′) := − log〈vθ,θ′ |wθ,θ′〉+ log max
y

vθ,θ′(y) + θξ(θ′), (104)

ζ(θ, θ′) := − log〈vθ,θ′ |wθ,θ′〉+ θξ(θ′) (105)

for θ < 0

Proof. By multiplying θ in the definition of H1+θ,1+θ′(Xn|Yn), we have:

θH1+θ,1+θ′(Xn|Yn) (106)

= − log ∑
yn

[
∑
xn

PXnYn(xn, yn)1+θ

] [
∑
xn

PXnYn(xn, yn)1+θ′
] −θ

1+θ′

+
θθ′

1 + θ′
H↑1+θ′(Xn|Yn). (107)

The second term is evaluated by Lemma 11. The first term can be evaluated almost in the same
manner as Lemma 11.

From Lemma 12, we have the following.

Theorem 4. Suppose that transition matrix W satisfies Assumption 2. For any initial distribution, we have:

lim
n→∞

1
n

H1+θ,1+θ′(Xn|Yn) = HW
1+θ,1+θ′(X|Y). (108)

3. Source Coding with Full Side-Information

In this section, we investigate source coding with side-information. We start this section by
showing the problem setting in Section 3.1. Then, we review and introduce some single-shot bounds
in Section 3.2. We derive finite-length bounds for the Markov chain in Section 3.3. Then, in Sections 3.5
and 3.6, we show the asymptotic characterization for the large deviation regime and the moderate
deviation regime by using those finite-length bounds. We also derive the second-order rate in
Section 3.4.



Entropy 2020, 22, 460 21 of 58

3.1. Problem Formulation

A code Ψ = (e, d) consists of one encoder e : X → {1, . . . , M} and one decoder d : {1, . . . , M} ×
Y → X . The decoding error probability is defined by:

Ps[Ψ] = Ps[Ψ|PXY] (109)

:= Pr{X 6= d(e(X), Y)}. (110)

For notational convenience, we introduce the infimum of error probabilities under the condition
that the message size is M:

Ps(M) = Ps(M|PXY) (111)

:= inf
Ψ

Ps[Ψ]. (112)

For theoretical simplicity, we focus on a randomized choice of our encoder. For this purpose, we
employ a randomized hash function F from X to {1, . . . , M}. A randomized hash function F is called
a two-universal hash when Pr{F(x) = F(x′)} ≤ 1

M for any distinctive x and x′ [63]; the so-called bin
coding [39] is an example of the two-universal hash function. In the following, we denote the set of
two-universal hash functions by F . Given an encoder f as a function from X to {1, . . . , M}, we define
the decoder d f as the optimal decoder by argmin

d
Ps[( f , d)]. Then, we denote the code ( f , d f ) by Ψ( f ).

Then, we bound the error probability Ps[Ψ(F)] averaged over the random function F by only using the
property of two-universality. In order to consider the worst case of such schemes, we introduce the
following quantity:

P̄s(M) = P̄s(M|PXY) (113)

:= sup
F∈F

EF[Ps[Ψ(F)]], . (114)

When we consider n-fold extension, the source code and related quantities are denoted with the
superscript (n). For example, the quantities in (112) and (114) are written as P(n)

s (M) and P̄(n)
s (M),

respectively. Instead of evaluating them, we are often interested in evaluating:

M(n, ε) := inf{Mn : P(n)
s (Mn) ≤ ε}, (115)

M̄(n, ε) := inf{Mn : P̄(n)
s (Mn) ≤ ε} (116)

for given 0 ≤ ε < 1.

3.2. Single-Shot Bounds

In this section, we review existing single-shot bounds and also show novel converse bounds. For
the information measures used below, see Section 2.

By using the standard argument on information-spectrum approach, we have the following
achievability bound.

Lemma 13 (Lemma 7.2.1 of [3]). The following bound holds:

P̄s(M) ≤ inf
γ≥0

[
PXY

{
log

1
PX|Y(x|y) > γ

}
+

eγ

M

]
. (117)

Although Lemma 13 is useful for the second-order regime, it is known to be not tight in the
large deviation regime. By using the large deviation technique of Gallager, we have the following
exponential-type achievability bound.
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Lemma 14 ([64]). The following bound holds: (note that the Gallager function and the upper conditional Rényi
entropy are related by (A45)):

P̄s(M) ≤ inf
− 1

2≤θ≤0
M

θ
1+θ e−

θ
1+θ H↑1+θ(X|Y). (118)

Although Lemma 14 is known to be tight in the large deviation regime for i.i.d. sources, H↑1+θ(X|Y)
for Markov chains can only be evaluated under the strongly non-hidden assumption. For this reason,
even though the following bound is looser than Lemma 14, it is useful to have another bound in terms
of H↓1+θ(X|Y), which can be evaluated for Markov chains under the non-hidden assumption.

Lemma 15. The following bound holds:

P̄s(M) ≤ inf
−1≤θ≤0

Mθe−θH↓1+θ(X|Y). (119)

Proof. To derive this bound, we change the variable in (118) as θ = θ′
1−θ′ . Then, −1 ≤ θ′ ≤ 0, and

we have:

Mθ′ e
−θ′H↑ 1

1−θ′
(X|Y)

≤ Mθ′ e−θ′H↓
1+θ′ (X|Y),

where we use Lemma A4 in Appendix C.

For the source coding without side-information, i.e., when X has no side-information, we have
the following bound, which is tighter than Lemma 14.

Lemma 16 ((2.39) [65]). The following bound holds:

Ps(M) ≤ inf
−1<θ≤0

M
θ

1+θ e−
θ

1+θ H1+θ(X). (120)

For the converse part, we first have the following bound, which is very close to the operational
definition of source coding with side-information.

Lemma 17 ([66]). Let {Ωy}y∈Y be a family of subsets Ωy ⊂ X , and let Ω = ∪y∈YΩy × {y}. Then, for any
QY ∈ P(Y), the following bound holds:

Ps(M) ≥ min
{Ωy}

{
PXY(Ωc) : ∑

y
QY(y)|Ωy| ≤ M

}
. (121)

Since Lemma 17 is close to the operational definition, it is not easy to evaluate Lemma 17. Thus,
we derive another bound by loosening Lemma 17, which is more tractable for evaluation. Slightly
weakening Lemma 17, we have the following.

Lemma 18 ([3,4]). For any QY ∈ P(Y), we have (In fact, a special case for QY = PY corresponds to
Lemma 7.2.2 of [3]. A bound that involves QY was introduced in [4] for channel coding, and it can be regarded
as a source coding counterpart of that result.):

Ps(M) ≥ sup
γ≥0

[
PXY

{
log

QY(y)
PXY(x, y)

> γ

}
− M

eγ

]
. (122)

By using the change-of-measure argument, we also obtain the following converse bound.
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Theorem 5. For any QY ∈ P(Y), we have:

− log Ps(M) (123)

≤ inf
s>0

θ̃∈R,ϑ≥0

[
(1 + s)θ̃

{
H1+θ̃(PXY|QY)− H1+(1+s)θ̃(PXY|QY)

}

−(1 + s) log

(
1− 2e−

−ϑR+(θ̃+ϑ(1+θ̃))H
θ̃+ϑ(1+θ̃)

(PXY |QY )−(1+ϑ)θ̃H1+θ̃
(PXY |QY )

1+ϑ

)]
/s (124)

≤ inf
s>0

−1<θ̃<θ(a(R))

[
(1 + s)θ̃

{
H1+θ̃(PXY|QY)− H1+(1+s)θ̃(PXY|QY)

}
−(1 + s) log

(
1− 2e(θ(a(R))−θ̃)a(R)−θ(a(R))H1+θ(a(R))(PXY |QY)+θ̃H1+θ̃(PXY |QY)

) ]
/s, (125)

where R = log M, and θ(a) = θQ(a) and a(R) = aQ(R) are the inverse functions defined in (29) and (32),
respectively.

Proof. See Appendix K.

In particular, by taking QY = P(1+θ(a(R)))
Y in Theorem 5, we have the following.

Corollary 1. We have:

− log Ps(M) (126)

≤ inf
s>0

−1<θ̃<θ(a(R))

[
(1 + s)θ̃

{
H1+θ̃,1+θ(a(R))(X|Y)− H1+(1+s)θ̃,1+θ(a(R))(X|Y)

}
−(1 + s) log

(
1− 2e(θ(a(R))−θ̃)a(R)−θ(a(R))H↑1+θ(a(R))(X|Y)+θ̃H1+θ̃,1+θ(a(R))(X|Y)

) ]
/s, (127)

where θ(a) = θ↑(a) and a(R) = a↑(R) are the inverse functions defined in (35) and (36).

Remark 5. Here, we discuss the possibility for extension to the continuous case. As explained in Remark
1, we can define the information quantities for the case when Y is continuous, but X is a discrete finite set.
The discussions in this subsection still hold even in this continuous case. In particular, in the n-i.i.d. extension
case with this continuous setting, Lemma 14 and Corollary 1 hold when the information measures are replaced
by n times the single-shot information measures.

3.3. Finite-Length Bounds for Markov Source

In this subsection, we derive several finite-length bounds for the Markov source with a computable
form. Unfortunately, it is not easy to evaluate how tight those bounds are only with their formula.
Their tightness will be discussed by considering the asymptotic limit in the remaining subsections of
this section. Since we assume the irreducibility for the transition matrix describing the Markov chain,
the following bound holds with any initial distribution.

To derive a lower bound on − log P̄s(Mn) in terms of the Rényi entropy of the transition matrix,
we substitute the formula for the Rényi entropy given in Lemma 10 into Lemma 15. Then, we can
derive the following achievability bound.

Theorem 6 (Direct, Ass. 1). Suppose that transition matrix W satisfies Assumption 1. Let R := 1
n log Mn.

Then, for every n ≥ 1, we have:

− log P̄(n)
s (Mn) ≥ sup

−1≤θ≤0

[
−θnR + (n− 1)θH↓,W1+θ(X|Y) + δ(θ)

]
, (128)
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where δ(θ) is given by (91).

For the source coding without side-information, from Lemma 16 and a special case of Lemma 10,
we have the following achievability bound.

Theorem 7 (Direct, no-side-information). Let R := 1
n log Mn. Then, for every n ≥ 1, we have:

− log P(n)
e (Mn) ≥ sup

−1<θ≤0

−nθR + (n− 1)θHW
1+θ(X) + δ(θ)

1 + θ
. (129)

To derive an upper bound on − log Ps(Mn) in terms of the Rényi entropy of transition matrix, we
substitute the formula for the Rényi entropy given in Lemma 10 for Theorem 5. Then, we have the
following converse bound.

Theorem 8 (Converse, Ass. 1). Suppose that transition matrix W satisfies Assumption 1. Let R := 1
n log Mn.

For any HW(X|Y) < R < H↓,W0 (X|Y), we have:

− log P(n)
s (Mn) (130)

≤ inf
s>0

−1<θ̃<θ(a(R))

[
(n− 1)(1 + s)θ̃

{
H↓,W

1+θ̃
(X|Y)− H↓,W

1+(1+s)θ̃
(X|Y)

}
+ δ1

−(1 + s) log
(

1− 2e
(n−1)[(θW (aW (R))−θ̃)aW (R)−θW (aW (R))H↓,W

1+θW (aW (R))
(X|Y)+θ̃H↓,W

1+θ̃
(X|Y)]+δ2

) ]
/s,(131)

where θ(a) = θ↓(a) and a(R) = a↓(R) are the inverse functions defined by (67) and (70), respectively,

δ1 := (1 + s)δ(θ̃)− δ((1 + s)θ̃), (132)

δ2 :=
(θW(aW(R))− θ̃)R− (1 + θ̃)δ(θW(aW(R))) + (1 + θW(aW(R)))δ(θ̃)

1 + θW(aW(R))
, (133)

and δ(·) and δ(·) are given by (90) and (91), respectively.

