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Abstract: It is well known that two different underlying dynamics lead to different patterns of
income/wealth distribution such as the Boltzmann–Gibbs form for the lower end and the Pareto-like
power-law form for the higher-end. The Boltzmann–Gibbs distribution is naturally derived from
maximizing the entropy of random interactions among agents, whereas the Pareto distribution
requires a rational approach of economics dependent on the wealth level. More interestingly, the
Pareto regime is very dynamic, whereas the Boltzmann–Gibbs regime is stable over time. Also, there
are some cases in which the distributions of income/wealth are bimodal or polymodal. In order to
incorporate the dynamic aspects of the Pareto regime and the polymodal forms of income/wealth
distribution into one stochastic model, we present a modified agent-based model based on classical
kinetic wealth exchange models. First, we adopt a simple two-class society consisting of the rich and
the poor where the agents in the same class engage in random exchanges while the agents in the
different classes perform a wealth-dependent winner-takes-all trading. This modification leads the
system to an extreme polarized society with preserving the Pareto exponent. Second, we incorporate
a solidarity formation among agents belonging to the lower class in our model, in order to confront a
super-rich agent. This modification leads the system to a drastic bimodal distribution of wealth with
a varying Pareto exponent over varying the solidarity parameter, that is, the Pareto-regime becomes
narrower and the Pareto exponent gets larger as the solidarity parameter increases. We argue that
the solidarity formation is the key ingredient in the varying Pareto exponent and the polymodal
distribution. Lastly, we take two approaches to evaluate the level of inequality of wealth such as Gini
coefficients and the entropy measure. According to the numerical results, the increasing solidarity
parameter leads to a decreasing Gini coefficient not linearly but nonlinearly, whereas the entropy
measure is robust over varying solidarity parameters, implying that there is a trade-off between the
intermediate party and the high end.

Keywords: kinetic wealth exchange model; stratified society; solidarity; Pareto exponent; Gini
coefficient; entropy

1. Introduction

Frequency distributions of a variety of statistics in social systems—such as income, wealth, city
sizes, price-fluctuation of stock markets, and so on—show a power-law behavior. Among them, the
distribution of income and wealth in a society was known to follow a power-law by V. Pareto in 1897 [1]
and, since then, many empirical and numerical studies have been performed and newly discovered
facts are reported over the whole range distribution functions [2–8]. The so-called Pareto law is valid
only for the high rich people [9–12] and for the majority of non-rich people different distributions
such as exponential and/or gamma-like functions are well fitted to the empirical statistics [13–15].
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To explain the observed features of distributions of income and wealth, several agent-based models
have been proposed on the basis of stochasticity and statistical mechanics. For the former, the
variations of income and wealth are described in terms of stochastic terms, namely additive and
multiplicative [6,16,17]. An additive term represents salaries while a multiplicative term represents
a premium from investment proportionate to invested wealth. Their distribution is quite different
from Gibbs and Gamma distributions and shows a power-law tail at large wealth and a sharp cutoff

at small wealth. As for the latter, several physicists proposed kinetic exchange models of money or
monetized wealth from analogy with an ideal gas in equilibrium for recent decades [7,8,18–23] although
sociologist John Angle first proposed a class of stochastic processes for the universal emergence of
inequality in wealth distribution [5]. By introducing saving propensities, gamma-like distributions
were obtained as stationary distributions [24]. Kinetic exchange models with saving propensity shed
a light on how rich people gain a huge wealth. A saving propensity is a key ingredient, which is
correspondent to the multiplicative term in stochastic wealth models. When saving propensity is
distributed heterogeneously to agents, a power-law tail appears in distribution functions as done by a
multiplicative term in the stochastic wealth process [25].

