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Abstract: This work participates in the research for potential areas of observational evidence of
quantum effects on geometry in a black hole astrophysical context. We consider properties of a family
of loop quantum corrected regular black hole (BHs) solutions and their horizons, focusing on the
geometry symmetries. We study here a recently developed model, where the geometry is determined
by a metric quantum modification outside the horizon. This is a regular static spherical solution
of mini-super-space BH metric with Loop Quantum Gravity (LQG) corrections. The solutions are
characterized delineating certain polymeric functions on the basis of the properties of the horizons
and the emergence of a singularity in the limiting case of the Schwarzschild geometry. We discuss
particular metric solutions on the base of the parameters of the polymeric model related to similar
properties of structures, the metric Killing bundles (or metric bundles MBs), related to the BH
horizons’ properties. A comparison with the Reissner–Norström geometry and the Kerr geometry
with which analogies exist from the point of their respective MBs properties is done. The analysis
provides a way to recognize these geometries and detect their main distinctive phenomenological
evidence of LQG origin on the basis of the detection of stationary/static observers and the properties
of light-like orbits within the analysis of the (conformal invariant) MBs related to the (local) causal
structure. This approach could be applied in other quantum corrected BH solutions, constraining
the characteristics of the underlining LQG-graph, as the minimal loop area, through the analysis of
the null-like orbits and photons detection. The study of light surfaces associated with a diversified
and wide range of BH phenomenology and grounding MBs definition provides a channel to search
for possible astrophysical evidence. The main BHs thermodynamic characteristics are studied as
luminosity, surface gravity, and temperature. Ultimately, the application of this method to this
spherically symmetric approximate solution provides us with a way to clarify some formal aspects of
MBs, in the presence of static, spherical symmetric spacetimes.

Keywords: quantum gravity; loop quantum gravity (LQG); graphs; polymeric black hole regular
black hole; Killing horizons; event horizons; stationary observers

1. Introduction

Providing astrophysical evidence of any quantum effects on the large scales of the general
relativistic (GR) geometry is a pressing and long-sought channel of analysis of the current research
efforts in the development of the theory as well as in observations and data analysis. Observational
feedbacks, confirming or, vice versa, diverging expectations, could provide indications, directions,
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or confirmations to the theory. The astrophysical phenomenology of the black hole (BH) horizons
is an increasingly attractive and promising channel that has revealed itself to be surprisingly rich
of applications, both on the phenomenological and theoretical level. There is great expectation
concerning the two new phenomenological windows on the High Energy Universe, represented by the
Event Horizon Telescope (https://eventhorizontelescope.org/) and the Gravitational Waves detection
combined with data from their electromagnetic counterparts. There is hope that new data will shed
light on unexpected aspects of BH theory and particularly in the near horizon geometry. This work
fits into this investigation by discussing a special structure, the metric Killing bundles. We present
this novel frame applied to a Loop Quantum Gravity (LQG) approximate (semiclassical) BH solution.
We consider properties of the light-surfaces defined from the metrics symmetries and the associated
relativistical photon orbital frequencies. The objects brought into play here, as the base of the newly
introduced structures, Killing metric bundles, ground in fact many constraints of the BH (and Killing
horizons) astrophysics ranging from physics of accretion to the jet emission, from BH magnetosphere
to some models of Quasi-Periodic Oscillation (QPOs) emission. As a consequence of this, this frame
and the new approach could reveal ample applications. The introduction of metric bundles potentially
highlights small but finite discrepancies, expectably detectible from the observations of the photon
orbital frequencies, and provides an alternative and new framework for the investigation of the
BH geometries. One goal of this analysis is to constrain the graph bridging the quantum (discrete)
and (semi-)classical (continuum) geometry with special light-surfaces. The graph, in a general LQG
application, is in fact geometrical construction associated with loop quantum gravity states which can
in fact be interpreted as the basis of states of a quantum (discrete) geometry, grounding from original
Penrose’s spin networks. In the Penrose original combinatorial graphs, spins labelled the graph,
and graphs turned to be just the mathematical (geometrical) objects used to describe the quanta of
space for a spin network theory. Such original graph has been modified later in different loop inspired
models. Graphs clearly have a direct application in the relational approaches, where the adjacency
(links, lines) describes relations in quanta of space. Within the grounding idea of gravity geometrization,
quanta of space are accordingly also gravity quanta and the texture of the spacetime structures (hence
framing geometry into a relational approach where relations are embedded and translated into the
graph structure). In many approaches, graphs are not dynamical but rather “generalized lattices”,
polyhedron (tetrahedron) modeling 3D spaces, providing eventually an area parameter. As in this
analysis, we link the area parameter of the model to the BH area through the frequencies defined
with the bundles. The new frame is used to relate geometries, defined by different values of LQG
derived graph parameters, by the light–surfaces frequencies. Such frequencies have replicas in different
geometries of the metric family defined by different values. These replicas are present also in different
points of the one geometry, connecting therefore regions close to and far away from the black hole:
they connect two regions of the same spacetime, possibly revealing essential discrepancies with respect
to the onset provided by the classic GR solution of reference. An observer can detect certain aspects of
regions close to the BH through replicas in the distant regions. These replicas appear also related to
structures emerged in different analyses and called “horizons memory” and “horizons remnants” also
in naked singularity extension of the geometries.

Loop Quantum Gravity (LQG) is a non-perturbative and background-independent quantum
theory of gravity. In its standard formulation, “space” is described by a spin network. The formulation
of the LQG spin network is represented with a graph that is generally closed and colored (with values
attached to edged or vertices of its faces according to the different realizations and LQG models).
The basis states of LQG are the graphs, with (valued) graph edges and nodes (vertices), associated
with irreducible SU(2) representations the first and interwiners the second. More precisely, the graph
vertices represent 3-volume quanta. As the graph is fully connected, the edges are in fact the “quanta”
of area A(j) = 8πγBI

√
j(j + 1), being the half-integer j the edge value, and γBI is the Berbero–Immirzi

parameter. The model is defined by a smallest possible quanta that corresponds to the minimal
(quantized) area Amin, depending on the product of the γBI and a polymeric parameter (δ).

https://eventhorizontelescope.org/
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In this work, we focus on special loop quantum corrected (polymeric) regular black hole solutions
(LBHs), a special family of spherical symmetric regular loop BH solutions, whose general relativistic
limit for some values of the parameters is the Schwarzschild solution.The model developed in [1–5] is
a metric modification outside the horizon, with the minimal area derived from LQG, and the (free)
parameter δ, found from a mini-super-space LQG approximation. The metric approximation is based
on quantum modifications outside the horizon assuming a regular lattice with edges of lengths db
and dc, reduced then to one independent δ parameter by considering the minimal area to be the LQG
minimal area. In this mini-super-space model, the LQG corrections regularize (solve) the central black
hole singularity problem.

One task of this analysis is the investigation of the constraints for the graph properties by
constraining the values of the main graph parameters emerging from evaluations of quantities related
to the LBHs, as a minimal area parameter ao or eventually ε = γBIδ, or the loop mass m which is a
function here of the polymeric parameter P and the ADM mass M. For this purpose, we use metric
Killing bundles (or metric bundles (MBs)) which are a collection of metric solutions of the parameterized
family of LBHs, characterized by certain identical properties of the light-like particles orbital frequency
that can be measured by observers at infinity, informing on some properties of the geometries close to
the horizons, and connecting the different metrics of the bundles. These structures define also some
properties of the local causal structure and thermodynamical properties of BHs as the surface gravity,
temperature, and luminosity. The LBHs geometry shares similarities with the Reissner–Nordström
(RN) line tensor. We consider here this analogy in the analysis of MBs applied to LBHs.

These regular quantum corrected BHs constitute an important spacetime environment to test
LQG, and to search quantum-gravity effects for the MB applications. We constrain the loop graph
characteristics (minimal area, polymeric parameter) on the horizons property within characteristics
locally measurable from an observer in the region r > r+, where r+ is the outer horizon of the LBH
solution, as the orbital light-like particle frequencies, and, depending on the mass parameters, here the
ADM mass M and the polymeric mass m(M, P), which we consider separately. The orbital frequency
can be measured related to the local causal structure by an observer locally, and in a point of the
extended plane which is a plane P − r, where the MBs are defined as curves, P is the metrics family
parameter, and r is a radial distance. In this application, as in [6–11], the bundles are defined as the sets
of all geometries having equal limiting light-like orbital frequency, which is also an asymptotic limiting
value for time-like stationary observers (as measured at infinity). MBs are conformal invariant and can
be easily read in terms of the light surfaces (LS), related to the analysis of many aspects of BHs physics,
as “BH” images and several processes constraining energy extraction as the BH jet emission and jet
collimation. The role of MBs is clear in the geometries with Killing horizons as the Kerr geometries,
and more generally in the axially symmetric spacetimes as the Kerr–Newman (KN) geometry and
Kerr–de–Sitter geometry [6–11]. The MBs definition to the spherical symmetric cases considered here
for the regular BH is not immediate. Spherically symmetric BHs solutions have generally a direct
astrophysical interest as limiting conditions for the spinning BHs. In [6–8,11], the Schwarzschild
geometry in MBs analysis has been considered as limiting solution for the axially symmetric Kerr
geometry or the Kerr–Newman geometry, or also the Reissner–Nordström family. Schwarzschild
geometry is represented as a point on the horizon in the extended plane for all these solutions [12,13].
In this respect, the LBH metric is interesting from the MB point of view as in fact these solutions
are spherically symmetric and regular BHs that are asymptotically related (in the MBs sense) to the
Schwarzschild solution, allowing for clarifying bundles’ characteristics.

Below we discuss more precisely some main notions on metric bundles. Introduced in [6] to
explain some properties of black holes and naked singularities (NSs), MBs establish a relation between
these. Their definition was first based on the investigation of the limiting frequencies of stationary
observers, and define the Killing horizons for the Kerr black holes and then extended the to other
exact solutions as the cosmological Kerr–de-Sitter, the Kerr Newman spacetimes, and the limiting
case of Reissner–Norström solutions [6–11]. The metric bundles, characterized by a particular relation
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between the metric parameters, are sets of geometries defined by one characteristic light-like (circular)
orbital frequency ω±, which is the bundle characteristic frequency, and, in the spinning geometries,
also coincides with the horizons frequencies/angular velocities. A metric bundle is represented by
a curve on the so-called extended plane [6,9–11]. The extended plane contains the entire collection
of the parameterized family of metric solutions. We can define here the extended plane as a plane
P − r where r is the radial distance (in polar spherical coordinate or conveniently chosen adapted to
infinity Boyer–Lindquist coordinates in the Kerr, Kerr-Newman or Kerr–de–Sitter), and P is a metric
family parameter (or, eventually, a set of parameters). In the extended plane, the horizons of all BHs
solutions of the family can be represented as one curve or a set of curves. In the axially symmetric
spacetimes with Killing horizons, the MBs are all tangent to the horizon curve on the extended
plane. Then, the horizon curve emerges as the envelope surface of the set of metric bundles. In the
spherically symmetric spacetimes, MBs approach asymptotically (for some special values) the horizons.
The tangency condition of MBs with the horizons’ curves characteristic of the axially symmetric Killing
horizons spacetimes reduces to an approximation condition for the spherically symmetric LBH we
consider here as well as the RN solutions, considered in [6] as limiting static solution of the KN. On the
other hand, a special adaptation of the main idea underling the MB definitions adapted to more general
horizons concepts is certainly possible.