Proof. We first use (124) of Theorem 5 for QYn = PYn and Lemma 10. Then, we restrict the range of θ̃

as −1 < θ̃ < θW(aW(R)) and set ϑ = θW (aW (R))−θ̃

1+θ̃
. Then, we have the assertion of the theorem.

Next, we derive tighter bounds under Assumption 2. To derive a lower bound on − log P̄s(Mn)

in terms of the Rényi entropy of the transition matrix, we substitute the formula for the Rényi entropy
in Lemma 11 for Lemma 14. Then, we have the following achievability bound.

Theorem 9 (Direct, Ass. 2). Suppose that transition matrix W satisfies Assumption 2. Let R := 1
n log Mn.

Then, we have:

− log P̄(n)
s (Mn) ≥ sup

− 1
2≤θ≤0

−θnR + (n− 1)θH↑,W1+θ(X|Y)
1 + θ

+ ξ(θ), (134)

where ξ(θ) is given by (98).

Finally, to derive an upper bound on − log Ps(Mn) in terms of the Rényi entropy for the transition
matrix, we substitute the formula for the Rényi entropy in Lemma 12 for Theorem 5 for QYn =

P(1+θW (aW (R)))
Yn . Then, we can derive the following converse bound.
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Theorem 10 (Converse, Ass. 2). Suppose that transition matrix W satisfies Assumption 2. Let R :=
1
n log Mn. For any HW(X|Y) < R < H↑,W0 (X|Y), we have:

− log P(n)
s (Mn) (135)

≤ inf
s>0

−1<θ̃<θW (aW (R))

[
(n− 1)(1 + s)θ̃

{
HW

1+θ̃,1+θW (aW (R))(X|Y)− HW
1+(1+s)θ̃,1+θW (aW (R))(X|Y)

}
+ δ1

− (1 + s) log
(

1− 2e
(n−1)[(θW (aW (R))−θ̃)aW (R)−θW (aW (R))H↑,W

1+θW (aW (R))
(X|Y)+θ̃HW

1+θ̃,1+θW (aW (R))
(X|Y)]+δ2

) ]
/s, (136)

where θW(a) = θ↑,W(a) and aW(R) = a↑,W(R) are the inverse functions defined by (71) and (73), respectively,

δ1 :=(1 + s)ζ(θ̃, θW(aW(R)))− ζ((1 + s)θ̃, θW(aW(R))), (137)

δ2 :=
(θW(aW(R))− θ̃)R− (1 + θ̃)ζ(θW(aW(R)), θW(aW(R))) + (1 + θW(aW(R)))ζ(θ̃, θW(aW(R)))

1 + θW(aW(R))
, (138)

and ζ(·, ·) and ζ(·, ·) are given by (102)–(105).

Proof. We first use (124) of Theorem 5 for QYn = P(1+θW (aW (R)))
Yn and Lemma 12. Then, we restrict

the range of θ̃ as −1 < θ̃ < θW(aW(R)) and set ϑ = θW (aW (R))−θ̃

1+θ̃
. Then, we have the assertion of

the theorem.

3.4. Second-Order

By applying the central limit theorem to Lemma 13 (cf. [67] (Theorem 27.4, Example 27.6)) and
Lemma 18 for QY = PY and by using Theorem 2, we have the following.

Theorem 11. Suppose that transition matrix W on X × Y satisfies Assumption 1. For arbitrary ε ∈ (0, 1),
we have:

log M(n, ε) = log M̄(n, ε) + o(
√

n) = nHW(X|Y) +
√

VW(X|Y)
√

nΦ(1− ε) + o(
√

n). (139)

Proof. The central limit theorem for the Markov process cf. [67] (Theorem 27.4, Example 27.6)
guarantees that the random variable (− log PXn |Yn(Xn|Yn)− nHW(X|Y))/

√
n asymptotically obeys

the normal distribution with average zero and variance VW(X|Y), where we use Theorem 2 to show
that the limit of the variance is given by VW(X|Y). Let R =

√
VW(X|Y)Φ−1(1− ε). Substituting

M = enHW (X|Y)+
√

nR and γ = nHW(X|Y) +
√

nR− n
1
4 in Lemma 13, we have:

lim
n→∞

P̄(n)
s

(
enHW (X|Y)+

√
nR
)
≤ ε. (140)

On the other hand, substituting M = enHW (X|Y)+
√

nR and γ = nHW(X|Y) +
√

nR + n
1
4 in

Lemma 18 for QY = PY, we have:

lim
n→∞

P(n)
s

(
enHW (X|Y)+

√
nR
)
≥ ε. (141)

Combining (140) and (141), we have the statement of the theorem.

From the above theorem, the (first-order) compression limit of source coding with side-information
for a Markov source under Assumption 1 is given by (although the compression limit of source coding
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with side-information for a Markov chain is known more generally [68], we need Assumption 1 to get
a single-letter characterization):

lim
n→∞

1
n

log M(n, ε) = lim
n→∞

1
n

log M̄(n, ε) (142)

= HW(X|Y) (143)

for any ε ∈ (0, 1). In the next subsections, we consider the asymptotic behavior of the error probability
when the rate is larger than the compression limit HW(X|Y) in the moderate deviation regime and the
large deviation regime, respectively.

3.5. Moderate Deviation

From Theorems 6 and 8, we have the following.

Theorem 12. Suppose that transition matrix W satisfies Assumption 1. For arbitrary t ∈ (0, 1/2) and δ > 0,
we have:

lim
n→∞

− 1
n1−2t log P(n)

s

(
enHW (X|Y)+n1−tδ

)
= lim

n→∞
− 1

n1−2t log P̄(n)
s

(
enHW (X|Y)+n1−tδ

)
(144)

=
δ2

2VW(X|Y)
. (145)

Proof. We apply Theorems 6 and 8 to the case with R = HW(X|Y) + n−tδ, i.e., θ(a(R)) =

−n−1 δ
VW (X|Y) + o(n−t). For the achievability part, from (88) and Theorem 6, we have:

− log P(n)
s (Mn) ≥ sup

−1≤θ≤0

[
−θnR + (n− 1)θH↓,W1+θ(X|Y)

]
+ inf
−1≤θ≤0

δ(θ) (146)

≥ n1−2t δ2

2VW(X|Y)
+ o(n1−2t). (147)

To prove the converse part, we fix arbitrary s > 0 and choose θ̃ to be −n−t δ
VW (X|Y) + n−2t. Then,

Theorem 8 implies that:

lim sup
n→∞

− 1
n1−2t log Ps(Mn) ≤ lim sup

n→∞
n2t 1 + s

s
θ̃
{

H↓,W
1+θ̃

(X|Y)− H↓,W
1+(1+s)θ̃

(X|Y)
}

(148)

= lim sup
n→∞

n2t 1 + s
s

sθ̃2 dH↓,W1+θ(X|Y)
dθ

∣∣∣∣
θ=θ̃

(149)

= (1 + s)
δ2

2VW(X|Y)
. (150)

Remark 6. In the literature [13,69], the moderate deviation results are stated for εn such that εn → 0 and
nε2

n → ∞ instead of n−t for t ∈ (0, 1/2). Although the former is slightly more general than the latter, we
employ the latter formulation in Theorem 12 since the order of convergence is clearer. In fact, n−t in Theorem 12
can be replaced by general εn without modifying the argument of the proof.

3.6. Large Deviation

From Theorems 6 and 8, we have the following.
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Theorem 13. Suppose that transition matrix W satisfies Assumption 1. For HW(X|Y) < R, we have:

lim inf
n→∞

− 1
n

log P̄(n)
s

(
enR
)
≥ sup
−1≤θ≤0

[−θR + θH↓,W1+θ(X|Y)]. (151)

On the other hand, for HW(X|Y) < R < H↓,W0 (X|Y), we have:

lim sup
n→∞

− 1
n

log P(n)
s

(
enR
)
≤ −θ(a(R))a(R) + θ(a(R))H↓,W1+θ(a(R))(X|Y) (152)

= sup
−1<θ≤0

−θR + θH↓,W1+θ(X|Y)
1 + θ

. (153)

Proof. The achievability bound (151) follows from Theorem 6. The converse part (152) is proven from
Theorem 8 as follows. We first fix s > 0 and −1 < θ̃ < θ(a(R)). Then, Theorem 8 implies:

lim sup
n→∞

− 1
n

log P(n)
s

(
enR
)
≤ 1 + s

s
θ̃
{

H↓,W
1+θ̃

(X|Y)− H↓,W
1+(1+s)θ̃

(X|Y)
}

. (154)

By taking the limit s→ 0 and θ̃ → θ(a(R)), we have:

1 + s
s

θ̃
{

H↓,W
1+θ̃

(X|Y)− H↓,W
1+(1+s)θ̃

(X|Y)
}

(155)

=
1
s

(
θ̃H↓,W

1+θ̃
(X|Y)− (1 + s)θ̃H↓,W

1+(1+s)θ̃
(X|Y)

)
+ θ̃H↓,W

1+θ̃
(X|Y) (156)

→ −θ̃
d[θH↓,W1+θ(X|Y)]

dθ

∣∣∣∣
θ=θ̃

+ θ̃H↓,W
1+θ̃

(X|Y) (as s→ 0) (157)

→ −θ(a(R))
d[θH↓,W1+θ(X|Y)]

dθ

∣∣∣∣
θ=θ(a(R))

+ θ(a(R))H↓,W1+θ(a(R))(X|Y) (as θ̃ → θ(a(R))) (158)

= −θ(a(R))a(R) + θ(a(R))H↓,W1+θ(a(R))(X|Y). (159)

Thus, (152) is proven. The alternative expression (153) is derived via Lemma 9.

Under Assumption 2, from Theorems 9 and 10, we have the following tighter bound.

Theorem 14. Suppose that transition matrix W satisfies Assumption 2. For HW(X|Y) < R, we have:

lim inf
n→∞

− 1
n

log P̄(n)
s

(
enR
)
≥ sup
− 1

2≤θ≤0

−θR + θH↑,W1+θ(X|Y)
1 + θ

. (160)

On the other hand, for HW(X|Y) < R < H↑,W0 (X|Y), we have:

lim sup
n→∞

− 1
n

log P(n)
s

(
enR
)
≤ −θ(a(R))a(R) + θ(a(R))H↑,W1+θ(a(R))(X|Y) (161)

= sup
−1<θ≤0

−θR + θH↑,W1+θ(X|Y)
1 + θ

. (162)

Proof. The achievability bound (160) follows from Theorem 9. The converse part (161) is proven from
Theorem 10 as follows. We first fix s > 0 and −1 < θ̃ < θ(a(R)). Then, Theorem 10 implies:

lim sup
n→∞

− 1
n

log P(n)
s

(
enR
)
≤ 1 + s

s
θ̃
{

HW
1+θ̃,1+θ(a(R))(X|Y)− HW

1+(1+s)θ̃,1+θ(a(R))(X|Y)
}

. (163)
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By taking the limit s→ 0 and θ̃ → θ(a(R)), we have:

1 + s
s

θ̃
{

HW
1+θ̃,1+θ(a(R))(X|Y)− HW

1+(1+s)θ̃,1+θ(a(R))(X|Y)
}

(164)

=
1
s

(
θ̃HW

1+θ̃,1+θ(a(R))(X|Y)− (1 + s)θ̃HW
1+(1+s)θ̃,1+θ(a(R))(X|Y)

)
+ θ̃HW

1+θ̃,1+θ(a(R))(X|Y) (165)

→ −θ̃
d[θHW

1+θ,1+θ(a(R))(X|Y)]
dθ

∣∣∣∣
θ=θ̃

+ θ̃HW
1+θ̃,1+θ(a(R))(X|Y) (as s→ 0) (166)

→ −θ(a(R))
d[θHW

1+θ,1+θ(a(R))(X|Y)]
dθ

∣∣∣∣
θ=θ(a(R))

+ θ(a(R))H↑,W1+θ(a(R))(X|Y) (as θ̃ → θ(a(R))) (167)

= −θ(a(R))a(R) + θ(a(R))H↑,W1+θ(a(R))(X|Y). (168)

Thus, (161) is proven. The alternative expression (162) is derived via Lemma 9.