For the kinetic exchange models, there have been many developments analytically and
numerically [18–23]. Thus, we start our study from the existing kinetic exchange models, which are
greatly adaptable for simulation and give the insights on empirical distributions of income and wealth
in human societies. The goal of our study is to develop an agent based model incorporating the dynamic
aspects of the Pareto regime [26] and the polymodal forms of income/wealth distribution [27,28] under
the condition of constant total income/wealth. To this end, we first build a two-class society consisting
of the lower end and the higher end, which are arbitrarily determined on 90–10 or 80–20 rules for
simplicity. A two-class society is simply based on the fact of two-class structure of income distribution
such as exponential bulk and power-law bulk [26]. Different from the random exchange rule taken in
the classical kinetic exchange models [6–8], we adopt a wealth-dependent trading rule among agents
belonging to different classes, according to which agents take part in a winner-take-all trade with their
own wealth-weighted winning probability, respectively. By introducing a wealth-dependent trading
rule, we simply replicate the unilateral flow of wealth via a premium from investment proportionate to
invested wealth between the rich and the poor. The random exchange rules apply to agents belonging
to the same class for both the poor and the rich. Then, we examine the change of wealth distributions
over varying model parameters such as saving propensity and classifying criteria, that is, 90–10 and
80–20 rules. Second, we allow agents in the lower class to form solidarity against an agent in the
upper class when they interact economically via wealth exchange. This additional restriction on the
trading rule is motivated from activities of labor unions to a big as well as the government’s income
inequality-mitigating policies such as increasing minimum wage and intensifying progressive taxes on
people in the high-income brackets. By varying the solidarity parameter, we examine the change of
income/wealth distributions and quantify the level of inequality in terms of inequality indices such as
the Gini coefficient and the entropy measure.

For comparative analyses, we apply the constraints such as a winner-take-all trading rule in a
two-class society and the solidarity formation to the existing kinetic exchange models, which evolve to
stationary wealth distributions after transient simulation time steps approximately to be 1000 Monte
Carlo (MC) time. Then, we numerically investigate the impact of the additional constraints on the
existing kinetic exchange models by examining the shape of wealth distribution, estimating the Pareto
exponent and calculating the Gini coefficient, which is a standardized index for social inequality. Our
simulation results will be given in Section 3.

The classical kinetic exchange models are classified as random exchange with no saving,
homogeneous saving, and quenched heterogeneous saving [7]. Since a kinetic exchange model
with heterogeneous saving propensity reproduces distributions very similar to empirical distributions
of income and wealth, we perform a close comparative analysis on that model. For other two models,
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we give a graphical comparison. We also take two approaches, that is, a Lorenz curve-based Gini
coefficient and a Shannon entropy in order to quantify the degree of inequality from model societies.

The paper is organized as follows. In Section 2 we give a brief description and a summary of
features obtained analytically and numerically about those kinetic exchange models, and present
our modified agent-based stochastic model. For the classical kinetic exchange models, we obtain the
two-class classifying criteria numerically from their stationary distributions of income/wealth. All the
simulation and numerical results are presented and discussed in Section 3. Concluding remarks are
given in Section 4.

2. Kinetic Exchange Models

In kinetic exchange models, two randomly chosen agents from a society consisting of N agents
interact with each other through a pairwise exchange trading of a quantity x, referred to as monetized
wealth. Agents are usually characterized by their current wealth {xi}, i = 1, 2, · · · , N and by some
parameters such as the saving propensityλi. The system evolves by the following microscopic dynamics

xi(t + 1) = xi(t) −4x,

x j(t + 1) = x j(t) + 4x,
(1)

where 4x is the money exchanged. It should be noticed that the total wealth of two agents is
conserved during every transaction, xi(t + 1) + x j(t + 1) = xi(t) + x j(t). Generally, the equilibrium or
non-equilibrium distribution functions are determined by two ingredients of the microscopic dynamics,
namely time-reversality of the exchange dynamics and boundary conditions on {xi}. In the following,
we briefly describe three kinetic exchange models and discuss how we modify them to fit the goal of
our study.