Investigating metric bundles, we explore in an alternative way some aspects of the geometries
defining the bundle as measured by an observer at infinity. The metric bundle concept can be significant
in the study of BH physics, in the interpretation of NSs solutions and BH thermodynamics. In this
work, we present the definition of metric bundles and discuss their properties also in the context of
loop BH thermodynamics.

These structures essentially explicate some properties of the Killing horizons in the axially
symmetric spacetimes and events horizons in the spherically symmetric case. The horizons in this last
case are limiting surfaces of the MBs in the extended plane. Each geometry of the set has, at a certain
radius r, equal characteristic bundle frequency.

MBs are characterized by several special properties: the horizons remnants, structures of the
bundles typical of certain NSs, the horizons replicas, and the idea of an “horizon memory” firstly
introduced in [6] provide through the MBs a different perspective to explore these spacetimes,
conferring a global vision including the possibility to study the transition of one geometry evolving in a
different solution of the family. In this sense, the extended plane, where bundles are defined as curves,
is endowed with a “certain plasticity” (whose typical expression is for example in the NSs remnants).
Each spacetime in one point has some properties that are replicated in different geometries (BH or
NSs), which can then be thought of as target or transition state in the geometry evolution as regulated
by the (first law of classic) BH thermodynamics. Killing bottlenecks appear in certain NSs as restriction
of the Killing throat in the associated light surfaces’ analysis. These structures (in general close to
the extreme Kerr or KN solutions) were seen also as “horizons remnants” in NSs [6–11] and appear
also connected with the concept of pre-horizon regime introduced in [14–20]. The pre-horizon was
analyzed in [14–20]. In these analyses, it was concluded that a gyroscope would conserve a memory of
the static or stationary initial state, leading to the gravitational collapse of a mass distribution [14–24].

The article plan: This article is structured as follows: In Section 2, we discuss the main properties
of the LQG metric and metric bundles: the black hole solutions are introduced in Section 2.1,
metric bundles are discussed in Section 2.1.1 and we construct the extended plane for these solutions
in Section 2.1.2. The comparison with the case of the Reissner–Norström geometry is addressed in
Section 2.2. Metric bundles of the LBHs are the focus of Section 3. In Section 4. We review some aspects
of the BH thermodynamics exploring in Section 4.1 the BHs surfaces’ gravity, the luminosity and the
temperature in terms of the loop model parameters, then these quantities are considered on metric
bundles. In Section 5, we summarize the main steps of this analysis, concluding this article.

Throughout this work, we introduced a number of symbols and notations necessary to explain all
the results obtained for these recently introduced objects; however, there is in fact a relatively small set
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of objects constituting a core of the MBs we analyze along this analysis, and are listed for reference in
Table 1.

Table 1. Lookup table with the main symbols and relevant notations used throughout the article with
a brief description and reference to the first introduction of the term. Links to associated sections,
definitions, and figures are also listed. Notation RN refers to Reissner–Norström geometry. We specify
that σ ≡ sin2 θ and H(r) = gφφ/σ. In general, we adopt notation Q• ≡ Q(r•) for any quantity Q
evaluated on a general radius r•. A notable example concerns the case of quantities Q± ≡ Q(r±)
evaluated on horizons r± where we use superscript (occasionally subscript where necessary) ±
respectively and, for convenience with the common use in literature and specified in the text, we use
QH ≡ Q+ for quantities evaluated on the outer horizon r+. The frequency notation is excluded from
this rule: ω± are limiting photon orbital frequencies which on the horizons of the spherically symmetric
geometries considered here are clearly null or ω±(r± = 0).

(ξt, ξφ) Killing fields of the geometry Equation (12)–Sections 2.1 and 3
ao = Amin/8π, the area parameter Equation (2)–Section 2.1
Amin minimum area gap of LQG Equation (2)–Section 2.1
P metric polymeric parameter Equation (2)–Figures 1 and 2–Section 2.1
ε = γBIδ δ = metric polymeric parameter, γBI = Barbero–Immirzi parameter Equation (2)–Figures 1 and 2–Section 2.1
M ADM mass in the Schwarzschild limit Equation (2)–Section 2.1
m mass polymeric parameter function Equation (2)–Figures 1 and 2–Section 2.1
r± horizons Equation (3)–Figures 1 and 2–Section 2.1
ε± horizons in ε-loop parameter Equation (6)–Figure 2
P± horizons in P-loop parameter in extended plane Equation (4)
L = ∂t + ω∂φ null Killing vector (generators of Killing event horizons) Section 2.1.1
LN = 0 Killing vector L norm g(L,L) Equation (12)–Sections 2.1.1 and 3
ω± light-like (LN = 0) limiting frequencies for stationary observers Equation (9)
ωSch limiting frequencies for the Schwarzschild geometry Equations (9) and (23)
QT RN spacetime “total charge” Equation (8)–Section 2.2
a± Kerr Killing horizon curve in the extended plane Section 2.2
Q± RN horizon in the extended plane Section 2.2–Figure 2
Qω RN metric bundles Equation (9)

rmin
ao

=
√

ao a minimum curve for the
√

H(r) as function of r (
√

H(rmin
ao ) = 2rmin

ao
) Figure 4–Section 2.1

σω metric bundles:θ parametrization Equation (27)
a±o (m, P) metric bundles: ao-parametrization Equation (28)–Figure 11
rτ solution of ∂Pω± = 0 Equation (26)–Figure 9
mτ solution of ∂mω± = 0 Equation (24)
κ : ∇αL = −2κLα (acceleration) on r±, κ± define BH surface gravity Equation (36)–Sections 2.1.1 and 4.1
TBH BH temperature Sections 2.1.1 and 4.1
ABH BH areas Equation (31)–Figure 12–Sections 2.1.1 and 4.1
L(m) Luminosity Equation (42)–Figure 15–Section 4.1

2. On LBHs and the Metric Bundles

In this section, we discuss the main properties of the LQG metric and the metric bundles.
We introduce the LBHs solutions in Section 2.1. In Section 2.1.1, we discuss some general properties of
metric bundles. Constructing the extended plane for these solutions, we compare with the case of the
Reissner–Norström geometry in Section 2.2. More information on the issues related to BHs solutions
in LQG can, for example, be found in [25–28], while definition of metric-bundles in the context of
geometries with Killing horizons that is the other aspect underlying this analysis we refer to [6–8].

2.1. The Metric

We consider the static spherical loop BH (LBH) solution derived as LQG approximation as

ds2 = −G(r)dt2 +
dr2

F(r)
+ H(r)dΩ2, where dΩ2 ≡ dθ2 + σdφ2, σ ≡ sin2 θ, (1)

G(r) ≡ (r− r+)(r− r−)(r + r∗)2

r4 + a2
o

, H(r) ≡ r2 +
a2

o
r2 , F(r) ≡ (r− r+)(r− r−)r4

(r + r∗)2(r4 + a2
o)

and

r∗ ≡
√

r+r− = 2mP, P(ε) ≡
√

1 + ε2 − 1√
1 + ε2 + 1

, M = m(1 + P)2 ao =
Amin
8π

. (2)
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In the metric, P is the polymeric parameter, where generally P� 1 so (r−, r∗) vanishes and the metric
can be considered approaching a Schwarzschild limit. ao is the area parameter, equal to Amin/8π,
Amin being the minimum area appearing in LQG (minimum area gap of LQG), which can be related
to parameter ε = γBIδ, and γBI is the Barbero–Immirzi parameter. M is the ADM mass in the
Schwarzschild limit, i.e., the mass for an observer at asymptotically flat infinity; vice versa, the m
parameter depends on the polymeric function P and M.

There are two horizons r+ and r− respectively:

Horizons: r+ = 2m, r− = 2mP2. (3)

In the following, we consider the two Killing fields of the geometry (ξt, ξφ). Here, we adopt two
approaches considering (1) m = 1 (loop BH mass equal one) or (2) ADM mass parametrization:
M = 1. Clearly, M = m and r+ = 2m = 2M in the (Schwarzschild) limit of P ≈ 0. When considering
the (2)-asset, we shall use explicitly m(M, P) to signify the dependence on P and M. Condition
(1) implies P = +

√
M − 1, condition (2) implies m = 1/(1 + P)2, see Figure 1. More generally,

we consider P = {m, P, ε, ao} as the geometry parameters, considering differently related (The issue
of the independence of the parameters P = {P, m, ao} is deep and concerns the specific approximated
BHs model as well as the LQG. Being our analysis adapted to the context of the applications of
the MBs, we have adopted a more general approach, using Equation (2) in fact as particular cases.
The use of m = 1 implies a re-parametrization in terms of M which here sets the scales in some
analysis. However, within the condition m = 1, there is P→

√
M− 1, and r+ = 2 (in mass units) see

Figure 1—see, for example, [1]. We consider different approaches and conditions to evaluate the MBs
for this geometry.). For very large ε, considering function P(ε) of Equation (2), there is r± = r∗ = M/2
(and 2m) for very small ε, r+ = 2M(2m) while r− = r∗ = 0—see Figures 1 and 2.

Figure 1. Upper left panel: horizons r± and radius r∗ of Equation (3) function of the P polymeric metric
parameter in the terms of the LQG mass parameter m considered as a function of P (thus the notation
ms), it is here M = 1 (M is the ADM mass in the Schwarzschild limit). Upper center panel: r± and r∗
function of the P for m = 1, colors notation follow correspondent left panel. Upper right panel: P as a
function of ε (a metric polymeric parameter) as in Equation (2). Bottom panels: horizons and radius r∗
for M = 1 and m = 1 respectively as functions of ε. Notes on notation can be found in Table 1.
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Figure 2. Extended planes in the Kerr geometries and LQG BHs. Left panel: P± are the horizon curves
in the extended plane considered in Equation (4). Center panel: extended plane of the LBH geometry in
the P-parametrization (P is the polymeric parameter). Details are in Section 2.1.2. Right panel: extended
plane of the Kerr geometry, details are in [6] and Section 2.1.2; here, we point out the analogies with the
extended plane structures in the two planes—see also Figures 3 and 4 and Table 1.