Remark 7. For R ≤ Rcr, where (cf. (72) for the definition of R(a)):

Rcr := R

(
d[θH↑,W1+θ(X|Y)]

dθ

∣∣∣∣
θ=− 1

2

)
(169)

is the critical rate, the left-hand side of (76) in Lemma 9 is attained by parameters in the range −1/2 ≤ θ ≤ 0.
Thus, the lower bound in (160) is rewritten as:

sup
− 1

2≤θ≤0

−θR + θH↑,W1+θ(X|Y)
1 + θ

= −θ(a(R))a(R) + θ(a(R))H↑,W1+θ(a(R))(X|Y). (170)

Thus, the lower bound and the upper bounds coincide up to the critical rate.

Remark 8. For the source coding without side-information, by taking the limit of Theorem 7, we have:

lim inf
n→∞

− 1
n

log P̄(n)
s

(
enR
)
≥ sup
−1≤θ≤0

−θR + θHW
1+θ(X)

1 + θ
. (171)

On the other hand, as a special case of (152) without side-information, we have:

lim sup
n→∞

− 1
n

log P(n)
s

(
enR
)
≤ sup

−1<θ≤0

−θR + θHW
1+θ(X)

1 + θ
(172)

for HW(X) < R < HW
0 (X). Thus, we can recover the results in [40,41] by our approach.

3.7. Numerical Example

In this section, to demonstrate the advantage of our finite-length bound, we numerically evaluate
the achievability bound in Theorem 7 and a special case of the converse bound in Theorem 8 for the
source coding without side-information. Thanks to the aspect (A2), our numerical calculation shows
that our upper finite-length bounds are very close to our lower finite-length bounds when the size
n is sufficiently large. Thanks to the aspect (A1), we could calculate both bounds with the huge size
n = 1× 105 because the calculation complexity behaves as O(1).

We consider a binary transition matrix W given by Figure 2, i.e.,

W =

[
1− p q

p 1− q

]
. (173)
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In this case, the stationary distribution is:

P̃(0) =
q

p + q
, (174)

P̃(1) =
p

p + q
. (175)

The entropy is:

HW(X) =
q

p + q
h(p) +

p
p + q

h(q), (176)

where h(·) is the binary entropy function. The tilted transition matrix is:

Wθ =

[
(1− p)1+θ q1+θ

p1+θ (1− q)1+θ

]
. (177)

The Perron–Frobenius eigenvalue is:

λθ =
(1− p)1+θ + (1− q)1+θ +

√
{(1− p)1+θ − (1− q)1+θ}2 + 4p1+θq1+θ

2
(178)

and its normalized eigenvector is:

P̃θ(0) =
q1+θ

λθ − (1− p)1+θ + q1+θ
, (179)

P̃θ(1) =
λθ − (1− p)1+θ

λθ − (1− p)1+θ + q1+θ
. (180)

The normalized eigenvector of WT
ρ is also given by:

P̂θ(0) =
p1+θ

λθ − (1− p)1+θ + p1+θ
, (181)

P̂θ(1) =
λθ − (1− p)1+θ

λθ − (1− p)1+θ + p1+θ
. (182)

From these calculations, we can evaluate the bounds in Theorems 7 and 8. For p = 0.1, q = 0.2,
the bounds are plotted in Figure 3 for fixed error probability ε = 10−3. Although there is a gap between
the achievability bound and the converse bound for rather small n, the gap is less than approximately
5% of the entropy rate for n larger than 10,000. We also plot the bounds in Figure 4 for fixed block
length n = 10,000 and varying ε. The gap between the achievability bound and the converse bound
remains approximately 5% of the entropy rate even for ε as small as 10−10.

0 1

p

q

1-p 1-q

Figure 2. The description of the transition matrix in (173).

The gap between the achievability bound and the converse bound in Figure 3 is rather large
compared to a similar numerical experiment conducted in [1]. One reason for the gap is that our
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bounds are exponential-type bounds. For instance, when the source is i.i.d., the achievability bound
essentially reduces to the so-called Gallager bound [64]. However, an advantage of our bounds is that
the computational complexity does not depend on the blocklength. The computational complexities of
the bounds plotted in [1] depend the blocklength, and numerical computation of those bounds for
Markov sources seems to be difficult.

When p = q, an alternative approach to derive tighter bounds is to consider encoding of the
Markov transition, i.e., 1[Xi = Xi+1], instead of the source itself (cf. [45] (Example 4)). Then, the
analysis can be reduced to i.i.d. case. However, such an approach is possible only when p = q.

1000 2000 5000 1´ 10
4

2´ 10
4

5´ 10
4

1´ 10
5

n0.38

0.40

0.42

0.44

0.46

R

Figure 3. A comparison of the bounds for p = 0.1, q = 0.2, and ε = 10−3. The horizontal axis is the
block length n, and the vertical axis is the rate R (nats). The upper red curve is the achievability bound
in Theorem 7. The middle blue curve is the converse bound in Theorem 8. The lower purple line is the
first-order asymptotics given by the entropy HW(X).

0 2 4 6 8 10

-l o g10HΕL0.38

0.39

0.40

0.41

0.42

0.43

R

Figure 4. A comparison of the bounds for p = 0.1, q = 0.2, and n = 10,000. The horizontal axis is
− log10(ε), and the vertical axis is the rate R (nats). The upper red curve is the achievability bound in
Theorem 7. The middle blue curve is the converse bound in Theorem 8. The lower purple line is the
first-order asymptotics given by the entropy HW(X).

3.8. Summary of the Results

The obtained results in this section are summarized in Table 2. The check marks X indicate that
the tight asymptotic bounds (large deviation, moderate deviation, and second-order) can be obtained
from those bounds. The marks X∗ indicate that the large deviation bound can be derived up to the
critical rate. The computational complexity “Tail” indicates that the computational complexities of
those bounds depend on the computational complexities of tail probabilities. It should be noted that
Theorem 8 is derived from a special case (QY = PY) of Theorem 5. The asymptotically optimal choice
is QY = P(1+θ)

Y , which corresponds to Corollary 1. Under Assumption 1, we can derive the bound
of the Markov case only for that special choice of QY, while under Assumption 2, we can derive the
bound of the Markov case for the optimal choice of QY.
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Table 2. Summary of the bounds for source coding with full side-information. No-side means the case
with no side-information.

Ach./Conv. Markov Single-Shot Ps/P̄s Complexity
Large Moderate Second

Deviation Deviation Order

Achievability

Theorem 6
Lemma 15 P̄s O(1) X

(Ass. 1)
Theorem 9

Lemma 14 P̄s O(1) X∗ X
(Ass. 2)

Theorem 7
Lemma 16 P̄s O(1) X∗ X

(No-side)
Lemma 13 P̄s Tail X X

Converse

Theorem 8
(Theorem 5) Ps O(1) X

(Ass. 1)
Theorem 10

Corollary 1 Ps O(1) X∗ X
(Ass. 2)

Theorem 8
(Theorem 5) Ps O(1) X∗ X

(No-side)
Lemma 18 Ps Tail X X

4. Channel Coding

In this section, we investigate the channel coding with a conditional additive channel. The first
part of this section discusses the general properties of the channel coding with a conditional additive
channel. The second part of this section discusses the properties of the channel coding when the
conditional additive noise of the channel is Markov. The first part starts with showing the problem
setting in Section 4.1 by introducing a conditional additive channel. Section 4.2 gives a canonical
method to convert a regular channel to a conditional additive channel. Section 4.3 gives a method to
convert a BPSK-AWGN channel to a conditional additive channel. Then, we show some single-shot
achievability bounds in Section 4.4 and single-shot converse bounds in Section 4.5.

As the second part, we derive finite-length bounds for the Markov noise channel in Section 4.6.
Then, we derive the second-order rate in Section 4.7. In Sections 4.8 and 4.9, we show the asymptotic
characterization for the large deviation regime and the moderate deviation regime by using those
finite-length bounds.

4.1. Formulation for the Conditional Additive Channel

4.1.1. Single-Shot Case

We first present the problem formulation in the single-shot setting. For a channel PB|A(b|a)
with input alphabet A and output alphabet B, a channel code Ψ = (e, d) consists of one encoder
e : {1, . . . , M} → A and one decoder d : B → {1, . . . , M}. The average decoding error probability is
defined by:

Pc[Ψ] :=
M

∑
m=1

1
M

PB|A({b : d(b) 6= m}|e(m)). (183)

For notational convenience, we introduce the error probability under the condition that the
message size is M:

Pc(M) := inf
Ψ

Pc[Ψ]. (184)
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Assume that the input alphabet A is the same set as the output alphabet B and they equal an
additive group X . When the transition matrix PB|A(b|a) is given as PX(b− a) by using a distribution
PX on X , the channel is called additive.

To extend the concept of the additive channel, we consider the case when the input alphabet
A is an additive group X and the output alphabet B is the product set X × Y . When the transition
matrix PB|A(x, y|a) is given as PXY(x − a, y) by using a distribution PXY on X × Y , the channel is
called conditional additive. In this paper, we are exclusively interested in the conditional additive
channel. As explained in Section 4.2, a channel is a conditional additive channel if and only if it is a
regular channel in the sense of [31]. When we need to express the underlying distribution of the noise
explicitly, we denote the average decoding error probability by Pc[Ψ|PXY].

4.1.2. n-Fold Extension

When we consider n-fold extension, the channel code is denoted with subscript n such as Ψn =

(en, dn). The error probabilities given in (183) and (184) are written with the superscript (n) as P(n)
c [Ψn]

and P(n)
c (Mn), respectively. Instead of evaluating the error probability P(n)

c (Mn) for given Mn, we are
also interested in evaluating:

M(n, ε) := sup
{

Mn : P(n)
c (Mn) ≤ ε

}
(185)

for given 0 ≤ ε ≤ 1.
When the channel is given as a conditional distribution, the channel is given by:

PBn |An(xn, yn|an) = PXnYn(xn − an, yn), (186)

where PXnYn is a noise distribution on X n ×Yn.
For the code construction, we investigate the linear code. For an (n, k) linear code Cn ⊂ An, there

exists a parity check matrix fn : An → An−k such that the kernel of fn is Cn. That is, given a parity
check matrix fn : An → An−k, we define the encoder IKer( fn) : Cn → An as the imbedding of the kernel
Ker( fn). Then, using the decoder d fn := argmin

d
Pc[(IKer( fn), d)], we define Ψ( fn) = (IKer( fn), d fn).

Here, we employ a randomized choice of a parity check matrix. In particular, instead of a
two-universal hash function, we focus on linear two-universal hash functions, because the linearity is
required in the above relation with source coding. Therefore, denoting the set of linear two-universal
hash functions from An to An−k by Fl , we introduce the quantity:

P̄c(n, k) := sup
Fn∈Fl

EFn

[
P(n)

c [Ψ(Fn)]
]

. (187)

Taking the infimum over all linear codes associated with Fn (cf. (113)), we obviously have:

P(n)
c (|A|k) ≤ P̄c(n, k). (188)

When we consider the error probability for conditionally additive channels, we use notation
P̄c(n, k|PXY) so that the underlying distribution of the noise is explicit. We are also interested
in characterizing:

k(n, ε) := sup {k : P̄c(n, k) ≤ ε} (189)

for given 0 ≤ ε ≤ 1.
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4.2. Conversion from the Regular Channel to the Conditional Additive Channel

The aim of this subsection is to show the following theorem by presenting the conversion rule
between these two types of channels. Then, we see that a binary erasure symmetric channel is an
example of a regular channel.