2.1. Kinetic Exchange Model without Saving

As described above, the quantity x represents the monetized wealth and4x is the money exchanged,
which can have a constant value,

4 x = 4x0 (2)

or be a random contribution from both wealth

4 x = εxi(t) − (1− ε)x j(t) (3)

where ε is a random number uniformly distributed between 0 and 1, and is updated at every trade.
The exchange rule in Equation (3) represents a random reshuffling of the wealth of two agents, since
Equation (1) can be reformulated as

xi(t + 1) = ε(xi(t) + x j(t)),

x j(t + 1) = (1− ε)(xi(t) + x j(t)).
(4)

Since these two dynamics are time-reversible, they, under the boundary condition of xi(t) > 0 and
x j(t) > 0, lead to an equilibrium state characterized by the Boltzmann–Gibbs distribution [29],

f (x) = 〈x〉−1 exp
(
−

x
〈x〉

)
(5)

where the effective temperature Tλ of the system is the average wealth; herein the homogeneous saving
propensity λ = 0, see Figure 1 where a perfect fitting with the theoretical curve is clearly observed.
In fact, this exponential equilibrium distribution is theoretic-derived by maximizing the entropy of
wealth distribution S = −

∫
∞

0 dx f (x)ln f (x) under the constraint of wealth conservation, using the
method of Lagrange multipliers [30,31]. Although the above models seem to be too simple to describe
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the reality, there is a possibility that economic interactions among economic agents can be modeled in
terms of simple statistical mechanics leading to universal statistical laws.
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Figure 1. Linear (a) and semi-log (b) plots of the probability density of wealth from numerical
simulations (dots) for homogeneous saving propensities with varying values in the interval [0, 1),
compared with the theoretical curves defined by Equations (8)–(10). When λ = 0, the curve becomes
the Boltzmann–Gibbs distribution. Also, when λ approaches 1, the peak shifts to the mean value and
the fluctuations get smaller as predicted by the mode xm = 3λ〈x〉/(1 + 2λ) obtained from Equation (8).

2.2. Kinetic Exchange Model with Homogeneous Savings

A little more realistic economic exchange model, where all agents in the system are assigned a
constant saving propensity, is presented. Here, all agents save a constant fraction λ of their own wealth
before carrying out a pairwise random trade, and then exchange the remaining fraction (1− λ) of their
wealth in the following way,

xi(t + 1) = λxi(t) + ε(1− λ)(xi(t) + x j(t)),

x j(t + 1) = λx j(t) + (1− ε)(1− λ)(xi(t) + x j(t)),
(6)

where 4x in Equation (1) is given by

4 x = (1− λ)
[
(1− ε)xi(t) − εx j(t)

]
. (7)

The corresponding equilibrium distribution is, by the numerical fitting, verified to be the gamma
distribution which well fits the simulation results shown in Figure 1 [32],(

〈x〉
nλ

)
f (x) ≡ f (ξ) =

1
Γ(nλ)

ξnλ−1e−ξ = γnλ(ξ) (8)

where the wealth x is rescaled with respective to the effective temperature Tλ as follows,

ξ =
x

Tλ
(9)
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and the two parameters nλ and Dλ are numerically estimated as follows

nλ ≡
Dλ

2
= 1 +

3λ
1− λ

=
1 + 2λ
1− λ

,

Tλ =
〈x〉
nλ

=
1− λ

1 + 2λ
〈x〉.

(10)

The parameter Dλ plays the role of an effective dimension in an ideal gas system and the gamma
distribution γnλ(ξ) is identical to the Maxwell–Boltzmann distribution of kinetic energy for a system
of molecules at temperature Tλ in Dλ dimensions (only valid for integer or half-integer values of
nλ). Also, the mode of the gamma distribution f (x) of wealth is given as xm = 3λ〈x〉/(1 + 2λ) from
Equation (8).