Note that here r is only asymptotically the usual radial coordinate since H(r) is not r2. Figure 4
show the curves

√
H(r) = constant in the plane (r/M, ao) and the extreme curve for the

√
H(r) as

a function of r. The function of r has an extreme rmin
ao , a minimum, notably equal to the length from

the minimal loop area i.e., rmin
ao =

√
ao, where

√
H(rmin

ao ) = 2rmin
ao . Concerning the structure of the

geometry and singularity nature and relative discussion of the Penrose diagram, we refer to [1,29]:
geometry at r = 0 has no singularity, but, in the limiting Schwarzschild case, and in fact this is a
regular BH solution. The analysis of Penrose diagram shows that there is another asymptotically flat
Schwarzschild region, i.e., there are two horizons and two pairs of asymptotically flat regions.

Figure 3. Extended plane in the ε− r parametrization. The horizon’s curve ε± of Equation (6) in the
extended plane ε− r is also represented together with the asymptote r = 0.5M. Saddle points are
horizontal dotted lines. P±s curves of Equation (5) are also shown (M is the ADM Schwarzschild mass,
ε, and P are polymeric metric parameters). Details are in Section 2.1.2—see also Figure 2 and Table 1.
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Figure 4. Analysis of metric (1) and metric bundles. 3D Plots show gxx for x ∈ {t, r} as a function of
r/M (ADM Schwarzschild mass M = 1) and polymeric metric parameter P, for different values of ao

(length from the minimal LQG area). Orange surface is gtt. The Upper Right panel shows the metric
component

√
H(r) = constant in the plane (r/M, ao), H(r) = gφφ/σ in Equation (3), σ ≡ sin2 θ.

Curve rmin
ao

is the extreme curve for the
√

H(r) as a function of r. Note that the extreme, a minimum,

is equal to the length from the minimal area rmin
ao

=
√

ao, and the function
√

H(rmin
ao ) = 2rmin

ao
. Bottom

Left panel: extended plane P− r. Region gtt > 0 and grr < 0 (pink-BH region, we do not consider the
region P > 1) and outer region is gtt < 0 and grr > 0. Horizons P± is shown. Regions do not depend
on a ao parameter. Line r = 1/2 is also shown; this is an M = 1 approach. Bottom center panel: curves
gxx = constant for x ∈ {t, r}. Bottom right panel: The curve r(P) such that gtt = ct = constant and
grr = cr = constant; in other words, the families (in terms of P parameters) of metric solutions having
equal gtt and grr in the same point r. The inside plot is a zoom in the region P ∈ [0, 1]. See also Table 1
for further details on notation.

2.1.1. On the MBs, Horizons, and Observers

The analysis of the metric bundles and the geometry properties with MBs focus on the properties
an observer could measure in the region outside the (outer) horizon r+ in the BH spacetime.
The observer could extract information (locally) of the region close to the (inner and outer) horizons
r±—and connecting different geometries of the metric family considering local properties of causal
structure with the analysis of photon-like orbits. In this sense, the horizon’s confinement and the
horizon’s replicas.

• Definitions of horizon’s replicas and confinement

Considering a generic property ℘± of the horizon as distinguished in the extended plane, as the
horizon frequency ω for the spinning BH horizons, there is a replica of the horizon, in the same
spacetime when there is an orbit (radius) rx > r• such that ℘(r•) ≡ ℘• = ℘(rx), where r• is
a point of the horizon curve in the extended plane. From MB definition, there are horizons
replicas in different geometries, i.e., there are a p 6= px and a rx > r+, where p and px are values
of the extended plane parameter P , corresponding to two different geometries (distinguished
with two horizontal lines of the extended plane) such that: ℘(r•(p), p) ≡ ℘

p
• = ℘(rx(px), px).

In both points, (r•, rx), there is equal light-like orbital frequency. Vice versa, the (MBs’) horizon
confinement is interpreted as the presence of a “local causal ball” in the extended plane, which is a
region of the extended plane P − r, where MBs are entirely confined, this means that there are no
horizons replicas in any other region of the extended plane, in any other geometry, although we
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can be interested in specifying this definition to confinement of the ℘ property in the same
geometry. Typically, for the Kerr spacetime, the causal ball is a region upper bounded in the
extended plane by the a portion of the horizon curve corresponding to the a set of the inner
horizon BHs—[6,9–11]. The analysis of self-intersections of the bundles curves on the extended
plane, in the same geometry (horizon confinement) or intersection of bundles curves in different
geometries is therefore an important point of the MBs analysis. (It is obvious that, in the spherically
symmetric spacetime, the definition of replica is adapted to the frame of the MBs approximation
to the horizon curve in the extended pane, i.e., r• ≈ r±). We precise the definition of the MBs
by considering explicitly the definition for the Kerr spacetimes; in this discussion, it is easier
to consider explicitly the definition for the metric bundles adapted to the more general axially
symmetric case as in [6–11]). Therefore, the Kerr horizons are null surfaces, S0, whose null
generators coincide with the orbits of a one-parameter group of isometries; thus, there exists a
Killing field L that is normal to S0. MBs satisfy the condition LN ≡ L · L = 0, where L is a
Killing field of the geometry L ≡ ∂t + ω∂φ. In BH spacetimes, this Killing vector defines also
the thermodynamic variables and the Killing horizons. Therefore, metric bundles are solutions
of the zero-norm condition LN (ω•) = 0 (ω+ = ω• for the outer horizon r+). The condition
LN = 0 is related to the definition of stationary observers, characterized by a four-velocity of
the form uα ∝ Lα. The spacetime causal structure of the Kerr geometry can be then studied by
considering also stationary observers [30]: timelike stationary observers have orbital frequencies
(from now on simply called frequencies) in the interval ω ∈]ω−, ω+[ having limiting orbital
frequencies, which are the photon orbital frequencies ω±, which, evaluated on the Kerr horizons
r±, provide the frequencies ω± of the Killing horizons. In general, a Killing horizon is a light-like
hypersurface (generated by the flow of a Killing vector), where the norm of a Killing vector is null.
The event horizons of a spinning BH are therefore Killing horizons with respect to the Killing field
LH ≡ ∂t + ωH∂φ, where ωH is in general angular velocity of the horizons. (The event horizon of
a stationary asymptotically flat solution with matter satisfying suitable hyperbolic equations is a
Killing horizon). Conditions on ωH = constant represent the BH rigid rotation. For static (and
spherically symmetric) BH spacetimes, the event, apparent, and Killing horizons with respect
to the Killing field ξt coincide. In the limiting case of the static Schwarzschild spacetime or the
Reissner Nordström spacetime, the event horizons are Killing horizons with respect to the Killing
vector ∂t.

• MBs and thermodynamics: In this work, we also investigate some BHs thermodynamics
properties of the LBHs in the extended plane through the analysis of MBs. The BH Killing horizons
of stationary solutions have constant surface gravity (zeroth BH law-area theorem): the norm
LN of L is constant on the BH horizon. Moreover, the BH surface gravity, which is a conformal
invariant of the metric, may be defined as the rate at which the norm LN of the Killing vector
L vanishes from outside (r > r+). For a Kerr spacetime, the surface gravity re-scales with the
conformal Killing vector, i.e., it is not the same on all generators, but, because of the symmetries,
it is constant along one specific generator. More precisely: the constant κ : ∇αL = −2κLα,
evaluated on the outer horizon r+, defines the BH surface gravity, i.e., κ+ ≡ κ(r+) = constant
on the orbits of L (equivalently, we can write Lβ∇αLβ = −κ+Lα and LLκ+ = 0, where LL is
the Lie derivative—therefore defining a non-affine geodesic equation). The BH surface area is
non-decreasing (second BH law); consequently, the impossibility to achieve by a physical process
a BH state with zero surface gravity. More precisely, non-extremal BH cannot reach an extremal
case in a finite number of steps—third BH law: at the extreme case for the Kerr geometry a = M,
the maximum of the horizon curve in the extended plane, where r± = M, the surface gravity is
zero and, consequently, the temperature is TBH = 0, but not its entropy (and therefore the BH
area).(This fact poses constraints also with respect to the stability against Hawking radiation)
The mass variation, the surface gravity, and the horizons frequencies are related by the first law
of BH thermodynamics, which can be written as δM = (1/8π)κ+δABH + ωHδJ, where there
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is the variation of the BH mass, the horizon area and angular momentum J, for the Kerr (BH),
representing the “work term”, ABH is the BH area .

2.1.2. The Extended Plane

In Figures 2 and 3, two realizations of the extended plane of the regular LBH geometry of
Equation (1) are represented. The first step to construct the extended plane P − r where the MBs are
defined, is to individuate the more convenient parameter P ; the second step in this construction
is to represent the horizon curve in the plane. (It is clear that here a plane is briefly intended
as a flat, two–dimensional surface, as in Figure 2). The main convenient parametrization for the
extended plane as emerging from the analysis of MBs in Section 3 is P-parametrization or equivalently
ε-parametrization, obtained by using Equation (2) and here showed in Figure 2. (More generally,
here we note that, as discussed in [6,9–11], the first step to explore the metric bundles is to distinguish a
leading parameter for the metric bundles, which in the Kerr spacetime was the dimensionless spin a/M
of the singularity (a BH or NS), as clearly connected to the characteristic frequency. This is obviously
determined by the Killing horizons’ definitions. This choice is, however, not immediate. In the case of
Kerr-Newman (KN) spacetimes for example, as discussed in [6], one could choose spin a/M or the
dimensionless electric change Q/M or, for example, the “total charge” QT ≡

√
(Q/M)2 + (a/M)2).