Theorem 15. A channel is a regular channel in the sense of [31] if and only if it can be written as a conditional
additive channel.

To show the conversion from a conditional additive channel to a regular channel, we assume that
the input alphabet A has an additive group structure. Let PX̃ be a distribution on the output alphabet
B. Let πa be a representation of the group A on B, and let G = {πa : a ∈ A}. A regular channel [31] is
defined by:

PB|A(b|a) = PX̃(πa(b)). (190)

The group action induces orbit:

Orb(b) := {πa(b) : a ∈ A}. (191)

The set of all orbits constitutes a disjoint partition of B. A set of the orbits is denoted by B̄, and let
Orb : B → B̄ be the map to the representatives.

Example 4 (Binary erasure symmetric channel). Let A = {0, 1}, B = {0, 1, ?}, and:

PX̃(b) =


1− p− p′ if b = 0
p if b = 1
p′ if b =?

. (192)

Then, let:

π0 =

[
0 1 ?
0 1 ?

]
, π1 =

[
0 1 ?
1 0 ?

]
. (193)

The channel defined in this way is a regular channel (see Figure 5). In this case, there are two orbits: {0, 1}
and {?}.

0

1

0

1

?

1-p-p’

1-p-p’

p

p

p’

p’

Figure 5. The binary erasure symmetric channel.

Let B = X × Y and PX̃ = PXY for some joint distribution on X × Y . Now, we consider a
conditional additive channel, whose transition matrix PB|A(x, y|a) is given as PXY(x− a, y). When the
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group action is given by πa(x, y) = (x− a, y), the above conditional additive channel is given as a
regular channel. In this case, there are |Y| orbits, and the size of each orbit is |X |, respectively. This fact
shows that any conditional additive channel is written as a regular channel. That is, it shows the “if”
part of Theorem 15.

Conversely, we present the conversion from a regular channel to a conditional additive channel.
We first explain the construction for the single-shot channel. For random variable X̃ ∼ PX̃ , let Y = B̄
and Y = v(X̃) be the random variable describing the representatives of the orbits. For y = Orb(b)
and each orbit Orb(b), we fix an element 0y ∈ Orb(b). Then, we define:

PY(y) := PX̃(Orb(b)), PX,Y(a, y) :=
PX̃(πa(0y))

|{a′ ∈ A|πa(0y) = πa′(0y)}|
. (194)

Then, we obtain the virtual channel PX,Y|A as PX,Y|A(x, y|a) := PX,Y(x − a, y). Using the
conditional distributions PX,Y|B and PB|X,Y as:

PX,Y|B(a, y|b) =
{

1
|{a′∈A|πa(0y)=πa′ (0y)}| when b = πa(0y)

0 otherwise.
(195)

PX,Y|B(a, y|b) =
{

1 when b = πa(0y)

0 otherwise,
(196)

we obtain the relations:

PB|A(b|a) = ∑
x,y

PB|X,Y(b|x, y)PX,Y|A(x, y|a), PX,Y|A(x, y|a) = ∑
b

PX,Y|B(x, y|b)PB|A(b|a). (197)

These two equations show that the receiver information of the virtual conditional additive channel
PX,Y|A and the receiver information of the regular channel PB|A can be converted into each other. Hence,
we can say that a regular channel in the sense of [31] can be written as a conditional additive channel,
which shows the “only if” part of Theorem 15.

Example 5 (Binary erasure symmetric channel revisited). We convert the regular channel of Example 4 to
a conditional additive channel. Let us label the orbit {0, 1} as y = 0 and {?} as y = 1. Let 00 = 0 and 01 =?.

PX,Y(x, 0) =

{
1− p− p′ if x = 0
p if x = 0

(198)

PX,Y(x, 1) =
p′

2
. (199)

When we consider the nth extension, a channel is given by:

PBn |An(bn|an) = PX̃n(πan(bn)), (200)

where the nth extension of the group action is defined by πan(bn) = (πa1(b1), . . . , πan(bn)).
Similarly, for n-fold extension, we can also construct the virtual conditional additive channel.

More precisely, for X̃n ∼ PX̃n , we set Yn = v(X̃n) = (v(X̃1), . . . , v(X̃n)) and:

PXn ,Yn(xn, yn) :=
PX̃n(πan(0yn))

|{a′n ∈ An|πan(0yn) = πa′n(0yn)}| . (201)
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4.3. Conversion of the BPSK-AWGN Channel into the Conditional Additive Channel

Although we only considered finite input/output sources and channels throughout the paper, in
order to demonstrate the utility of the conditional additive channel framework, let us consider the
additive white Gaussian noise (AWGN) channel with binary phase shift keying (BPSK) in this section.
Let A = {0, 1} be the input alphabet of the channel, and let B = R be the output alphabet of the
channel. For an input a ∈ A and Gaussian noise Z with mean zero and variance σ2, the output of the
channel is given by B = (−1)a + Z. Then, the conditional probability density function of this channel
is given as:

PB|A(b|a) =
1√
2πσ

e−
(b−(−1)a)2

σ2 . (202)

Now, to define a conditional additive channel, we choose Y := R+ and define the probability
density function pY on Y with respect to the Lebesgue measure and the conditional distribution
PX|Y(x|y) as:

pY(y) :=
1√
2πσ

(e−
(y−1)2

σ2 + e−
(y+1)2

σ2 ) (203)

PX|Y(0|y) :=
e−

(y−1)2

σ2

e−
(y−1)2

σ2 + e−
(y+1)2

σ2

(204)

PX|Y(1|y) :=
e−

(y+1)2

σ2

e−
(y−1)2

σ2 + e−
(y+1)2

σ2

(205)

for y ∈ R+. When we define b := (−1)xy ∈ R for x ∈ {0, 1} and y ∈ R+, we have:

pXY|A(y, x|a) = 1√
2πσ

e−
(y−(−1)a+x)2

σ2 =
1√
2πσ

e−
((−1)xy−(−1)a)2

σ2 =
1√
2πσ

e−
(b−(−1)a)2

σ2 . (206)

The relations (202) and (206) show that the AWGN channel with BPSK is given as a conditional
additive channel in the above sense.

By noting this observation, as explained in Remark 5, the single-shot achievability bounds in
Section 3.2 are also valid for continuous Y. Furthermore, the discussions for the single-shot converse
bounds in Section 4.5 hold even for continuous Y. Therefore, the bounds in Sections 4.4 and 4.5 are
also applicable to the BPSK-AWGN channel.

In particular, in the n memoryless extension of the BPSK-AWGN channel, the information
measures for the noise distribution are given as n times the single-shot information measures for
the noise distribution. Even in this case, the upper and lower bounds in Sections 4.4 and 4.5 are also
applicable by replacing the information measures by n times the single-shot information measures.
Therefore, we obtain finite-length upper and lower bounds of the optimal coding length for the
memoryless BPSK-AWGN channel. Furthermore, even though the additive noise is not Gaussian, when
the probability density function pZ of the additive noise Z satisfies the symmetry pZ(z) = pZ(−z),
the BPSK channel with the additive noise Z can be converted to a conditional additive channel in the
same way.

4.4. Achievability Bound Derived by Source Coding with Side-Information

In this subsection, we give a code for a conditional additive channel from a code of source
coding with side-information in a canonical way. In this construction, we see that the decoding error
probability of the channel code equals that of the source code.
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When the channel is given as the conditional additive channel with conditional additive noise
distribution PXnYn as (186) and X = A is the finite field Fq, we can construct a linear channel code
from a source code with full side-information whose encoder and decoder are fn and dn as follows.
First, we assume linearity for the source encoder fn. Let Cn( fn) be the kernel of the linear encoder fn of
the source code. Suppose that the sender sends a codeword cn ∈ Cn( fn) and (cn + Xn, Yn) is received.
Then, the receiver computes the syndrome fn(cn + Xn) = fn(cn) + fn(Xn) = fn(Xn), estimates Xn

from fn(Xn) and Yn, and subtracts the estimate from cn + Xn. That is, we choose the channel decoder
d̃n as:

d̃n(x′n, yn) := x′n − dn( fn(x′n), yn). (207)

We succeed in decoding in this channel coding if and only if dn( fn(Xn), Yn) equals Xn. Thus, the
error probability of this channel code coincides with that of the source code for the correlated source
(Xn, Yn). In summary, we have the following lemma, which was first pointed out in [27].

Lemma 19 ([27, (19)]). Given a linear encoder fn and a decoder dn for a source code with side-information with
distribution PXnYn , let IKer( fn) and d̃n be the channel encoder and decoder induced by ( fn, dn). Then, the error
probability of channel coding for the conditionally additive channel with noise distribution PXnYn satisfies:

P(n)
c [(IKer( fn), d̃n)|PXnYn ] = P(n)

s [( fn, dn)|PXnYn ]. (208)

Furthermore, (in fact, when we additionally impose the linearity on the random function F in the definition
(114) for the definition of P̄s(M|PXnYn), the result in [27] implies that the equality in (209) holds) taking the
infimum for Fn chosen to be a linear two-universal hash function, we also have:

P̄c(n, k) = sup
Fn∈Fl

EFn

[
P(n)

c [Ψ(Fn)]
]
≤ sup

Fn∈Fl

EFn

[
P(n)

c [(IKer(Fn), d̃n)]
]

= sup
Fn∈Fl

EFn P(n)
s [(Fn, dn)] ≤ sup

Fn∈F
EFn P(n)

s [(Fn, dn)] = P̄(n)
s (|An−k|). (209)

By using this observation and the results in Section 3.2, we can derive the achievability bounds.
By using the conversion argument in Section 4.2, we can also construct a channel code for a regular
channel from a source code with full side-information. Although the following bounds are just a
specialization of known bounds for conditional additive channels, we review these bounds here
to clarify the correspondence between the bounds in source coding with side-information and
channel coding.

From Lemma 13 and (209), we have the following.

Lemma 20 ([2]). The following bound holds:

P̄c(n, k) ≤ inf
γ≥0

[
PXnYn

{
log

1
PXn |Yn(xn|yn)

> γ

}
+

eγ

|A|n−k

]
. (210)

From Lemma 14 and (209), we have the following exponential-type bound.

Lemma 21 ([6]). The following bound holds:

P̄c(n, k) ≤ inf
− 1

2≤θ≤0
|A|

θ(n−k)
1+θ e−

θ
1+θ H↑1+θ(Xn |Yn). (211)

From Lemma 15 and (209), we have the following slightly loose exponential bound.
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Lemma 22 ([3,70]). The following bound holds (The bound (212) was derived in the original Japanese edition
of [3], but it is not written in the English edition [3]. The quantum analogue was derived in [70].):

P̄c(n, k) ≤ inf
−1≤θ≤0

|A|θ(n−k)e−θH↓1+θ(Xn |Yn). (212)

When X has no side-information, i.e., the virtual channel is additive, we have the following
special case of Lemma 21.

Lemma 23 ([6]). Suppose that X has no side-information. Then, the following bound holds:

P̄c(n, k) ≤ inf
− 1

2≤θ≤0
|A|

θ(n−k)
1+θ e−

θ
1+θ H1+θ(Xn). (213)

4.5. Converse Bound

In this subsection, we show some converse bounds. The following is the information
spectrum-type converse shown in [4].