Following this analogy between a closed economy model and an ideal gas kinetic theory, it should
be noticed that an equipartition theorem leads to a relation between γnλ(ξ) and Dλ [24],

〈x〉 =
1
2

DλTλ. (11)

Thus, this equivalence is naturally extended to cases with real values λ ≥ 0.
Since λ varies between 0 and 1, the Dλ increases from 2 to infinity. In a higher dimension, the

fraction of exchanged kinetic energy between two colliding particles gets smaller and, at the same time,
the effective temperature Tλ decreases with increasing λ, indicating smaller fluctuations of x during
exchange transactions as shown in Figure 1. One can notice that the mean amount of exchanged wealth
in Equation (6) is given by (1− λ)〈x〉, which is approximately equal to Tλ, see Equation (10).

2.3. Kinetic Exchange Model with Heterogeneous Savings

In fact, agents in the society are intrinsically heterogeneous in saving propensity. A further more
realistic exchange model is established by assigning all the agents different saving propensities λi,
which is distributed in the interval (0, 1) [33,34]. The trading rule in this model is given as follows.

xi(t + 1) = λixi(t) + ε
[
(1− λi)xi(t) +

(
1− λ j

)
x j(t)

]
,

x j(t + 1) = λ jx j(t) + (1− ε)
[
(1− λi)xi(t) +

(
1− λ j

)
x j(t)

]
.

(12)

Or, equivalently, can be formulated through Equation (1) with 4x given by

4 x = (1− ε)(1− λi)xi − ε
(
1− λ j

)
x j. (13)

The most noticeable feature of this model, which is supported theoretically in several works, is
that the stationary wealth distribution exhibits a robust power law at large vales of x,

f (x) = x−1−α (14)

with a Pareto exponent α = 1 in the case of uniformly distributed λ and with α > 1 if the density
g(λ) ∼ (1− λ)α−1 satisfying that g(λ)→ 0 for λ→ 1 . As reported in [35], the wealth distribution
of the single agents, belonging to a sub-interval of the λ range (0, 1), is not of a power-law type but
has a well-defined mode with an exponential tail, which is similar to the case with a constant saving
propensity λ0, as shown in Figure 2. Thus, the power law seems to arise from the superposition of
these partial gamma-like distributions corresponding to the various batch of λ’s, where the average
value is proportional to 1/(1− λ) and thus extended to very large values of x (see Figure 2). Roughly,
the significant contribution from partial distributions to a power-law seems to be concentrated on the
partial distributions with large saving propensities λ’s belonging to (0.9, 1).
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2.4. Two-Class Kinetic Exchange Model with Wealth-Dependent Trading Rules

As reported from empirical studies of income distributions in USA and UK [13,14], there seems to
be two distinct parts in a society, that is, the whole income distribution can be fitted by an exponential
function in the lower part and a power-law function in the upper part. This fact reveals the existence
of two-class structure in the American society and implies there are different mechanisms in wealth
condensation for the poor and the rich, respectively. Based on these findings, we classify the society into
two classes: the upper and the lower, respectively. Since it is unreasonable that a rich one and a poor
one make a random exchange under the same condition, we impose additional restrictions on freely
random exchange rules among agents as done in previous three representative kinetic models. If two
agents belong to the same class, they can interact in the same manner with Equation (1). However, if
they belong to different classes, they perform an exchange transaction on a random fraction of the
lower agent’s wealth following the wealth-dependent trading rules defined in the below. That is, the
exchange quantity 4x is newly defined by

4 x = ε×min
(
xi(t), x j(t)

)
(15)

where ε is a random variable uniformly distributed over [0, 1] and is updated at every transaction.
The random exchange rule is modified into a wealth-dependent trading with winning probabilities
defined as follows,

wi(t) = xi(t)/(xi(t) + x j(t))

w j(t) = x j(t)/(xi(t) + x j(t))
(16)

where wi(t) and w j(t) are winning probabilities of agents, respectively, at the transaction time t. We
applied the above rule to all three kinetic models with following classifying threshold values, which
are arbitrarily determined based on 80–20 and/or 90–10 rules. The Table 1 contains the class-threshold
values for three kinetic models with different saving parameters.