A second issue in the plane construction is the choice of the axis r, which is here the radial
coordinate r, especially relevant in the case of LBH of Equation (1). As we discussed in Section 2.1,
concerning the interpretation of the radial coordinate r for metric Equation (1), the radius r̃ ≡

√
H[r]

only asymptotically approaches the standard radial coordinate, i.e., r is only asymptotically the
usual radial coordinate (For this reason, one could think of selecting r̃ instead of the asymptotic
standard Schwarzschild radial coordinate r which is the circumferential radial coordinate of the
Schwarzschild geometry (from the integration around a full circle at radius r, we get a circumference
of 2πr, i.e., the surfaces at fixed t and r appear in GR as round spheres where ds2 = dΩ2 is the
standard Riemannian metric on the (unit radius) two sphere or dΩ2 is an interval of spherical solid
angle in standard spherical coordinates (θ, φ)—for a fixed r, the surface area the circle 4πr2, and the
associated sphere with Gaussian curvature 1/r2). The line element on an (equatorial) circle is, in the
GR geometry, ds2 = r2dφ2, vice versa in our case, metric (1), we shall have ds2 = r̃2dφ2. In this
regard, we also note here that, as in general relativity, we could adopt the Eddington–Finkelstein
coordinates adapted to radial null geodesics. In [11], however, we explicitly use MBs, based on
null circular orbits, to rewrite the line element.) with respect to the reference GR solution, as H(r)
is not just r2. In this respect, in Figure 4, we represent the

√
H(r) asymptotical behavior for large

distance from r = 0 (the line defining the bundles origins) and particularly the value
√

H(r) = r.
We have represented both the asymptotic behavior and the curves

√
H(r) = constant (versus

r = constant) in the plane (r/M, ao) and the extreme points curve for the
√

H(r) as a function
of r. In fact,

√
H(r) ≡ r̃ remarkably is not monotone in r but has a minimum, rmin

ao =
√

ao, where√
H(rmin

ao ) = 2rmin
ao . Furthermore, in Figure 4, we can see the situation for different geometries (line

r = constant) and at fixed geometry (ao = constant), where there are two orbits r with equal values
of r̃. The main point of the construction of the extended plane consists in the fact that it allows
for considering the properties of a parameterized family of geometries in a “global” prospective,
by considering different features as seen at variation of the metric family parameter P . This turns
out, therefore, to also be relevant for the exploration of the transformations leading from one solution
to another of the family, as, for example, after a (dimensionless) spin shift of Kerr BH, a shift of the
dimensionless electric charge in the RN metric, or eventually a variation of loop parameters P for the
LBHs. Thus, in this “global” frame, we also search for a replica of the horizons of one geometry in
different solutions, investigating the presence of horizons’ characteristics of different spacetimes of the
family (or MBs). In this way, we also relate different geometries through their local causal properties
and also BHs’ thermodynamical characteristics. These aspects are here explored in dependence on the
model parameters P and evaluated on the metric bundles in Section 4.
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Metric (1) shares several similarities with the Reissner–Nordström geometry, considered here
in Section 2.2. To discuss some properties of the extended plane and the MBs, it is convenient,
however, to refer first to the representation of the extended plane of the axially symmetric, stationary,
vacuum Kerr solution. The Kerr geometry is a well-known, exact, asymptotically flat solution of
Einstein equations—[6–8,11–13] . In Figure 2, the panel on the Kerr extended plane shows the negative
region corresponding to counter-rotating orbits i.e., to photon orbital frequency equal to the horizon
frequencies in magnitude. In the spherically symmetric cases, we can restrict our analysis, without loss
of generality, to the upper part of the plane, related to the positive frequencies. Line A ≡ a

√
σ = 0,

corresponding to line P = 0 of the plane P − r, is the Schwarzschild limiting case, where a is the
dimensionless spin, σ ≡ sin2 θ in Boyer–Lindquist coordinates. The origin (line of bundles origins) is here
A0 ≡ a0

√
σ, corresponding to P- line (r = 0) of the P − r plane. The Kerr geometry ergoregion (in the

extended plane) is the strip r < 2M (the ergoregion of the Kerr geometry is bounded by and outer
ergo-surface r+ε ≥ r+, where r+(a) < 2M is the outer horizon and the inner ergo-surface r−ε (0) ≤ r−,
r− is the inner horizon, where only on the equatorial plane is there r+ε = 2M independently from the
spin a). Extreme Kerr BH is for A = 1, in panel regions for Kerr BHs or Kerr naked singularities (NSs)
are also reported. For the Kerr MBs, it is relevant to consider the polar angle θ, in σ ≡ sin2 θ; in the
spherical symmetric case considered here, we can consider σ = 1. The extended plane of the Kerr
geometry is constructed considering different functions (including the tangent curves to the horizon),
{Ax}x, which are given in [6,11] (they correspond also to the linearized horizons relations r+(r−) in
an equivalent extended plane). The extended plane of Kerr geometries and LBHs in Figure 2 show
clear analogies. We consider an extended plane realization in Figure 1 for the LBHs. We can consider
the vertical and horizontal lines and the horizons curves P± in Figure 2 as a function of r (for M = 1).
In the P− r plane (M = 1), the horizons are determined by the polymeric function as

P+ ≡
√

2√
r
− 1, P− =

1
P+

, P+P− = 1, (4)

(P± = 1 r =
1
2
), lim

r→0
P± =

(
+∞

0

)
, lim

r→2
P± =

(
0

+∞

)
,

where we adopted a shortened notation for the limits of the horizons P± of Equation (4). In the
LBHs P-parametrization, we note the intersection of P− curve as “inner horizon” and P+ as “outer
horizon” and the values r = 1/2, r = 2, and the limiting r = 0 correspondent to the singularity in
the Schwarzschild limit. A schematic representation of the extended plane is rendered in the right
panel, enlightening the BH regions (where P+ = P−1

− ). The LQG extended plane shows limiting points
P+ = 0 for r = 0, and P+ for r = 1/2 (note the analogy with the maximum of the horizon curve of
the Kerr geometries for a = M correspondent to the extreme Kerr BH). The limiting values P± = 1/2
are clear; this is an extreme point where r+ = r−. To complete the analysis of plane in terms of the
horizons r±, we can consider the curves P±s of the extended plane:

P±s ≡
1− r±

√
1− 2r

r
: r = r±∗ , (5)

where P+
s P−s = 1. Alternately, we consider the horizons in the ε − r plane, making explicit the

dependence of P in terms of ε-loop parameter having the horizon:

ε± ≡

√
−4r2 + 6r + 2

√
2
√

r√
(1− 2r)2

, lim
r→℘

ε± = 0, ℘ ∈ {0, 2}, (6)

lim
r→1/2

ε± = +∞, εs ≡
√

r√
1
2 − r

: P±s (ε) = P(ε). (7)
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In εs of Equation (6), we consider Equation (5). The choice of the ε–representation has several
advantages, evident from the horizons representations in the ε− r extended plane. The two limiting
points r = 0 and r = 2 also are connected to the value ε = 0, and the limit r = 1/2 is a vertical
asymptote for ε→ +∞. On the other hand, there is ∂2

ε r∗(ε) = 0 on ε± = 1/
√

3 for r∗ = 1/8—Figure 2.
It is clear from Figure 2 εs is bounded in the range r ∈ [0, 1/2].

We stress that, in the metric bundles analysis and the geometry properties distinguished with
MBs, we are concerned with the properties an observer could measure in the region outside the outer
horizon r+; in this context, therefore, we consider observers at infinity, adopting an adapted frame.
This obviously compels a reinterpretation of the metric bundles in the region close to the horizons
r±—see Figure 4. In this framework, the horizons confinement in the MBs sense may be interpreted as
the presence of a “local causal ball” in the extended plane, which is a region where MBs are entirely
confined in—i.e., no horizons’ replicas can be found in the other regions of the extended plane.

Figure 5 represent location of orbits r < rx at equal frequency ω (therefore belonging to the same
bundle) in two cases. In the first case, we consider the same geometry, with P = Px corresponding to a
horizontal line of the extended plane (implying clearly certain conditions on the MBs curvature in the
P − r plane). Clearly, we look particularly to the couple of radii r and rx such that the two radii are in
an inner region of the extended plane, upper bounded of the horizon P−, and the second outside the
region bounded by the horizon curve P+.

Detecting self-intersections of the bundles curves on the extended plane, in the same geometry
(horizon confinement) or intersection of bundles curves in different geometries, is a crucial point
in the MBs analysis, related to the issue of confinement and causal balls. There are no MB curves’
self-intersections, on equal P and r (a part some special cases such as extreme Kerr and RN BH
spacetime); in other words, there are no MB knots. Figure 4 show on the other hand an analysis that is
particularly interesting for the metric bundle approach where the curve r(P), a solution of the problem
gtt = ct = constant and grr = cr = constant, is showed. This curve collects the metric solutions
(in terms of P parameter) having equal gtt and grr, on the same radius r; clearly, we are interested
particularly to consider the values of P close to the maximum P = 1 or for P < 1. Figures 5 and 6
show the metric bundles and vertical and horizontal lines in the P − r and ε − r extended plane.
The approximations of the bundles to the horizons curves and the study of horizons’ replicas for
different values of the parameter are clear. In Section 3, we also consider the explicit expression of the
metric bundles, as solutions LN = 0, adopting different parameterizations.

Figure 5. Left and center panels show the vertical lines of the extended plane; in other words, the MB
intersections with the curves r = constant for different values of r signed in pictures, exploring
different regions of the ω± values of limiting photon orbital frequency. Further notes on notation are
in Table 1. The right panel shows the solutions of the problem ω(rx) = ω±(r) (“horizons”’ replicas
in this spherically symmetric geometry); in other words, the horizontal lines in the extended plane
for different polymeric metric parameters P and for a selected LQG area parameter ao (M is the ADM
mass and r± are the BH horizons).
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Figure 6. Metric bundles (MBs) in the extended plane P− r (upper panels) and ε− r (bottom panels)
for ADM mass M = 1. (P and ε are polymeric parameters). MB curves are the bundles at equal
limiting photon orbital frequency ω±. Radius r = 0.5 is relevant for the analysis of the horizons and
r = 2 is the horizon in the Schwarzschild limit, r = 3 is the photon circular orbit in the Schwarzschild
limit (a geodesic in this spacetime). Curves P± of the horizons, Ps = P+P− = 1 is also shown.
The Schwarzschild limit is for P− = 0. We note the presence of curves at r < 2 for very small P; the role
of r = 3M is the photon orbit in the Schwarzschild limit (M is the Schwarzschild ADM mass). In the
bottom panels, MBs are also shown in the plane ε− r, red curves are the horizons ε±, curve εs : r∗ = r
is also shown. Further notes on notation are in Table 1.