Lemma 24 ([4], Lemma 4). For any code Ψn = (en, dn) and any output distribution QBn ∈ P(Bn), we have:

P(n)
c [Ψn] ≥ sup

γ≥0

[
Mn

∑
m=1

1
Mn

PBn |An

{
log

PBn |An(bn|en(m))

QBn(bn)
< γ

}
− eγ

Mn

]
. (214)

When a channel is a conditional additive channel, we have:

PBn |An(an + xn, yn|an) = PXnYn(xn, yn). (215)

By taking the output distribution QBn as:

QBn(an + xn, yn) =
1
|A|n QYn(yn) (216)

for some QYn ∈ P(Yn), as a corollary of Lemma 24, we have the following bound.

Lemma 25. When a channel is a conditional additive channel, for any distribution QYn ∈ P(Yn), we have:

P(n)
c (Mn) ≥ sup

γ≥0

[
PXnYn

{
log

QYn(yn)

PXnYn(xn, yn)
> n log |A| − γ

}
− eγ

Mn

]
. (217)

Proof. By noting (215) and (216), the first term of the right-hand side of (214) can be rewritten as:

Mn

∑
m=1

1
Mn

PBn |An

{
log

PBn |An(bn|en(m))

QBn(bn)
< γ

}
(218)

=
Mn

∑
m=1

1
Mn

PXnYn

{
log

PBn |An(en(m) + xn, yn|en(m))

QBn(en(m) + xn, yn)

}
(219)

= PXnYn

{
log

QYn(yn)

PXnYn(xn, yn)
> n log |A| − γ

}
, (220)

which implies the statement of the lemma.

A similar argument as in Theorem 5 also derives from the following converse bound.
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Theorem 16. For any QYn ∈ P(Yn), we have:

− log P(n)
c (Mn) (221)

≤ inf
s>0

θ̃∈R,ϑ≥0

[
(1 + s)θ̃

{
H1+θ̃(PXnYn |QYn)− H1+(1+s)θ̃(PXnYn |QYn)

}

−(1 + s) log

(
1− 2e−

−ϑR+(θ̃+ϑ(1+θ̃))H1+θ̃+ϑ(1+θ̃)
(PXnYn |QYn )−(1+ϑ)θ̃H1+θ̃

(PXnYn |QYn )

1+ϑ

)]
/s (222)

≤ inf
s>0

−1<θ̃<θ(a(R))

[
(1 + s)θ̃

{
H1+θ̃(PXnYn |QYn)− H1+(1+s)θ̃(PXnYn |QYn)

}
−(1 + s) log

(
1− 2e(θ(a(R))−θ̃)a(R)−θ(a(R))H1+θ(a(R))(PXnYn |QYn )+θ̃H1+θ̃(PXnYn |QYn )

) ]
/s, (223)

where R = n log |A| − log Mn, and θ(a) and a(R) are the inverse functions defined in (29) and (32),
respectively.

Proof. See Appendix L.

4.6. Finite-Length Bound for the Markov Noise Channel

From this section, we address the conditional additive channel whose conditional additive noise
is subject to the Markov chain. Here, the input alphabet An equals the additive group X n = Fn

q , and
the output alphabet Bn is X×Yn. That is, the transition matrix describing the channel is given by using
a transition matrix W on X×Yn and an initial distribution Q as:

PBn |An(xn + an, yn|an) = Q(x1, y1)
n

∏
i=2

W(xi, yi|xi−1, yi−1). (224)

As in Section 2.2, we consider two assumptions on the transition matrix W of the noise process
(X, Y), i.e., Assumptions 1 and 2. We also use the same notations as in Section 2.2.

Example 6 (Gilbert–Elliot channel with state-information available at the receiver). The Gilbert–Elliot
channel [29,30] is characterized by a channel state Yn on Yn = {0, 1}n and an additive noise Xn on X n =

{0, 1}n. The noise process (Xn, Yn) is a Markov chain induced by the transition matrix W introduced in
Example 3. For the channel input an, the channel output is given by (an + Xn, Yn) when the state-information
is available at the receiver. Thus, this channel can be regarded as a conditional additive channel, and the transition
matrix of the noise process satisfies Assumption 2.

Proofs of the following bounds are almost the same as those in Section 3.3, and thus omitted. The
combination of Lemmas 10 and 22 derives the following achievability bound.

Theorem 17 (Direct, Ass. 1). Suppose that the transition matrix W of the conditional additive noise satisfies
Assumption 1. Let R := n−k

n log |A|. Then, we have:

− log P̄c(n, k) ≥ sup
−1≤θ≤0

[
−θnR + (n− 1)θH↓,W1+θ(X|Y) + δ(θ)

]
. (225)

Theorem 16 for QYn = PYn and Lemma 10 yield the following converse bound.
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Theorem 18 (Converse, Ass. 1). Suppose that transition matrix W of the conditional additive noise satisfies
Assumption 1. Let R := log |A| − 1

n log Mn. If HW(X|Y) < R < H↓,W0 (X|Y), then we have:

− log P(n)
c (Mn) (226)

≤ inf
s>0

−1<θ̃<θ(a(R))

[
(n− 1)(1 + s)θ̃

{
H↓,W

1+θ̃
(X|Y)− H↓,W

1+(1+s)θ̃
(X|Y)

}
+ δ1

−(1 + s) log
(

1− 2e(n−1)[(θ(a(R))−θ̃)a(R)−θ(a(R))H↓,W1+θ(a(R))(X|Y)+θ̃H↓,W
1+θ̃

(X|Y)]+δ2

) ]
/s, (227)

where θ(a) = θ↓(a) and a(R) = a↓(R) are the inverse functions defined by (67) and (70), respectively, and:

δ1 := (1 + s)δ(θ̃)− δ((1 + s)θ̃), (228)

δ2 :=
(θ(a(R))− θ̃)R− (1 + θ̃)δ(θ(a(R))) + (1 + θ(a(R)))δ(θ̃)

1 + θ(a(R))
. (229)

Next, we derive tighter bounds under Assumption 2. From Lemmas 11 and 21, we have the
following achievability bound.

Theorem 19 (Direct, Ass. 2). Suppose that the transition matrix W of the conditional additive noise satisfies
Assumption 2. Let R := n−k

n log |A|. Then, we have:

− log P̄c(n, k) ≥ sup
− 1

2≤θ≤0

−θnR + (n− 1)θH↑,W1+θ(X|Y)
1 + θ

+ ξ(θ). (230)

By using Theorem 16 for QYn = P(1+θ(a(R)))
Yn and Lemma 12, we obtain the following

converse bound.

Theorem 20 (Converse, Ass. 2). Suppose that the transition matrix W of the conditional additive noise
satisfies Assumption 2. Let R := log |A| − 1

n log Mn. If HW(X|Y) < R < H↑,W0 (X|Y), we have:

− log P(n)
c (Mn) (231)

≤ inf
s>0

−1<θ̃<θ(a(R))

[
(n− 1)(1 + s)θ̃

{
HW

1+θ̃,1+θ(a(R))(X|Y)− HW
1+(1+s)θ̃,1+θ(a(R))(X|Y)

}
+ δ1

−(1 + s) log
(

1− 2e
(n−1)[(θ(a(R))−θ̃)a(R)−θ(a(R))H↑,W1+θ(a(R))(X|Y)+θ̃HW

1+θ̃,1+θ(a(R))
(X|Y)]+δ2

) ]
/s,(232)

where θ(a) = θ↑(a) and a(R) = a↑(R) are the inverse functions defined by (71) and (73), respectively, and:

δ1 := (1 + s)ζ(θ̃, θ(a(R)))− ζ((1 + s)θ̃, θ(a(R))), (233)

δ2 :=
(θ(a(R))− θ̃)R− (1 + θ̃)ζ(θ(a(R)), θ(a(R))) + (1 + θ(a(R)))ζ(θ̃, θ(a(R)))

1 + θ(a(R))
. (234)

Finally, when X has no side-information, i.e., the channel is additive, we obtain the following
achievability bound from Lemma 23.

Theorem 21 (Direct, no-side-information). Let R := n−k
n log |A|. Then, we have:

− log P̄c(n, k) ≥ sup
− 1

2≤θ≤0

−θnR + (n− 1)θHW
1+θ(X) + δ(θ)

1 + θ
. (235)
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Remark 9. Our treatment for the Markov conditional additive channel covers Markov regular channels because
Markov regular channels can be reduced to Markov conditional additive channels as follows. Let X̃ = {X̃n}∞

n=1
be a Markov chain on B whose distribution is given by:

PX̃n(x̃n) = Q(x̃1)
n

∏
i=2

W̃(x̃i|x̃i−1) (236)

for a transition matrix W̃ and an initial distribution Q. Let (X, Y) = {(Xn, Yn)}∞
n=1 be the noise process of

the conditional additive channel derived from the noise process X̃ of the regular channel by the argument of
Section 4.2. Since we can write:

PXnYn(xn, yn) = Q(ι−1
y1

(ϑy1(x1)))
1

|Stb(0y1)|
n

∏
i=2

W̃(ι−1
yi

(ϑyi (xi))|ι−1
yi−1

(ϑyi−1(xi−1)))
1

|Stb(0yi )|
, (237)

the process (X, Y) is also a Markov chain. Thus, the regular channel given by X̃ is reduced to the conditional
additive channel given by (X, Y).

4.7. Second-Order

To discuss the asymptotic performance, we introduce the quantity:

C := log |A| − HW(X|Y). (238)

By applying the central limit theorem (cf. [67] (Theorem 27.4, Example 27.6)) to Lemmas 20 and 25
for QYn = PYn , and by using Theorem 2, we have the following.

Theorem 22. Suppose that the transition matrix W of the conditional additive noise satisfies Assumption 1.
For arbitrary ε ∈ (0, 1), we have:

log M(n, ε) = k(n, ε) log |A| = Cn +
√

VW(X|Y)Φ−1(ε)
√

n + o(
√

n). (239)

Proof. This theorem follows in the same manner as the proof of Theorem 11 by replacing Lemma 13
with Lemma 20 (achievability) and Lemma 18 with Lemma 25 (converse).

From the above theorem, the (first-order) capacity of the conditional additive channel under
Assumption 1 is given by:

lim
n→∞

1
n

log M(n, ε) = lim
n→∞

1
n

log
k(n, ε) log |A|

n
= C (240)

for every 0 < ε < 1. In the next subsections, we consider the asymptotic behavior of the error
probability when the rate is smaller than the capacity in the moderate deviation regime and the large
deviation regime, respectively.

4.8. Moderate Deviation

From Theorems 17 and 18, we have the following.

Theorem 23. Suppose that the transition matrix W of the conditional additive noise satisfies Assumption 1.
For arbitrary t ∈ (0, 1/2) and δ > 0, we have:

lim
n→∞

− 1
n1−2t log P(n)

c

(
enC−n1−tδ

)
= lim

n→∞
− 1

n1−2t log P̄(n)
c

(
n,

nC− n1−tδ

log |A|

)
(241)

=
δ2

2VW(X|Y)
. (242)
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Proof. The theorem follows in the same manner as Theorem 12 by replacing Theorem 6 with
Theorem 17 (achievability) and Theorem 8 with Theorem 18 (converse).

4.9. Large Deviation

From Theorem 17 and Theorem 18, we have the following.

Theorem 24. Suppose that the transition matrix W of the conditional additive noise satisfies Assumption 1.
For HW(X|Y) < R, we have:

lim inf
n→∞

− 1
n

log P̄(n)
c

(
n, n

(
1− R

log |A|

))
≥ sup
−1≤θ≤0

[
−θR + θH↓,W1+θ(X|Y)

]
. (243)

On the other hand, for HW(X|Y) < R < H↓,W0 (X|Y), we have:

lim sup
n→∞

− 1
n

log P(n)
c

(
en(log |A|−R)

)
≤ −θ(a(R))a(R) + θ(a(R))H↓,W1+θ(a(R))(X|Y) (244)

= sup
−1<θ≤0

−θR + θH↓,W1+θ(X|Y)
1 + θ

. (245)

Proof. The theorem follows in the same manner as Theorem 13 by replacing Theorem 6 with
Theorem 17 (achievability) and Theorem 8 with Theorem 18 (converse).