Entropy 2020, 22, 386 7 of 14

Table 1. Two class-threshold criteria are given for three representative kinetic models. All threshold
values are numerically determined from simulated distributions of those models. The distributions are
obtained from several hundred steady-state ensembles, each of which is performed from the initial
condition of egalitarian society consisting of 1000 agents with the wealth of 100.

Model. Saving Parameter (λ) xth Based on 80–20 xth Based on 90–10

2-1 model, Equation (4) No saving 160 230

2-2 model, Equation (6)

λ = 0.1 60 128
λ = 0.2 156 215
λ = 0.3 152 201
λ = 0.5 147 189
λ = 0.7 138 167
λ = 0.8 128 147
λ = 0.9 122 136
λ = 0.95 115 124

2-3 model, Equation (12) λi ∈ U(0, 1) 110 117

2.5. Two-Class Kinetic Exchange Model with Solidarity

In reality, one-to-one trading between the agents belonging to the different classes is unrealistic
when a rich agent is a company. Therefore, we consider a solidarity formation among the poor as
done in activities by various labor unions. In our study, we assume that only agents in the lower class
coalesce into big one union to perform the wealth-dependent trading with one agent in the upper
class. In this case, the solidarity ratio α plays the role of critical control parameter. The whole trading
procedures are summarized as follows:

1. Two agents are randomly selected.
2. Identify the class of each agent.
3. If they belong to the same class, then they perform the trading according to the rules described in

Section 2.1 through Section 2.3, respectively.
4. If they belong to the different classes, the agent in the lower class gather partners according to the

solidarity ratio η in the lower class and enter the wealth-weighted trade described in Section 2.4
with the following winning probabilities defined by

wi(t) =
Ni∑

k=1

xk/

 Ni∑
k=1

xk + x j


w j(t) = x j/

 Ni∑
k=1

xk + x j


(17)

where Ni = ηNlower+1, the Nlower denotes the number of agents in the lower class.
5. If the agent i wins the trading, ∆x is equally distributed to all the partners.
6. When the agent i loses the trading, only the agent i loses his own wealth with other partners

preserving their own’s.

3. Numerical Results and Inequality Index

3.1. Wealth-Dependent Trading Rules Effect on Wealth Distribution of a Stratified Society

In our study, we determine the classification threshold values of wealth estimated by rule of
thumb based on the 80–20 and/or 90–10 rules for the representative three kinetic models, respectively,
as summarized in Table 1. We start a simulation of each kinetic model for a society consisting of 1000
agents with 100 initial wealth each. In order to obtain the steady-state distributions for each simulation,
we perform 103 Monte Carlo (MC) time steps, where one MC time step is defined as 1000 times random
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exchanges among 1000 agents. Thus, during one MC time step, each agent can trade at least twice
on average. Also, we adopt the ensemble method in order to ensure good statistics, which implies a
good quality of wealth histogram. In a two-class effect simulation, we created 1000 ensembles for each
condition. We presented the simulation results in Figure 3. By imposing the class boundary and the
wealth-dependent winning probability rule on every trading among agents, we can observe that an
extreme differentiation emerges with a perfect collapse of the intermediate part. In addition, we find
two interesting facts: one is the power-law patterns observed in the lower part under the conditions of
no saving, lower saving, and heterogeneous saving, and the other is the intensified differentiation with
increasing homogeneous saving propensity. As for the latter case, an unclassified society with a high
saving propensity is very close to an egalitarian society with very low Gini coefficient, numerically
estimated to be 0.11 on ensemble average. However, about 80% of the total population falls into
the extreme poverty by incorporating the classifying effect. This finding strongly supports that the
wealth-dependent trading rule in a society can lead a normal or a near-equality society to extremely
skewed society with an extreme poverty class.
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Figure 3. Wealth density functions of no-class and two-class cases are plotted for comparison. (a)
A simple exchange model with no saving; (b) an exchange model with heterogeneous saving; and
exchange models with homogeneous saving, (c) λ = 0.3 and (d) λ = 0.9. One salient feature is that a
power-law in the lower part is clearly observed and the other exciting finding is that the differentiation
is intensified with increasing homogenous saving propensity, as shown in (c) and (d).