2.2. Comparison with the Reissner–Norström Geometry

The Reissner–Norström (RN) metric is a well-known spherically symmetric (and static)
electro-vacuum solution of Einstein equations, with inner r− and outer r+ Killing horizons (with
Killing vector ξt):

r− ≡ M−
√

M2 −Q2; r+ ≡ M +
√

M2 −Q2; (8)

(here, we adopt usual spherical symmetric coordinates (t, r, θ, φ), where also σ ≡ sin2 θ). There is
a naked singularity for Q > M, the extreme RN-BH geometry, where r± = M occurs in the limit
Q = M. We construct the metric bundles Qω , introducing the Killing field L and the zero-quantity LN
as follows:

L ≡ ξt + ωξφ; LN ≡ g(L,L) = gtt + gφφω2 =
√

r
√

r3σω2 − r + 2 = 0, (9)

ω± = ±−gtt

gφφ
= ±

√
Q2 + (r− 2)r

r2 , Qω ≡
√

r
√

r3σω2 − r + 2, (10)

Qω = 0, for ω = ωSch ≡
√

r− 2
r3/2 , or r = 0 (11)

ωSch is the frequency ω± in the Schwarzschild geometry. In the RN geometry, to make it easier to read,
we use geometric units where M = 1 in many quantities. Here, and in the following, since the metric
is spherically symmetric, we can use, where more convenient, σ = 1, i.e., we fix an arbitrary equatorial
plane without loss of generality. On the other hand, the re-parametrization σω2 → ω2 is an important
definition adopted also in the axially symmetric case of the Kerr MBs.
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Functions ω± are limiting light-like particles orbital frequencies showed in Figure 9;
they constitute the limiting conditions for the measure of the stationary light-like observing orbital
frequencies. The RN horizon Q± = ±

√
r(2− r) in the extended plane has a similar form to the Kerr

geometry horizon a± = ±
√

r(2− r)—see Figure 2—where Υ ∈ {|Q±|, |a±|} has values in [0, M],
where Υ = 0 corresponds to the Schwarzschild geometry and Υ = M is for the extreme RN (Q = M)

or extreme Kerr BH case, respectively. For both geometries, this is a maximum of the horizon curve
in the extended plane corresponding to the extreme BH solution. The horizon curve is closed and
bounded in the range r ∈ [0, 2M], where r = 0 is the Schwarzschild, Kerr, or RN central singularity,
r = 2M is the horizon in the Schwarzschild limit of the RN and Kerr geometry as well as in the LBHs.
The analysis of the RN MBs in Figure 7 shows that it is Q± = Qω only for σ = 0 or ω = 0, or r = 0.
In fact, the absence of a tangency condition of the bundles with the horizon curves is obviously an
expression of the spherical symmetry. On the other hand, the approaching of MB curves to the horizons
and the role of electric charges are shown in Figure 7. There is also ω = 0 only for bundles confined in
the region r ≤ 2. The choice of bundle parametrization for the RN case is clear, being related to the
horizons’ definitions. The MB introduction in the RN geometries clarifies some aspects of the NSs,
and aspects of (local) causal structure on the bases of the horizons properties, and individuates the
bottleneck region typical of certain NSs. The precise definition of bottleneck goes far from the goals of
the present analysis of the regular LBH solutions; however, the bottleneck is a restriction of the surfaces
defined by the functions ω± in the plane r−ω, as a frequency tunnel (or equivalently the light-surfaces
(LSs)) for some solutions of NSs close, in the extended plane, to the extreme BH solution. The right
panel of Figure 7 shows the approximation of the bundles to the horizon curves in the extended plane
typical of a spherically symmetric case. It is clear that the distance between the MBs and the horizons’
curve decreases with the characteristic frequencies and increases with r ∈ [0, 2M]. The bundles zeros
curve in the central panel ω(Q = 0) is the limiting Schwarzschild frequencies. The left panel shows
the frequencies ω±(r) (or the LSs in the plane r−ω) making evident the symmetries for negative and
positive frequency values (in the case of spinning BHs, this symmetry with respect to positive and
negative frequencies is broken). Increasing the value of the electric charge Q from the Schwarzschild
Q = 0 to NSs Q > M, the frequency curves are very different from the BH with the self intersecting
curve of the extreme RN–BH , which is, however, a regular maximum point of the horizon curve in the
extended plane. The self-intersections of the MBs is in fact a relevant aspect of the MB features.

Figure 7. Reissner–Norström (RN) analysis: Qω are the metric bundles of Equation (9), ω is the
bundle frequencies, Q± is the horizon curve in the extended plane, frequency solution of Qω = 0 is in
Equation (11). (Here, M is the metric mass parameter of the Reissner–Norström line element). The right
panel is the difference Qω −Q± versus r/M, for the frequency values as in the central panel. The left
panel shows the frequencies ω± of Equation (9) versus r/M as function of different Q from BH to NS
(naked singularities)—see also Table 1.
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3. Metric Killing Bundles of the LBHs

The four-velocity of the stationary observers are adapted to the Killing field L = ξt + ωξφ in the
limiting Schwarzschild geometry and considered here in metric (1). We consider the null-like condition
on the norm LN

LN = g(L,L) =
σω2 (a2

o + r4)
r2 −

(r− 2m)(2mP + r)2 (r− 2mP2)
a2

o + r4 = 0. (12)

It is obvious that LN is zero on the horizons only for ω = 0 (g(ξt, ξt) = 0—static observers are defined
by the particular solution ω = 0; these observers, for example, cannot exist in the ergoregion of a Kerr
geometry). Note that we can use also an adapted parametrization as

LN =
(R− 2)

(
R− 2P2) (2P + R)2

A2
o + R4 +

W2 (A2
o + R4)

R2 ; (13)

where {r → mR, ao → Aom2, ω →W/(m
√

σ)}. (14)

In the plane (P, R), the outer horizon is P+ ≡
√

1/2R. (We should also note that, in this way, W, R,
and the length Ao depend on the ADM mass M and the polymeric function P. The frequency ω

√
σ

re-parametrization is instead a typical property of the MBs, which is generally related, for static as
well as axially symmetric solutions to the MBs origin r = 0 properties).

We can explore the spherical symmetry in the context of the metric bundles; it is clear that we can
take advantage of this symmetries by considering σ = 1, i.e., an (Schwarzschild BH) equatorial plane,
without loss of generality. However, on r± and rs, there is

LN (r+) =
σω2 (a2

o + 16m4)
4m2 , (15)

LN (r−) =
σω2 (a2

o + 16m4P8)
4m2P4 , (16)

LN (r∗) =
64m4(P− 1)2P3

a2
o + 16m4P4 +

σω2 (a2
o + 16m4P4)
4m2P2 . (17)

Therefore, more precisely:

(r−) : LN (r−) = 0, σ = 0, ω > 0, P ∈]0, 1], ω = 0, P ∈]0, 1], (18)

(r+) : LN (r+) = 0, σ = 0, ω > 0, P ∈ [0, 1], ω = 0, P ∈ [0, 1], (19)

(r∗) : LN (r∗) = 0, σ = 0, ω > 0, P = 1, ω = 0, P = 1. (20)

3.1. Light Surfaces (LS) Frequencies

Adopting the procedure discussed in Section 2.2, we evaluate the zero-quantity LN , obtaining
the light-like orbital frequencies ω±

LN = 0, ω±(m, P) ≡ ±−gtt

gφφ
= ± G(r)

H(r)σ
= ±

√
(2m−r)(2mP2−r)(2mP+r)2

a2
o+r4√

σ(a2
o+r4)
r2

, (21)

ω±(M, P) = ±

√
(2M−(P+1)2r)(2MP2−(P+1)2r)(2MP+(P+1)2r)2

(P+1)8(a2
o+r4)√

σ(a2
o+r4)
r2

, (22)
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which are also the characteristic frequencies of the bundles. Note that these frequencies also define the
light surfaces in many aspects of BH physics and more generally in the processes of energy extractions.
In these spherically symmetric geometries, consider the magnitude |ω±|. The “Schwarzschild” limit is:

ωSch ≡ ±

√
− 2M−r

r√
r2σ

, (23)

lim
ao→0

lim
P→0

ω±(x) = ωSch, x = {(m, P), (M, P)}.

The two frequencies ω±(x) and ωSch coincide for special values of ao and P: there is generally ω±(x) ≥
ωSch with exceptions we show in Figure 8. On the other hand, these figures show differences between
ω±(x) considering as functions of (m, P) or (M, P). Clearly at the horizons, there is ω±(r±) = 0 and
limr→0 ω± = 0.

The significance of these frequencies relies on the fact that they can be connected directly with
the observations of properties that are also conformal invariants determining several properties of
the geometry. We find therefore the limiting frequencies that have an extreme for the loop mass m,
which is

mτ : ∂mω± = 0, (24)

mτ ≡

√
(−6P2 + 4P− 6)2 P2r2 + 64 (P2 − 2P + 1) P3r2 − P

(
−6P2 + 4P− 6

)
r

32P3 (25)

Figure 9. More precisely, limiting photon orbital frequencies have an extreme for the polymer
function, P different according to the different orbit r,

rτ : ∂Pω± = 0 (M = 1) (26)

r±τ ≡
1
2

(
±
√

8
(P + 1)2 −

8
P + 1

+ 1− 4
P + 1

+
4

(P + 1)2 + 1

)
.

These radii are represented in Figure 9 with respect to the horizons.
The bundles are therefore a set of geometries, as defined by a leading parameter of the chosen

parametrization such that all the geometries of the bundles are only those characterized by a photon
limiting orbital frequency ω, the bundle characteristics’ frequency is in the Kerr applications, and the
BH horizon frequency in the extended plane. In the spherical symmetric spacetime, we investigate
in this work the frequencies connecting geometries very close to the horizon (in the extended plane)
with other geometries. Mainly here we consider the P parametrization. Alternately, we can consider
the ε-parametrization in the extended plane of Figure 2. The horizons’ curves are the functions P±
of Equation (4). Clearly, we could have used the ε± representation in a plane ε− r as in Figure 2.
The vertical lines in the extended plane r = constant represent a fixed point in different geometries;
the collections of all points on the bundles at r = constant provide the set of different or equal
frequencies ω connecting therefore different solutions making evident the modifications of the
frequencies due to the shift of the polymeric functions. The horizonal lines in the extended plane,
correspondent to P = constant, represent one geometry with P = constant, and the crossing of the
horizontal line with all the bundles of the plane provides the set of light surfaces r±(ω) solutions of
LN = 0.
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Figure 8. Limiting light-like frequencies ω±(x) (orange) with x = {m, M} (M is the ADM mass, m is
the polymeric mass), solutions of LN = 0 and ωSch the light-like frequencies of the Schwarzschild
geometries, as functions of r, the LQG area parameter ao, and the metric polymeric P and different
values of P, and ao, respectively. There is σ ≡ sin2 θ, where σ = 1 is the Schwarzschild BH equatorial
plane—see Equation (21) and Table 1.

Figure 9. 3D plots show the limiting frequencies ω± of stationary observers in the spacetime (26) for
light surfaces as a function of r and P (polymeric metric parameter) for different LQG length (area)
parameter ao, frequencies are in Equation (9). The extremes as function of P are shown in the 2D third
and fourth panels. Third panel: radii r±τ of Equation (26) as functions of P for the ADM mass M = 1
(r± are the BH horizons). Fourth panel: LQG mass parameter mτ = constant of Equation (24) in the
plane (r, P), see also Table 1.

3.2. Metric Bundles Parametrization

In this section, we provide an explicit expression for MBs according to different parameterizations.