Under Assumption 2, from Theorems 19 and 20, we have the following tighter bound.

Theorem 25. Suppose that the transition matrix W of the conditional additive noise satisfies Assumption 2.
For HW(X|Y) < R, we have:

lim inf
n→∞

− 1
n

log P̄(n)
c

(
n, n

(
1− R

log |A|

))
≥ sup
− 1

2≤θ≤0

−θR + θH↑,W1+θ(X|Y)
1 + θ

. (246)

On the other hand, for HW(X|Y) < R < H↑,W0 (X|Y), we have:

lim sup
n→∞

− 1
n

log P(n)
c

(
en(log |A|−R)

)
≤ −θ(a(R))a(R) + θ(a(R))H↑,W1+θ(a(R))(X|Y) (247)

= sup
−1<θ≤0

−θR + θH↑,W1+θ(X|Y)
1 + θ

. (248)

Proof. The theorem follows the same manner as Theorem 14 by replacing Theorem 9 with Theorem 19
and Theorem 10 with Theorem 20.

When X has no side-information, i.e., the channel is additive, from Theorem 21 and (245), we
have the following.

Theorem 26. For HW(X) < R, we have:

lim inf
n→∞

− 1
n

log P̄(n)
c

(
n, n

(
1− R

log |A|

))
≥ sup
− 1

2≤θ≤0

−θR + θHW
1+θ(X)

1 + θ
. (249)
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On the other hand, for HW(X) < R < HW
0 (X), we have:

lim sup
n→∞

− 1
n

log P(n)
c

(
en(log |A|−R)

)
≤ sup
−1<θ≤0

−θR + θHW
1+θ(X)

1 + θ
. (250)

Proof. The first claim follows by taking the limit of Theorem 21, and the second claim follows as a
special case of (245) without side-information.

4.10. Summary of the Results

The results shown in this section for the Markov conditional additive noise are summarized in
Table 3. The check marks X indicate that the tight asymptotic bounds (large deviation, moderate
deviation, and second-order) can be obtained from those bounds. The marks X∗ indicate that the large
deviation bound can be derived up to the critical rate. The computational complexity “Tail” indicates
that the computational complexities of those bounds depend on the computational complexities of
tail probabilities. It should be noted that Theorem 18 is derived from a special case (QY = PY) of
Theorem 16. The asymptotically optimal choice is QY = P(1+θ)

Y . Under Assumption 1, we can derive
the bound of the Markov case only for that special choice of QY, while under Assumption 2, we can
derive the bound of the Markov case for the optimal choice of QY. Furthermore, Theorem 18 is not
asymptotically tight in the large deviation regime in general, but it is tight if X has no side-information,
i.e., the channel is additive. It should be also noted that Theorem 20 does not imply Theorem 18 even
for the additive channel case since Assumption 2 restricts the structure of transition matrices even
when X has no side-information.

Table 3. Summary of the finite-length bounds for channel coding.

Ach./Conv. Markov Single-Shot Pc/P̄c Complexity
Large Moderate Second

Deviation Deviation Order

Achievability

Theorem 17
Lemma 22 P̄c O(1) X

(Ass. 1)

Theorem 19
Lemma 21 P̄c O(1) X∗ X

(Ass. 2)

Theorem 21
Lemma 23 P̄c O(1) X∗ X

(Additive)

Lemma 20 P̄c Tail X X

Converse

Theorem 18
(Theorem 16) Pc O(1) X

(Ass. 1)

Theorem 20
Theorem 16 Pc O(1) X∗ X

(Ass. 2)

Theorem 18
(Theorem 16) Pc O(1) X∗ X

(Additive)

Lemma 25 Pc Tail X X

5. Discussion and Conclusions

In this paper, we developed a unified approach to source coding with side-information and
channel coding for a conditional additive channel for finite-length and asymptotic analyses of Markov
chains. In our approach, the conditional Rényi entropies defined for transition matrices played
important roles. Although we only illustrated the source coding with side-information and the channel
coding for a conditional additive channel as applications of our approach, it could be applied to some
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other problems in information theory such as random number generation problems, as shown in
another paper [60].

Our obtained results for the source coding with side-information and the channel coding of the
conditional additive channel has been extended to the case when the side-information is continuous like
the real line and the joint distribution X and Y is memoryless. Since this case covers the BPSK-AWGN
channel, it can be expected that it covers the MPSK-AWGN channel. Since such channels are often
employed in the real channel coding, it is an interesting future topic to investigate the finite-length
bound for these channels. Further, we could not define the conditional Rényi entropy for transition
matrices of continuous Y. Hence, our result could not be extended to such a continuous case. It is
another interesting future topic to extend the obtained result to the case with continuous Y.
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Abbreviations

The following abbreviations are used in this manuscript:

RCU random coding union
BSC binary symmetric channel
DMC discrete memoryless channel
DT dependence testing
LDPC low-density parity check
BPSK binary phase shift keying
AWGN additive white Gaussian noise
CGF cumulant generating function
MPSK M-ary phase shift keying
CC channel coding
SC source coding
SI side-information

Appendix A. Preparation for the Proofs

When we prove some properties of Rényi entropies or derive converse bounds, some properties
of cumulant generating functions (CGFs) become useful. For this purpose, we introduce some
terminologies in statistics from [22,23]. Then, in Appendix B, we show the relation between the
terminologies in statistics and those in information theory. For the proofs, see [22,23].

Appendix A.1. Single-Shot Setting

Let Z be a random variable with distribution P. Let:

φ(ρ) := logE
[
eρZ
]

(A1)

= log ∑
z

P(z)eρZ (A2)
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be the cumulant generating function (CGF). Let us introduce an exponential family:

Pρ(z) := P(z)eρz−φ(ρ). (A3)

By differentiating the CGF, we find that:

φ′(ρ) = Eρ[Z] (A4)

:= ∑
z

Pρ(z)z. (A5)

We also find that:

φ′′(ρ) = ∑
z

Pρ(z)
(
z− Eρ[Z]

)2 . (A6)

We assume that Z is not constant. Then, (A6) implies that φ(ρ) is a strict convex function and
φ′(ρ) is monotonically increasing. Thus, we can define the inverse function ρ(a) of φ′(ρ) by:

φ′(ρ(a)) = a. (A7)

Let:

D1+s(P‖Q) :=
1
s

log ∑
z

P(z)1+sQ(z)−s (A8)

be the Rényi divergence. Then, we have the following relation:

sD1+s(Pρ̃‖Pρ) = φ((1 + s)ρ̃− sρ)− (1 + s)φ(ρ̃) + sφ(ρ). (A9)

Appendix A.2. Transition Matrix

Let {W(z|z′)}(z,z′)∈Z2 be an ergodic and irreducible transition matrix, and let P̃ be its stationary
distribution. For a function g : Z ×Z → R, let:

E[g] := ∑
z,z′

P̃(z′)W(z|z′)g(z, z′). (A10)

We also introduce the following tilted matrix:

Wρ(z|z′) := W(z|z′)eρg(z,z′). (A11)

Let λρ be the Perron–Frobenius eigenvalue of Wρ. Then, the CGF for W with generator g is defined
by:

φ(ρ) := log λρ. (A12)

Lemma A1. The function φ(ρ) is a convex function of ρ, and it is strict convex iff φ′′(0) > 0.

From Lemma A1, φ′(ρ) is a monotone increasing function. Thus, we can define the inverse
function ρ(a) of φ′(ρ) by:

φ′(ρ(a)) = a. (A13)
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Appendix A.3. Markov Chain

Let Z = {Zn}∞
n=1 be the Markov chain induced by W(z|z′) and an initial distribution PZ1 .

For functions g : Z ×Z → R and g̃ : Z → R, let Sn := ∑n
i=2 g(Zi, Zi−1) + g̃(Z1). Then, the CGF for Sn

is given by:

φn(ρ) := logE
[
eρSn

]
. (A14)

We will use the following finite evaluation for φn(ρ).

Lemma A2. Let vρ be the eigenvector of WT
ρ with respect to the Perron–Frobenius eigenvalue λρ such that

minz vρ(z) = 1. Let wρ(z) := PZ1(z)e
ρg̃(z). Then, we have:

(n− 1)φ(ρ) + δφ(ρ) ≤ φn(ρ) ≤ (n− 1)φ(ρ) + δφ(ρ), (A15)

where:

δφ(ρ) := log〈vρ|wρ〉, (A16)

δφ(ρ) := log〈vρ|wρ〉 − log max
z

vρ(z). (A17)

From this lemma, we have the following.

Corollary A1. For any initial distribution and ρ ∈ R, we have:

lim
n→∞

φn(ρ) = φ(ρ). (A18)

The relation:

lim
n→∞

1
n
E[Sn] = φ′(0) (A19)

= E[g] (A20)

is well known. Furthermore, we also have the following.

Lemma A3. For any initial distribution, we have:

lim
n→∞

1
n

Var [Sn] = φ′′(0). (A21)

Appendix B. Relation Between CGF and Conditional Rényi Entropies

Appendix B.1. Single-Shot Setting

For correlated random variable (X, Y), let us consider Z = log QY(Y)
PXY(X,Y) . Then, the relation

between the CGF and conditional Rényi entropy relative to QY is given by:

θH1+θ(PXY|QY) = −φ(−θ; PXY|QY). (A22)

From this, we can also find that the relationship between the inverse functions (cf. (29) and (A7)):

θ(a) = −ρ(a). (A23)
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Thus, the inverse function defined in (32) also satisfies:

(1− ρ(a(R))a(R) + φ(ρ(a(R)); PXY|QY) = R. (A24)

Similarly, by setting Z = log 1
PX|Y(X|Y) , we have:

θH↓1+θ(X|Y) = −φ(−θ; PXY|PY). (A25)

Then, the variance (cf. (11)) satisfies:

V(X|Y) = φ′′(0; PXY|PY). (A26)

Let φ(ρ, ρ′) be the CGF of Z = log P(1−ρ′)
Y (Y)

PXY(X,Y) (cf. (15) for the definition of P(1−ρ′)
Y ). Then, we have:

θH1+θ,1+θ′(X|Y) = −φ(−θ,−θ′). (A27)

It should be noted that φ(ρ, ρ′) is a CGF for fixed ρ′, but φ(ρ, ρ) cannot be treated as a CGF.

Appendix B.2. Transition Matrix

For transition matrix W(x, y|x′, y′), we consider the function given by:

g((x, y), (x′, y′)) := log
W(y|y′)

W(x, y|x′, y′)
. (A28)

Then, the relation between the CGF and the lower conditional Rényi entropy is given by:

θH↓,W1+θ(X|Y) = −φ(−θ). (A29)

Then, the variance defined in (51) satisfies:

VW(X|Y) = φ′′(0). (A30)

Appendix C. Proof of Lemma 2

We use the following lemma.

Lemma A4. For θ ∈ (−1, 0) ∪ (0, 1), we have:

H↓1
1−θ

(X|Y) ≤ H↑1
1−θ

(X|Y) ≤ H↓1+θ(X|Y). (A31)

Proof. The left hand side inequality of (A31) is obvious from the definition of two Rényi entropies
(the latter is defined by taking the maximum). The right-hand side inequality was proven in [71]
(Lemma 6).

Now, we go back to the proof of Lemma 2. From (10) and (11), by the Taylor approximation,
we have:

H↓1+θ(X|Y) = H(X|Y)− 1
2
V(X|Y)θ + o(θ). (A32)

Furthermore, since 1
1−θ = 1 + θ + o(θ), we also have:

H↓1
1−θ

(X|Y) = H(X|Y)− 1
2
V(X|Y)θ + o(θ). (A33)
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Thus, from Lemma A4, we can derive (16) and (17).

Appendix D. Proof of Lemma 3

Statements 1 and 3 follow from the relationships in (A22) and (A25) and the strict convexity of
the CGFs.

To prove Statement 5, we first prove the strict convexity of the Gallager function:

E0(τ; PXY) := log ∑
y

PY(y)

(
∑
x

PX|Y(x|y)
1

1+τ

)1+τ

(A34)

for τ > −1. We use the Hölder inequality:

∑
i

aα
i bβ

i ≤
(

∑
i

ai

)α (
∑

i
bi

)β

(A35)

for α, β > 0 such that α + β = 1, where the equality holds iff ai = cbi for some constant c. For λ ∈ (0, 1),
let 1 + τ3 = λ(1 + τ1) + (1− λ)(1 + τ2), which implies:

1
1 + τ3

=
1

1 + τ1

λ(1 + τ1)

1 + τ3
+

1
1 + τ2

(1− λ)(1 + τ2)

1 + τ3
(A36)

and:

λ(1 + τ1)

1 + τ3
+

(1− λ)(1 + τ2)

1 + τ3
= 1. (A37)

Then, by applying the Hölder inequality twice, we have:

∑
y

PY(y)

(
∑
x

PX|Y(x|y)
1

1+τ3

)1+τ3

(A38)

= ∑
y

PY(y)

(
∑
x

PX|Y(x|y)
1

1+τ1

λ(1+τ1)
1+τ3 PX|Y(x|y)

1
1+τ2

(1−λ)(1+τ2)
1+τ3

)1+τ3

(A39)

≤ ∑
y

PY(y)

(∑
x

PX|Y(x|y)
1

1+τ1

) λ(1+τ1)
1+τ3

(
∑
x

PX|Y(x|y)
1

1+τ2

) (1−λ)(1+τ2)
1+τ3


1+τ3

(A40)

= ∑
y

PY(y)

(
∑
x

PX|Y(x|y)
1

1+τ1

)λ(1+τ1)
(

∑
x

PX|Y(x|y)
1

1+τ2

)(1−λ)(1+τ2)

(A41)

= ∑
y

PY(y)λ

(
∑
x

PX|Y(x|y)
1

1+τ1

)λ(1+τ1)

PY(y)1−λ

(
∑
x

PX|Y(x|y)
1

1+τ2

)(1−λ)(1+τ2)

(A42)

≤

∑
y

PY(y)

(
∑
x

PX|Y(x|y)
1

1+τ1

)(1+τ1)
λ ∑

y
PY(y)

(
∑
x

PX|Y(x|y)
1

1+τ2

)(1+τ2)
1−λ

. (A43)

The equality in the second inequality holds iff:(
∑
x

PX|Y(x|y)
1

1+τ1

)1+τ1

= c

(
∑
x

PX|Y(x|y)
1

1+τ2

)1+τ2

∀y ∈ Y (A44)
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for some constant c. Furthermore, the equality in the first inequality holds iff PX|Y(x|y) =
1

|supp(PX|Y(·|y))|
. Substituting this into (A44), we find that |supp(PX|Y(·|y))| is irrespective of y. Thus,

both the equalities hold simultaneously iff V(X|Y) = 0. Now, since:

θH↑1+θ(X|Y) = −(1 + θ)E0

(
−θ

1 + θ
; PXY

)
, (A45)

we have:

d2[θH↑1+θ(X|Y)]
dθ2 = − 1

(1 + θ)4 E′′0

(
−θ

1 + θ
; PXY

)
(A46)

≤ 0 (A47)

for θ ∈ (−1, ∞), where the equality holds iff V(X|Y) = 0.
Statement 7 is obvious from the definitions of the two measures. The first part of Statement 8

follows from (A27) and the convexity of the CGF, but we need another argument to check the conditions
for strict concavity. Since the second term of:

θH1+θ,1+θ′ (X|Y) = − log ∑
y

PY(y)

[
∑
x

PX|Y(x|y)1+θ

] [
∑
x

PX|Y(x|y)1+θ′

] θ
1+θ′

+
θθ′

1 + θ′
H↑1+θ′ (X|Y) (A48)

is linear with respect to θ, it suffices to show the strict concavity of the first term. By using the Hölder
inequality twice, for θ3 = λθ1 + (1− λ)θ2, we have:

∑
y

PY(y)

[
∑
x

PX|Y(x|y)1+θ3

] [
∑
x

PX|Y(x|y)1+θ′
] θ3

1+θ′

(A49)

≤ ∑
y

PY(y)

[
∑
x

PX|Y(x|y)1+θ1

]λ [
∑
x

PX|Y(x|y)1+θ2

]1−λ [
∑
x

PX|Y(x|y)1+θ′
] λθ1+(1−λ)θ2

1+θ′

(A50)

≤

∑
y

PY(y)

[
∑
x

PX|Y(x|y)1+θ1

] [
∑
x

PX|Y(x|y)1+θ′
] θ1

1+θ′


λ

(A51)

∑
y

PY(y)

[
∑
x

PX|Y(x|y)1+θ2

] [
∑
x

PX|Y(x|y)1+θ′
] θ2

1+θ′


1−λ

, (A52)

where both the equalities hold simultaneously iff V(X|Y) = 0, which can be proven in a similar manner
as the equality conditions in (A40) and (A43). Thus, we have the latter part of Statement 8.

Statements 10–12 are also obvious from the definitions. Statements 2, 4, 6, and 9, follow from
Statements 1, 3, 5, and 8, (cf. [71], Lemma 1).
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Appendix E. Proof of Lemma 4

Since (24) and (28) are obvious from the definitions, we only prove (26). We note that:

∑
y

PY(y)

[
∑
x

PX|Y(x|y)1+θ

] 1
1+θ

1+θ

(A53)

≤
[
∑
y

PY(y)|supp(PX|Y(·|y))|
1

1+θ

]1+θ

(A54)

≤ max
y∈supp(PY)

|supp(PX|Y(·|y))| (A55)

and: ∑
y

PY(y)

[
∑
x

PX|Y(x|y)1+θ

] 1
1+θ

1+θ

(A56)

≥ PY(y∗)1+θ

[
∑
x

PX|Y(x|y∗)1+θ

]
(A57)

θ→−1→ |supp(PX|Y(·|y∗))|, (A58)

where:

y∗ := argmax
y∈supp(PY)

|supp(PX|Y(·|y))|. (A59)

Appendix F. Proof of Lemma 6

From Lemma A4, Theorems 1 and 3, we have:

H↓,W1
1−θ

(X|Y) ≤ H↑,W1
1−θ

(X|Y) ≤ H↓,W1+θ(X|Y) (A60)

for θ ∈ (−1, 0) ∪ (0, 1). Thus, we can prove Lemma 6 in the same manner as Lemma 2.

Appendix G. Proof of (63)

First, in the same manner as Theorem 1, we can show:

lim
n→∞

1
n

H1+θ(PXnYn |QYn) = HW|V
1+θ (X|Y), (A61)

where QYn is a Markov chain induced by V for some initial distribution. Then, since
H1+θ(PXnYn |QYn) ≤ H↑1+θ(Xn|Yn) for each n, by using Theorem 3, we have:

HW|V
1+θ (X|Y) ≤ H↑,W1+θ(X|Y). (A62)

Thus, the rest of the proof is to show that H↑,W1+θ(X|Y) is attainable by some V.
Let Q̂θ be the normalized left eigenvector of Kθ , and let:

Vθ(y|y′) :=
Q̂θ(y)

κθQ̂θ(y′)
Kθ(y|y′). (A63)
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Then, Vθ attains the maximum. To prove this, we will show that κ1+θ
θ is the Perron–Frobenius

eigenvalue of:

W(x, y|x′, y′)1+θVθ(y|y′)−θ . (A64)

We first confirm that (Q̂θ(y)1+θ : (x, y) ∈ X ×Y) is an eigenvector of (A64) as follows:

∑
x,y

Q̂θ(y)1+θW(x, y|x′, y′)1+θVθ(y|y′)−θ (A65)

= ∑
y

Q̂θ(y)1+θWθ(y|y′)
[

Q̂θ(y)
κθQ̂θ(y′)

Wθ(y|y′)
1

1+θ

]−θ

(A66)

= κθ
θ Q̂θ(y′)θ ∑

y
Q̂θ(y)Wθ(y|y′)

1
1+θ (A67)

= κ1+θ
θ Q̂θ(y′)1+θ . (A68)

Since (Q̂θ(y)1+θ : (x, y) ∈ X × Y) is a positive vector and the Perron–Frobenius eigenvector is
the unique positive eigenvector, we find that κ1+θ

θ is the Perron–Frobenius eigenvalue. Thus, we have:

HW|Vθ
1+θ (X|Y) = −1 + θ

θ
log κθ (A69)

= H↑,W1+θ(X|Y). (A70)

Appendix H. Proof of Lemma 7

Statement 1 follows from (A29) and the strict convexity of the CGF. Statements 5 and 8–10 follow
from the corresponding statements in Lemma 3, Theorems 1, 3 and 4.

Now, we prove (the concavity of θH↑,W1+θ(X|Y) follows from the limiting argument, i.e., the

concavity of θH↑1+θ(Xn|Yn) (cf. Lemma 3) and Theorem 3. However, the strict concavity does not
follow from the limiting argument; Statement 3. For this purpose, we introduce the transition matrix
counterpart of the Gallager function as follows. Let:

K̄τ(y|y′) := W(y|y′)
[
∑
x

W(x|x′, y′, y)
1

1+τ

]1+τ

(A71)

for τ > −1, which is well defined under Assumption 2. Let κ̄τ be the Perron–Frobenius eigenvalue of
K̄τ , and let Q̃τ and Q̂τ be its normalized right and left eigenvectors. Then, let:

Lτ(y|y′) :=
Q̂τ(y)

κ̄τQ̂τ(y′)
K̄τ(y|y′) (A72)

be a parametrized transition matrix. The stationary distribution of Lτ is given by:

Qτ(y′) :=
Q̂τ(y′)Q̃τ(y′)

∑y′′ Q̂τ(y′′)Q̃τ(y′′)
. (A73)

We prove the strict convexity of EW
0 (τ) := log κ̄τ for τ > −1. Then, by the same reason as (A46),

we can show Statement 3. Let Qτ(y, y′) := Lτ(y|y′)Qτ(y′). By the same calculation as [22] (Proof of
Lemmas 13 and 14), we have:

∑
y,y′

Qτ(y, y′)
[

d
dτ

log Lτ(y|y′)
]2

= −∑
y,y′

Qτ(y, y′)
[

d2

dτ2 log Lτ(y|y′)
]

. (A74)



Entropy 2020, 22, 460 51 of 58

Furthermore, from the definition of Lτ , we have:

−∑
y,y′

Qτ(y, y′)
[

d2

dτ2 log Lτ(y|y′)
]

(A75)

= −∑
y,y′

Qτ(y, y′)

[
d2

dτ2 log
1
κτ

+
d2

dτ2 log
Q̂τ(y)
Q̂τ(y′)

+
d2

dτ2 log Kτ(y|y′)
]

(A76)

=
d2

dτ2 log κτ −∑
y,y′

Qτ(y, y′)
d2

dτ2 log Kτ(y|y′). (A77)

Now, we show the convexity of log K̄τ(y|y′) for each (y, y′). By using the Hölder inequality
(cf. Appendix D), for τ3 = λτ1 + (1− λ)τ2, we have:[