• Metric bundles: parametrization according to σ As the metric is spherically symmetric, we can
consider, without loss of generality, σ = 1, i.e., a fixed (Schwarzschild BH) equatorial plane.
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Nevertheless, we could consider explicitly a parametrization according to the “poloidal” angle θ,
obtaining the curves:

σω =
r2(r− 2m)(2mP + r)2 (r− 2mP2)

ω2 (a2
o + r4)

2 . (27)

In here, metric bundles with ω = constant are on the hyperplane σω = 1. Clearly, this choice is
relevant for the parametrization W = ω

√
σ. Note that there is σω = 0 for r ∈ {0, r±}. Figure 10

represent special and limiting cases of metric bundles.
• Metric bundles: ao-parametrization

It is relevant to study a ao-parametrization to consider the families of metrics for different
minimum areas parameter ao. Implementing therefore the notion of metric bundles with the area
parameter, we obtain explicitly

(a±o (m, P))2 ≡ ±

√
±
√

r2σω2(r− 2m)(2mP + r)2 (r− 2mP2)

σω2 − r4, (28)

(a±o (M, P))2 ≡

√
(P + 1)8r2ω2 (P2(r− 2) + 2Pr + r) ((P + 1)2r− 2) ((P + 1)2r + 2P)2

(P + 1)8ω2 − r4

represented in Figure 11. Providing constraints on the loop minimal areas, functions
(a±o (M, P)), a±o (m, P))) are not well defined on the horizons in the extended plane, and limits to
r = 0 is null.

• Metric bundles: P-parametrization

Here, we consider the leading parameter P. Metric bundles in the extended plane P − r and
ε− r are shown in Figure 6, where there is also a focus on the vertical and horizontal lines of the
extended planes and horizons’ replicas at different values of the parameter.

The equation for the metric bundles according to the P-parametrization (M = 1) is polynomial
function of degree 8, f (P; ı) = ∑8

i=0 Piζi, where

ζ0 ≡ ω2
(

a2
o + r4

)2
− (r− 2)r5; (29)

ζ1 ≡ 8ω2
(

a2
o + r4

)2
+ 8

(
−r2 + r + 1

)
r4;

ζ2 ≡ 4
[

7ω2
(

a2
o + r4

)2
+ [r(r(2− 7r) + 6) + 2]r3

]
;

ζ3 ≡ 8
[

7ω2
(

a2
o + r4

)2
− r4

(
7r2 + r− 3

)]
;

ζ4 ≡ 2
[

35ω2
(

a2
o + r4

)2
− r2[r(r[5r(7r + 2)− 8] + 8) + 8]

]
;

ζ5 ≡ 8
[

7ω2
(

a2
o + r4

)2
− r4

(
7r2 + r− 3

)]
;

ζ6 ≡ 4
[

7ω2
(

a2
o + r4

)2
+ [r(r(2− 7r) + 6) + 2]r3

]
;

ζ7 ≡ 8
[

ω2
(

a2
o + r4

)2
− r6 + r5 + r4

]
;

ζ8 ≡ ω2
(

a2
o + r4

)2
− (r− 2)r5. (30)
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Figure 10. Metric bundles (solutions of LN = 0, connected to the light surfaces) for selected values
of the polymeric model parameters as functions of the polymeric parameter P or loop mass m (M is
the ADM mass parameter) in the plane (r, P) or (r, m) for different bundle frequencies ω (according
to colors reported in panels). ao is the LQG length parameters. Horizons r± and radius r∗ are also
shown—see also Table 1 for details on the notation.

Figure 11. 3D plots represent metric bundles a±o (m, P) for ao-parametrization see Equation (28),
for ω = 10−4 (gray) ω = 0.1 (red), ω = 1 (green), where ao is the LQG length parameters, P is the
polymeric metric parameter, ω is the light-like orbital limiting frequencies (stationary observers), M is
the ADM mass, m is a polymeric mass, only asymptotically equivalent to the ADM mass. In the panel,
we adopt the notation ao = a±o (m, P)) and aM

o = a±o (M, P) (right panel). We also took advantage of the
symmetries a±o = ∓a∓o , and σ ≡ sin2 θ, the (BH Schwarzschild) equatorial plane is σ = 1—see also
Table 1 for details on the notation.
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4. The LBHs Thermodynamical Properties

In this section, we review some aspects of the BH thermodynamics. In Section 4.1, we explore
the BHs surfaces gravity, the luminosity, and the temperature in terms of the loop model parameters;
then, these quantities are considered on metric bundles. We discuss connections between different
geometries of one bundle considering their thermodynamical properties–[11]. In general, the Hawking
emission at r+ leads to the evaporation process with BH Bekenstein–Hawking temperature. The mass
loss on the process can be deduced with the luminosity (L). The focusing idea is how the BH
thermodynamical properties can explain and distinguish the construction of the underling graph in
the LQG model adopted here, especially on the grounds of the MBs structures analyzing the horizons
properties in regions far from the horizons—see also [1,31].

4.1. BHs Thermodynamics and LQG Parameters

In this section, we evaluate the BH areas and the BHs surfaces gravity and temperature in terms
of the LBH parameters P .

• BH areas We can evaluate the BH areas as follows:

(A+
BH) : A+

BH(m) =
π
(
a2

o + 16m4)
m2 , A+

BH(M, P) = π
(P + 1)4

(
a2

o +
16M4

(P+1)8

)
M2 . (31)

(A−BH) : A−BH(m, P) = π

(
a2

o + 16m4P8)
m2P4 , A−BH(M, P) = π

(P + 1)4
(

a2
o +

16M4P8

(P+1)8

)
M2P4 ,

A−BH(M, P(m)) = π

(
a2

o + 16
(√

m−
√

M
)8
)

(√
m−
√

M
)4 . (32)

In A−BH(M, P(m)), we used the quantity P(m) =
√

M−
√

m√
m , where A±BH is related to the surface

bounded by the outer and the inner BH horizon. (In the extended plane, it is necessary to consider
horizons r±). Note that A+

BH does not depend explicitly on P. When considered in the extended
plane, there are some special values of the P parameters for which there is a coincidence of
the areas A±BH, for the equal values of (m, ao). There is A−BH(m, ao) = A+

BH(m, ao) (within the
assumption M = 1) for m = 1/4 or ao = ab

ox, while A−BH(P, M) = A+
BH(P, M) for ao = 0, P = 1 or

ao = aa
ox, where

aa
ox ≡

√
16M4P4

(P + 1)8 , ab
ox ≡

√
16
(√

m− 1
)4 m2, (33)

see Figure 12. Interestingly, however, the LBHs areas have extreme points: ∂P A−BH = 0 for ao = aa
oπ

and ∂ao A±BH = 0 for ao = 0; finally, ∂P A+
BH = 0 for ao = ab

oπ , where

aa
oπ ≡ 4

√
P8

(P + 1)8 , ab
oπ ≡

4
(P + 1)4 , (34)

∂M A−BH = 0 for (ma
oπ , mb

oπ), (∂ao Ao
BH = 0, ∂m Ao

BH = 0 for ao = 0), where

ma
oπ ≡

1
2

(
−2
√

2 4
√

ao +
√

ao + 2
)

, mb
oπ ≡

√
2 4
√

ao +

√
ao

2
+ 1, (35)

(M = 1) see Figure 13, where the role of P = 0.25 and P = 1 is clear. Note, interestingly,
the presence of an extreme of the BHs areas related to the graph loop parameters.
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• Surfaces gravity: We can evaluate a LBH “surface gravity” correspondent to the outer and inner
horizons r±, respectively, as κ± ∈ {κ±(M, P), κ±(m, P)}:

κ− : κ−(m, P) =
4m3P4 (1− P2)

a2
o + 16m4P8 , κ−(M, P) =

4M3P4 (1− P2)
(P + 1)6

(
a2

o +
16M4P8

(P+1)8

) ; (36)

κ+ : κ+(m, P) =
4m3 (1− P2)

a2
o + 16m4 , κ+(M, P) =

4M3 (1− P2)
(P + 1)6

(
a2

o +
16M4

(P+1)8

) . (37)

Comparing the extended planes of Kerr geometries and the regular LBH geometries of Figure 2,
we expect surface gravities to vanish in some extreme conditions on the loop graph parameters.
It is then clear that κ± = 0 for P = 1 and κ± > 0 for P < 1, which is the region of the polymeric
function values we explore here. Thus, there is

lim
P→0

κ− = 0, κ+(P ≈ 0) =
4m3

a2
o + 16m4 −

4m3P2

a2
o + 16m4 + O

(
P4
)

. (38)

The limiting P = 1, occurring in the extended plane of Figure 2 at r = 1/2, is also an extreme for
the κ± : ∂ao κ±(M, P) = 0. Extremes ∂Mκ±(M, P) are for limiting conditions M = 0, P = (0, 1),
ao = 0, relating the limiting values on P and the ADM mass. A further extreme is for minimal
area ao = a1

o (or M = M(a1
o)) for κ−(M, P) and ao = a2

o for κ+(M, P). For convenience, we report
in Table 2 all the relevant minimal areas ai

o for i ∈ {1, . . . , 7}, introduced in this discussion and
represented in Figure 14. Similarly, there is ∂Pκ±(M, P) = 0 for P = 1 and M = 0, and also for
P ∈ [0, 2/3] with ao = a3

o for κ−(M, P) and P ≤ 1/2 for ao = a4
o .

There is an extreme for κ±(m, P) at ao 6= 0 for the limiting condition M = 0–([1]). There is
then ∂Pκ+(m, P) for P = 0, ∂Pκ−(m, P) = 0 for (m = 0, P = 0) and for P ∈]0,

√
2/3[ and

ao = a5
o . On the other hand, ∂mκ−(m, P) = 0, for the limiting cases m = 0, P = (0, 1) (including

(P = 1ao = 0)) and for a = a6
o . Analogously, there is ∂mκ±(m, P) = 0, an extreme condition

having the special solution ao = a7
o , notably independent from the polymeric parameter.

In Figure 14, we also considered an extended region of the P parameters.
• The temperatures: The evaluation of the temperature associated with the (regular) LBH proceeds

directly in terms of surface gravity κ+:

TBH =
κ+
2π

or TBH(m) =
(2m)3 (1− P2)
4π (a2

o + (2m)4)
. (39)

We actually evaluate the temperatures T±BH in terms of κ±, respectively, for the outer and inner
horizons r±. The interpretation and the evaluation of the temperature T−BH is debated in literature.
In this analysis, while we intend clearly T+

BH ≡ TBH as the BH temperature, when we intend the
BH in the extended plane, as in Figure 15, then we need to consider T±BH . On the other hand,
considering the extended plane (P− r) or (ε− r), we expect the occurrence of an “extreme” case,
where the temperature is null (similarly to the case of extreme Kerr BH) as made evident from the
study of the surface gravity κ±. Temperature is vanishing for m ≈ 0, in the case T+

BH(m, P):

lim
m→υ

TBH = 0, υ ≡ {∞, 0}. (40)

TBH(m→ ∞) =
1− P2

8πm
+ O

((
1
m

)2
)

,

TBH(P ≈ 0) =
2m3

π(a2
o + 16m4)

− 2m3P2

πa2
o + 16πm4 + O

(
P4
)

. (41)
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The analysis in Figure 15 investigates extended parameter regions, where negative surface gravity
is possible. (The negative κ± and therefore T±BH is a delicate and intriguing aspect of classical and
loop quantum BHs, tightly connected to the white holes definition—[26–28]).