∑
x

W(x|x′, y′, y)
1

1+τ3

]1+τ3

≤
[
∑
x

W(x|x′, y′, y)
1

1+τ1

]λ(1+τ1)
[
∑
x

W(x|x′, y′, y)
1

1+τ2

](1−λ)(1+τ2)

. (A78)

Thus, EW
0 (τ) is convex. To check strict convexity, we note that the equality in (A78) holds iff

W(x|x′, y′, y) = 1
|supp(W(·|x′ ,y′ ,y))| . Since:

∑
x

W(x|x′, y′, y)1+θ =
1

|supp(W(·|x′, y′, y))|θ
(A79)

does not depend on x′ from Assumption 2, we have |supp(W(·|x′, y′, y))| = Cyy′ for some integer Cyy′ .
By substituting this into K̄τ , we have:

K̄τ(y|y′) = W(y|y′)Cτ
yy′ . (A80)

On the other hand, we note that the CGF φ(ρ) is defined as the logarithm of the Perron–Frobenius
eigenvalue of:

W(x, y|w′, y′)1−ρW(y|y′)ρ = W(y|y′) 1

C1−ρ
yy′

1[x ∈ supp(W(·|x′, y′, y))]. (A81)

Since:

∑
x,y

Q̂τ(y)W(y|y′) 1
C1−τ

yy′
1[x ∈ supp(W(·|x′, y′, y))] (A82)

= ∑
y

Q̂τ(y)W(y|y′)Cτ
yy′ (A83)

= κ̄τQ̂τ(y′), (A84)

κ̄τ is the Perron–Frobenius eigenvalue of (A81), and thus, we have EW
0 (τ) = φ(τ) when the equality in

(A78) holds for every (y, y′) such that W(y|y′) > 0. Since φ(τ) is strict convex if VW(X|Y) > 0, EW
0 (τ)

is strict convex if VW(X|Y) > 0. Thus, θH↑,W1+θ(X|Y) is strict concave if VW(X|Y) > 0. On the other

hand, from (57), θH↑,W1+θ(X|Y) is strict concave only if VW(X|Y) > 0.
Statement 6 can be proven by modifying the proof of Statement 8 of Lemma 3 to a transition

matrix in a similar manner as Statement 3 of the present lemma.
Finally, Statements 2, 4 and 7 follow from Statements 1, 3 and 6 (cf. [71], Lemma 1).
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Appendix I. Proof of Lemma 9

We only prove (75) since we can prove (76) exactly in the same manner by replacing H↓,W1+θ(X|Y),
θ↓(a), and a↓(R) by H↑,W1+θ(X|Y), θ↑(a), and a↑(R). Let:

f (θ) :=
−θR + θH↓,W1+θ(X|Y)

1 + θ
. (A85)

Then, we have:

f ′(θ) =
−R + (1 + θ)

d[θH↓,W1+θ (X|Y)]
dθ − θH↓,W1+θ(X|Y)

(1 + θ)2 (A86)

=

−R + R
(

d[θH↓,W1+θ (X|Y)]
dθ

)
(1 + θ)2 . (A87)

Since R(a) is monotonically increasing and
d[θH↓,W1+θ (X|Y)]

dθ is monotonically decreasing, we have
f ′(θ) ≥ 0 for θ ≤ θ(a(R)) and f ′(θ) ≤ 0 for θ ≥ θ(a(R)). Thus, f (θ) takes its maximum at θ(a(R)).
Furthermore, since −1 ≤ θ(a(R)) ≤ 0 for HW(X|Y) ≤ R ≤ H↓,W0 (X|Y), we have:

sup
−1≤θ≤0

−θR + θH↓,W1+θ(X|Y)
1 + θ

(A88)

=
−θ(a(R))R + θ(a(R))H↓,W1+θ(a(R))(X|Y)

1 + θ(a(R))
(A89)

=
−θ(a(R))[(1 + θ(a(R)))a(R)− θ(a(R))H↓,W1+θ(a(R))(X|Y)] + θ(a(R))H↓,W1+θ(a(R))(X|Y)

1 + θ(a(R))
(A90)

= −θ(a(R))a(R) + θ(a(R))H↓,W1+θ(a(R))(X|Y), (A91)

where we substituted R = R(a(R)) in the second equality.

Appendix J. Proof of Lemma 11

Let u be the vector such that u(y) = 1 for every y ∈ Y . From the definition of H↑1+θ(Xn|Yn), we
have the following sequence of calculations:

e−
θ

1+θ θH↑1+θ(Xn |Yn) (A92)

= ∑
y1,...,yn

[
∑

xn ,...,x1

P(x1, y1)
1+θ

n

∏
i=2

W(xi, yi|xi−1, yi−1)
1+θ

] 1
1+θ

(A93)

(a)
= ∑

yn ,...,y1

[
∑
x1

P(x1, y1)
1+θ

] 1
1+θ n

∏
i=2

Wθ(yi|yi−1)
1

1+θ (A94)

= 〈u|Kn−1
θ wθ〉 (A95)

≤ 〈vτ |Kn−1
θ wθ〉 (A96)

= 〈(KT
θ )

n−1vθ |wθ〉 (A97)

= κn−1
θ 〈vθ |wθ〉 (A98)

= e−(n−1) θ
1+θ H↑,W1+θ (X|Y)〈vθ |wθ〉, (A99)
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which implies the left-hand side inequality, where we used Assumption 2 in (a). On the other hand,
we have the following sequence of calculations:

e−
θ

1+θ θH↑1+θ(Xn |Yn) (A100)

= 〈u|Kn−1
θ wθ〉 (A101)

≥ 1
maxy vθ(y)

〈vθ |Kn−1
θ wθ〉 (A102)

=
1

maxy vθ(y)
〈(KT

θ )
n−1vθ |wθ〉 (A103)

= κn−1
θ

〈vθ |wθ〉
maxy vθ(y)

(A104)

= e−(n−1) θ
1+θ H↑,W1+θ (X|Y) 〈vθ |wθ〉

maxy vθ(y)
, (A105)

which implies the right-hand side inequality.

Appendix K. Proof of Theorem 5

For arbitrary ρ̃ ∈ R, we set α := PXY{X 6= d(e(X), Y)} and β := PXY,ρ̃{X 6= d(e(X), Y)}, where:

PXY,ρ(x, y) := PXY(x, y)1−ρQY(y)ρe−φ(ρ;PXY |QY). (A106)

Then, by the monotonicity of the Rényi divergence, we have:

sD1+s(PXY,ρ̃‖PXY) ≥ log
[

β1+sα−s + (1− β)1+s(1− α)−s
]

(A107)

≥ log β1+sα−s. (A108)

Thus, we have:

− log α ≤ φ((1 + s)ρ̃; PXY|QY)− (1 + s)φ(ρ̃; PXY|QY)− (1 + s) log β

s
. (A109)

Now, by using Lemma 18, we have:

1− β ≤ PXY,ρ̃

{
log

QY(y)
PXY,ρ̃(x, y)

≤ γ

}
+

M
eγ

. (A110)

We also have, for any σ ≤ 0,

PXY,ρ̃

{
log

QY(y)
PXY,ρ̃(x, y)

≤ γ

}
(A111)

≤ ∑
x,y

PXY,ρ̃(x, y)e
σ

(
log QY (y)

PXY,ρ̃(x,y)−γ

)
(A112)

= e−[σγ−φ(σ;PXY,ρ̃ |QY)]. (A113)

Thus, by setting γ so that:

σγ− φ(σ; PXY,ρ̃|QY) = γ− R, (A114)
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we have

1− β ≤ 2e−
σR−φ(σ;PXY,ρ̃ |QY )

1−σ . (A115)

Furthermore, we have the relation:

φ(σ; PXY,ρ̃|QY) = log ∑
x,y

PXY,ρ̃(x, y)1−σQY(y)σ (A116)

= log ∑
x,y

(
PXY(x, y)1−ρ̃QY(y)ρ̃e−φ(ρ̃;PXY |QY)

)1−σ
QY(y)σ (A117)

= −(1− σ)φ(ρ̃; PXY|QY) + log ∑
x,y

PXY(x, y)1−ρ̃−σ(1−ρ̃)QY(y)ρ̃+σ(1−ρ̃) (A118)

= φ(ρ̃ + σ(1− ρ̃); PXY|QY)− (1− σ)φ(ρ̃; PXY|QY). (A119)

Thus, by substituting ρ̃ = −θ̃ and σ = −ϑ and by using (A22), we can derive (124).
Now, we restrict the range of ρ̃ so that ρ(a(R)) < ρ̃ < 1 and take:

σ =
ρ(a(R))− ρ̃

1− ρ̃
. (A120)

Then, by substituting this into (A119) and (A119) into (A115), we have (φ(ρ; PXY|QY) is omitted
as φ(ρ)):

σR− φ(ρ̃ + σ(1− ρ̃)) + (1− σ)φ(ρ̃)

1− σ
(A121)

=
(ρ(a(R))− ρ̃)R− (1− ρ̃)φ(ρ(a(R))) + (1− ρ(a(R)))φ(ρ̃)

1− ρ(a(R))
(A122)

=
(ρ(a(R))− ρ̃) {(1− ρ(a(R)))a(R) + φ(ρ(a(R)))} − (1− ρ̃)φ(ρ(a(R))) + (1− ρ(a(R)))φ(ρ̃)

1− ρ(a(R))

(A123)

= (ρ(a(R))− ρ̃)a(R)− φ(ρ(a(R))) + φ(ρ̃), (A124)

where we used (A24) in the second equality. Thus, by substituting ρ̃ = −θ̃ and by using (A22) again,
we have (125).

Appendix L. Proof of Theorem 16

Let:

PXnYn ,ρ(xn, yn) := PXnYn(xn, yn)1−ρQYn(yn)ρe−φ(ρ;PXnYn |QYn ), (A125)

and let PBn |An ,ρ be a conditional additive channel defined by:

PBn |An ,ρ(an + xn|an) = PXnYn ,ρ(xn, yn). (A126)

We also define the joint distribution of the message, the input, the output, and the decoded
message for each channel:

PMn AnBn M̂n
(m, an, bn, m̂) :=

1
Mn

1[en(m) = an]PBn |An(bn|an)1[dn(bn) = m̂], (A127)

PMn AnBn M̂n ,ρ(m, an, bn, m̂) :=
1

Mn
1[en(m) = an]PBn |An ,ρ(b

n|an)1[dn(bn) = m̂]. (A128)
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For arbitrary ρ̃ ∈ R, let α := PMn M̂n
{m 6= m̂} and β := PMn M̂n ,ρ̃{m 6= m̂}. Then, by the

monotonicity of the Rényi divergence, we have:

sD1+s(PAnBn ,ρ̃‖PAnBn) ≥ sD1+s(PMn M̂n ,ρ̃‖PMn M̂n
) (A129)

≥ log
[

β1+sα−s + (1− β)1+s(1− α)−s
]

(A130)

≥ log β1+sα−s. (A131)

Thus, we have:

− log α ≤
sD1+s(PAnBn ,ρ̃‖PAnBn)− (1 + s) log β

s
. (A132)

Here, we have:

D1+s(PAnBn ,ρ̃‖PAnBn) = D1+s(PXnYn ,ρ̃‖PXnYn). (A133)

On the other hand, from Lemma 25, we have:

1− β ≤ PXnYn ,ρ̃

{
log

QYn(yn)

PXnYn ,ρ̃(xn, yn)
≤ n log |A| − γ

}
+

eR

en log |A|−γ
. (A134)

Thus, by the same argument as in (A111)–(A119) and by noting (A22), we can derive (222).
Now, we restrict the range of ρ̃ so that ρ(a(R)) < ρ̃ < 1 and take:

σ =
ρ(a(R))− ρ̃

1− ρ̃
. (A135)

Then, by noting (A22), we have (223).
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