• The luminosity: In the analysis of luminosity, we consider [1]. The luminosity can be estimated
by considering the Stefan–Boltzmann law as L(m) = αABH(m)T4

BH(m), where ABH is the BH area
(on horizon r+), and α is a factor depending on the evaluation model adapted for the luminosity.
However, in this work, we mainly consider the quantity L/α. By assuming α = constant, we
focus on the analysis of luminosity with the variation of the P parameters of the LQG graph
and on the metric bundles. Studying L(m)/α (or L(M)/α), we investigate the regular BH mass
evaporation process (the energy flux particularly where BH evaporation occurs through the
Hawking emission in the proximity of the BH outer horizon r+, with a temperature evaluated
according to the Bekenstein–Hawking law and connected therefore to the surface gravity κ+). We
perform our investigation considering different values of P and on the geometries connected by
the metric bundles. The luminosity is, therefore, in terms of m:

L(m) = αABH(m)TBH(m)4 =
16αm10 (1− P2)4

π3 (a2
o + 16m4)

3 . (42)

In the Schwarzschild limit, P→ 0 (correspondent to m→ M), there is

L =
16αm10

π3 (a2
o + 16m4)

3 −
64P2 (αm10)

π3 (a2
o + 16m4)

3 + O
(

P4
)

. (43)

We should note that: L(m) = 0 for P = 1 or m = 0 (in this special analysis, we consider m and P
independent—for the limiting condition m = 0 for the approximate geometry; see, for example,
discussion in [1]). It is, however, relevant to consider the extremes of luminosity function L
(related to the BH evaporation process for mass loss). Therefore, conveniently, we introduce here
the following special values of the minimal length parameter ao:

aI
o ≡

4
√

5M2

5(P + 1)4 , aI I
o ≡ 4

√
M4(3P− 1)

(P + 1)8(3P− 5)
, aI I I

o ≡ 4
√

5m2

5
, (44)

represented in Figure 14. Therefore, there is ∂mL(m) = 0 for ao = aI I I
o and for some limiting cases

on P (for example, vertices of the LBHs triangle in Figure 2, i.e., limiting geometries for parameters
values as studied in Section 2). Considering explicitly dependence on P, there is ∂PL(m) = 0 and
∂ao L(m) = 0 for the limiting cases on the parameters P . We now focus on the situations when
m = m(M, P). In this case, there is an extreme for the minimal area. (We include also the extremes
∂ML(M, P) = 0 in the limiting cases and for a = aI

o). Then, there is ∂PL(M, P) = 0 in the limiting
cases and P ∈ [0, 1/3] for a = aI I

o , where ∂ao L(M, P) = 0 only for the limiting cases. In Figure 15,
we consider different limiting cases on the LBH model parameters P = (P, m, ao) on the BHs
quantities κ±, L/α, and the temperature T±BH, making evident the presence of extreme points and
even negative values of temperature in extended regions of parameters.

• LBHs thermodynamical properties and MBs: We now consider the quantities of the regular
LBHs geometries, κ± (surface gravity) and L/α (luminosity) evaluated on the metric bundles
of the geometry. This analysis will connect different geometries of the same metric bundle
through their thermodynamical properties. This treatment of the thermodynamical properties
and LQG-BH will also characterize the role of the graph parameters in shaping different solutions.
Eventually, this analysis connects the extended plane parameter variation with the transition from
a LBH solution to another solution. In Figure 16, we note the presence of singularities and the
behaviors at increasing distance from the r = 0 (the bundles’ origins). A transformation from one
solution of the bundle to another follows transformations of (κ±, L/α) on the curves evaluated on
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the bundles. This analysis explores the possibility of a transition from one solution of a metric
family to another geometry of the same family, which, for example, can occur after interaction of
the attractor with the surrounding matter environment in non-isolated BH systems, which is the
general case in the most common astrophysical environments. This process would lead a BH from
a point to another point of its extended plane representation. (This transition could also involve,
of course, for some other diverse processes, a transition of the graph parameters). The relevant
aspect of this analysis is that this transition must carry the system from one point to another in
the extended plane along an MB curve. This means that the observer from the initial state will see
a transition of the fixed frequency from a point r1 to r2 6= r1 (in general, there are no fixed point
along r = constant), where r1 and r2 are two points along the bundle uniquely identified by the
detection of the fixed photon frequency. Vice versa, the observer will be able to recognize at the
fixed point through the photon orbital frequency variation in the external region any geometry
transition in the extended plane (regulated by thermodynamic laws). At fixed frequency, there is
always one and only one bundle; furthermore, a bundle curve does not in general self-cross–
there is an absence of knots. Therefore, we also test the hypothesis that the bundles, connecting
the solutions uniquely through their characteristic frequencies and defining the associated light
surfaces, could have a role in such transitions. Obviously, the thermodynamic onset provides in
the new points of the plane a series of quantities as surface of gravity luminosity or temperature
that have evolved on the bundles as shown in these analyses. Therefore, these results have to be
compared with the correspondent analysis of MB curves. It should be also noted that, in Figure 16,
we have fixed, depending on the parametrization of the bundles, different parameters and the
frequency. (The functions associated with these quantities are generally well defined far from the
horizons. In the analysis, we have taken advantage of this property to evaluate in the extended
plane these quantities also on the horizon curves as clear from the analysis in Figure 16. Whatever
the parameterizations adopted and the fixed parameters set, the horizon points of the extended
plane clearly highlighted by the vertices of the correspondent triangle in the representation of the
Figure 2 indicate signs of singularity for these quantities).

Figure 12. Curves of constant BH areas A±BH (BH areas relatives to BH horizons r±) are shown. Left first
and second panels: A±BH in the (ao, P) plane, respectively. Third panel: area A+

BH in the (ao, m) plane.
Details on the notation can be found in Table 1. Extreme length parameter ai

oπ for i ∈ {a, b, c} is also
shown—Equations (34) and (35). Here, ao = Amin/8π is an area parameter where Amin is the minimum
area gap of LQG, P is a metric polymeric parameter, and M is the ADM mass in the Schwarzschild
limit, while m is a parameter depending on the polymeric function. Right panel: loop length curves ab

ox
(aa

ox) as function of the loop mass m (polymeric parameter P for M = 1)—Equation (33). ab
ox, aa

ox are
solutions of A−BH = A+

BH for the BH areas.
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Figure 13. Curves of constant BH areas A−BH (BH area function on r−) in (m, ao) the plane. Different
panels show a focus on ranges of m, where m is a mass parameter depending on the polymeric function
and the ADM mass while ao = Amin/8π is an area parameter and Amin is minimum area appearing in
LQG (minimum area gap of LQG). Extreme loop mass ma

oπ and mb
oπ curves are shown— Equations (34)

and (35). Details on the notation can be found in Table 1.

Figure 14. Left upper panel: quantities ai
o for i ∈ {1, . . . , 7} of Table 2 as functions of the metric

polymeric parameter P ∈ [0, 1] for M = 1 or m = 1 (M is the ADM mass in the Schwarzschild limit and
m is parameter depends on the polymeric function). Upper center and right panels and bottom-left
panels show ai

o as functions of P for M = constant and m = constant. The center bottom panel shows
aυ

o for υ ∈ {I, I I, I I I} of Equation (44) solutions of ∂ao L(M, P) = 0, where ao = Amin/8π, is an area
parameter where Amin is a minimum area appearing in LQG (minimum area gap of LQG). The bottom
right panel represents M(ai

o) = constant in the plane (P, ao). See also Table 1 for further details on
the notation.

Table 2. Quantities ai
o for i ∈ {1, . . . , 7} represented in Figure 14. ao is the minimal loop areas, functions

ai
o are extremes of the surfaces areas κ±. M is the ADM mass, P is the polymeric function, and m is the

polymeric mass.

a1
o ≡ 4M2P4√

3(P+1)4 , a2
o ≡ 4M2√

3(P+1)4

a3
o ≡ 4M2P4

(P+1)4

√
(P−2)
(3P−2) , a4

o ≡ 4M2

(P+1)4

√
(2P−1)
(2P−3) ,

a5
o ≡ 4m2P4

√
(P2−2)
3P2−2 , a6

o ≡ 4m2P4√
3

,

a7
o ≡ 4m2√

3
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Figure 15. Plots of the surface gravity κ± and luminosity L/α as a function of the polymeric parameter,
(α is a constant) evaluated in the two different approaches and for selected values of the parameters—see
also Table 1. ao = Amin/8π is an area parameter where Amin is a minimum area appearing in
LQG (minimum area gap of LQG). P is the metric polymeric parameter, M is the ADM mass in the
Schwarzschild limit, while m is a parameter that depends on the polymeric function.
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Figure 16. Plots of the surface gravity κ± and luminosity L/α, α is a constant as functions of r evaluated
on the metric bundles of ao(ω) or Pω solution for metric bundles, for different values of the parameters
as signed on the panel. Table 1 contains further details on the notation. ao = Amin/8π is an area
parameter where Amin is a minimum area appearing in LQG (minimum area gap of LQG). P is the
metric polymeric parameter, M is the ADM mass in the Schwarzschild limit while m is a parameter
that depends on the polymeric function, ω is the bundle (light-like orbital stationary frequency).
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5. Discussion and Final Remarks

We review the steps of this analysis, discussing the main results and further developments.
In Section 2, we found the metric bundles for the LQG metric approximation, for the geometries
considered in Section 2.1. Results are shown in Figure 6 and more extensively analyzed in Section 3.2,
within different parameterizations, discussing through these structures the main characteristics of the
family of geometries and the characteristics of the horizons r±, through the light surfaces associated
with the MBs. We have also clarified some aspects of construction of the extended plane, within the
application discussed here, the choice of metric bundles parametrization, and the first formulation of
BH thermodynamics within the MB scenario in Section 4. We clarified aspects of MB definitions in the
static and spherically symmetric spacetime; see discussion in Sections 2.1.1 and 2.1.2. An extensive
characterization is shown in Figures 1 and 4, which leads to the construction of the extended plane for
these solutions. We explored two representations of the extended plane for this LQG-BH solution in
Figures 2 and 3 and interpreted by comparing with the (stationary) Kerr geometry extended plane
in Section 2.1.2. In this section, we also found the horizons’ replicas, showed in Figures 5 and 6.
These steps lead to the comparison of the LBH with the case of Reissner–Norström (RN) geometry
in Section 2.2. The LQG geometry under consideration shares different similarities with RN metrics
also from the MBs’ stand point. Thus, the second part of this investigation starts, where we analyzed
the LBHs’ thermodynamical properties—Section 4. We characterized the thermodynamical properties
of the LBH solutions in the extended plane for different parameters—see Figures 12 and 13, and on
the metric bundles in Figures 15 and 16, showing the divergences from the reference GR solution.
These quantities are evaluated on the horizon curves in the extended plane and on the MBs, relating
different geometries on the bundles curves with the different values of luminosity, temperatures, or BH
areas. Divergences with respect to the expected results considering the reference (asymptotically) GR
solution are shown in Figure 8 with respect to the limiting light-like frequencies ω used as characteristic
frequencies of the bundles. (The analysis of bundles in the extended plane compares intrinsically with
the asymptotical solution which in the plane is contained as points in line P = 0). In Figure 9, we show
results of the analysis on the horizontal line of the bundles’ structures, correspondent to the light
surfaces on a specific geometry, and this analysis points out very clearly the presence of non-monotone
behaviors of the frequencies ω with dependence on the metric parameters m, depending also on
the ADM mass (therefore eventually after a mass shift following the BH interaction with the matter
environment, or, possibly due to a “transition”, the “graph state” may undertake from one value of
its characteristic parameters to another). Similar behavior is shown with the presence of maxima and
minima in the LBHs areas and temperatures (surfaces gravity) as in Figures 12 and 13, and evaluated
on the metric bundles in Figures 15 and 16. A relevant aspect of this analysis is that the replicas relate a
region close to the horizons virtually in the sense of Figures 5 and 6 and a region far from the “central”
BH where there is a copy of the frequency ω. We can measure the discrepancies on the light frequencies
(and consequently the timelike frequencies) as measured in these regions expecting a GR solution.
Notably, the analysis may be interpreted as a deformation of aspects of causal structure (in the sense
of causal ball, for example) within the extended plane representation of Figure 6 or Figure 5, relating
graph properties to BHs thermodynamics with MBs.

We summarize below results of the investigation with some comments and contextualization.
1. Constraining LQG solutions. One purpose of this analysis is to provide constraints to the

LQG mini-super-space polymeric regular BHs of Equation (1) within the framework provided by
metric Killing bundles. The special framework is therefore here firstly applied to LQG–BH and
BH thermodynamics to discern possible LQG imprints in the characteristics of regions close to BHs
horizons and particularly within the idea to constrain the underlining graph features. Constraints are
provided as restrictions of the graph features with respect to ADM and polymeric mass (M, m),
the (ε, P) polymeric metric parameters, and the minimal LQG area parameter ao. (Eventually,
we enlarged the parameters’ value ranges to test the model, bracing the hypothesis of interacting
attractor in an astrophysical BH scenario, where the attractor, and consequently the graph, eventually
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may evolve—inducing a transition from a point to another on a bundle in the extended plane).
Discrepancies are highlighted by the comparative analysis with the reference solution of the general
relativistic onset. As metric bundles are particular sets of BH solutions which are defined by properties
of special associated light surfaces, this issue has been addressed with the investigations of the
properties of the orbital null like frequencies ω (characteristic bundle frequencies—all the geometries
of the bundle per-definition have equal values of orbital light frequency). Particularly, we are interested
in the properties of light-like limiting frequencies of stationary observers tracing some characteristics
of the regions close to the horizons in the sense of the extended plane and the replicas. A goal of this
analysis was to provide constraints to the graph construction, which, in various ways, underlines the
space(-time) structure of the model bridging the classical limit and quantum theory. In this respect,
this analysis actually was inspired by the idea to relate the graph to light propagation, within Killing
horizons and thermodynamics through the MB formalism. Besides the problem of the observation
of the possible quantum effects on large (macroscopical) scale structure, there are on the theoretical
grounds several aspects related to these theories to be clarified. The graph model quite naturally
encodes the geometry discretization with the loop quantum gravity states. The key point of these
quantum gravity approaches is actually the geometrical interpretation—in other words, to assign
an opportune and adapted geometry to (the set of LQG) states. LQG states (quanta of space) were
provided as spin network states, which are associated with a graph for the 3D (quantum) geometry.
(The graph granulates the geometry, constituents and structure; therefore, there is large interest in
the analysis of this very fundamental idea beyond a novel gravity geometrization/universalism).
A second key question is of course to reconcile the quantum approach to a classical or (semi-classical)
continuous geometry. The different regimes of the theory are provided generally by the graphs.
LQG is generally based on a fixed (lattice) graph replacing and “fine-graining” the texture of GR
geometry and establishing part of the relational structure. The Hilbert space, formed by the states on
the graph, provides a benchmarking between these. It should be also noted that indeed these special
light-surfaces related aspects of GR causal structure (delimiting existence of static and stationary
observers) to the graph geometry, in different parts of the same spacetime (through replicas) and
different geometries (bundles). We also provided constraints considering possible thermodynamic
transformations intended as a shift from one solution to another (a transition of horizontal lines
of the extended plane). We focused in this investigation particularly on the analysis of the BH
thermodynamical properties considering luminosity and surface gravity. In the MB frame, we found
variations of these quantities on the bundle curves, and thus relate the different geometries, according
to the metric parameters, with their thermodynamic characteristics.

2. MBs for LQG-BH solutions. This analysis ultimately also clarifies aspects of MBs introduced
in [6–11] when applied to the spherically symmetric case generalizing the tangency conditions of MBs
with the horizons’ curves in the extended plane with a notion of approximations in the sense of Figure 5.
As a sideline of this analysis, the MBs approach provided a novel frame of analysis and representation
of the families of geometries with Killing horizons. This reinterpretation started from the construction
of the extended plane for LQG polymeric BHs solutions in Section 2.1.2 comparing with the case of the
Reissner–Norström geometry in Section 2.2, whereas, in Section 3, we introduced the metric bundles
of the LBHs. One goal was to explore the MBs for the spherically symmetric static solutions as limiting
solutions in the extended plane, hence the comparative analysis with the extended plane in Kerr
geometries and the analysis with RN geometries. For one side, the metric (1) has similarities in RN
spacetimes. On the other side, we used the electrically charged and spherically symmetric spacetime to
enlighten properties of the extended plane. In the extended plane, the RN geometries were interpreted
in [6] as limiting geometries of the (stationary electro-vacuum) Kerr-Newman solution occurring
when the total charge is QT = Q/M. In this respect, the RN geometry was seen as a point in the
Kerr-Newman extended plane of P − r/M, where P is pair of two parameters.

3. MBs and BHs thermodynamics. The analysis has been completed with the re-formulation
in Section 4 of several aspects of the BH thermodynamics, where particularly in Section 4.1 the BHs
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surfaces gravity κ±, the luminosity L, and the temperature T±BH have been investigated in terms of
the loop model parameters P , thus these quantities are considered on metric bundles. Relevant for
emission analysis is the region r ∈ [2M, 3M], which is in the limiting Schwarzschild geometry (M is
the ADM mass) the region between the outer horizon and the last photon circular orbits, which here
has a special role in the bundles analysis as we showed in Figure 6. In conclusion, we constrain
the graph-metric bundles and thermodynamics. The notion of horizons’ replicas provided by the
collections of the MBs allows for reinterpreting the (classical) thermodynamical BH physics in terms of
transitions from one point to another (on the vertical line) of the extended plane. From this standpoint,
we focused on the explorations of the main quantities of LBHs physics entering into the analysis of BH
thermodynamical transformations.

4. Astrophysical relevance and phenomenological impact. A further goal of our work was
therefore also to test the MBs in the context of modified gravity. The goal is ultimately to detect
(and interpret) the hints of quantum modifications outside the horizons, constraining eventually the
graph properties—here the parameters P we used to construct the extended plane or the masses (the
loop and ADM mass), and to evaluate a possible shift in the model parameters evolving from one
solution in the extended plane to another. Our analysis presents an observational frame provided
by the MBs onset grounded on the analysis of certain light-surfaces of the geometries. These light
surfaces are the basis of several constraints of aspects of accretion disks. The characteristic bundles
frequencies and connects regions close to the horizons to far regions. A further advantage of this
method with respect to others (for example, the analysis of particle motions or spectra emission) is for
its astrophysical interests, opening a wide window of different applications centered on the concept
of MBs. The definition of these particular surfaces and their associated orbital frequencies are the
basis of constraints to different results of the High Energy Astrophysics of BHs, providing therefore
a powerful and ample investigation scenario. Up to now, no observational evidence has outlined a
clear distinctive signature of quantum gravity scenario but on constraints on the existing proposals.
There is therefore a great deal of attention on noticing any discrepancies in the current observations
with respect to the predictions of the standard theoretical setup enclosed in GR theory that could
be possibly explained in a quantum model. In this sense, the astrophysical setting offers the most
natural arena for investigating the phenomenology of quantum gravity; in particular, one can search
for new phenomena, which are unpredicted by the current GR model, but explained in a quantum
gravity framework. Such observation could provide a strong constraint on the validity of many models.
In this analysis, by comparing the predictions of the model with the features of the ordinary general
relativistic astrophysics, within the analysis of these light-surfaces and the derived concept of metric
bundles, we highlight some small but finite discrepancies, expectably detectible from the observations.
In this perspective, the construction of the extended plane and metric bundles, with the replica
definition, has consistently proved the possibility to detect the existence of divergences from expected
prediction of the GR model of reference. Several observational channels are opened today in this
context applicable to the examination of the light-surfaces; for example, we mention the recent window
of Gravitational Wave analysis and especially the Event Horizon Telescope to explore from different
(independent) angles the physics of BHs and their horizons. We tested the viability of this method to
constrain the theory and possible observational evidence on the Astrophysical phenomena related
to the BH physics focusing on the BH events’ horizon analysis. For these reasons, this investigation
obviously could not exclude considerations on BH thermodynamics, directly governed by the BH
horizon. The discrepancies highlighted between the predictions of these models, and the general
relativistic ones are small but may be detectable.

In conclusion, the light-surfaces are at the base of MB definitions, as their characteristic
frequencies have a wide field of application in many different aspects of BH astrophysics considering
magnetic fields and different features of accretion physics. Therefore, we believe this approach could
be a fruitful environment in which we can highlight the details attributable to transition from classical
to quantum scales, characterized by non-trivial modification from the corresponding GR counterpart.
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It can be expected that this departure from the results can be evident also in the extended matter
configurations, as accretion disks, their dynamics, and morphology. We expect therefore to apply this
method in different exact and approximated solutions.
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