3.2. Solidarity Effect on Wealth Distribution of a Stratified Society

As shown in previous section, a two-class society with wealth-dependent trading rules leads the
system into the perfect collapse of the intermediate part. Despite of the random exchange in each
class, the unilateral flow of wealth from the poor to the rich completely polarizes society. Therefore,
some countermeasures, such as activity of a labor union and/or government policies, must be taken
to mitigate the social polarization developed in the above models. We allow agents in the lower
class to form solidarity against the agent in the upper class in a wealth-dependent trade. Figure 4
shows the comparative numerical results for four cases with different conditions and parameters.
Herein, we only consider those cases with two-class society based on 90–10 rule, since there is no
clear difference between 80–20 and 90–10. Noticeably, we observe that there is a clear mitigating
behavior of wealth inequality by the solidarity. As confirmed numerically in Section 3.1, a two-class
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society with wealth-dependent trading rules develops the society into extreme social polarization.
However, just by introducing a solidarity condition to agents in the lower class, the society develops
into more equalized stationary state. We also examine the behavior of inequality mitigation over
varying solidarity parameter. To this end, we consider only the two-class society with heterogeneous
saving propensity, which is much closer to reality. As shown in Figure 5, there is an apparent behavior
of decreasing fraction of the poor as the solidarity parameter increases to η = 0.1, over which no clear
behavior of decreasing inequality is observed.
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However, it is unclear if there is a Pareto-regime in the upper class from Figure 5. Therefore, we
examine the cumulative wealth distribution as shown in Figure 6, where we discovered two important
behaviors. One is the robustness of the Pareto-law behavior in the high end. Even in the extremely
polarized case, the Pareto exponent is almost invariant. The other is the deviation of Pareto exponent
from being α = 1. As the solidarity parameter gets higher, the Pareto regime gradually shrinks with
increasing Pareto exponent.
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Figure 6. Wealth cumulative distributions plotted for the kinetic exchange models with heterogeneous
savings of no class and two-class societies with varying solidarity parameters. For the no-class case,
there is a large Pareto range covering more than 50% population. For the two-class with no solidarity,
the high end still has the Pareto regime with a Pareto exponent of 0.94 and shows the clear collapse of
the intermediate part. For the rest two cases, the Pareto regime shrinks too much and the descent gets
steeper with a larger Pareto exponent while the intermediate part gets intensified.

3.3. Lorenz Curve and Gini Coefficient as an Inequality Index

In order to quantify the overall wealth inequality for the kinetic exchange models considered, we
use the Lorenz curve and the Gini coefficient as shown in Figure 7. The Lorenz curve is a standard
way of representing income/wealth distribution in the economic literature [36]. It is defined by two
coordinates X and Y depending on a wealth parameter x and a wealth density function f (x),

X(x) =
∫ x

0
f (x′)dx′ and

Y(x) =
∫ x

0
x′ f (x′)dx′/

∫
∞

0
x′ f (x′)dx′

(18)

where X denotes the fraction of the population with wealth below x, and Y is the fraction of the wealth
this population accounts for. As x varies from 0 to∞, X and Y change from 0 to 1 and parametrically
define a curve. We present the Lorenz curves for the kinetic models with heterogeneous savings in
Figure 7. Two interesting behaviors are observed: one is the extreme wealth polarization by two-class
society with wealth-dependent trading rules, which leads to a unilateral flow of wealth from the poor to
the rich, and the other is the nonlinear behavior of solidarity parameters on mitigating social inequality.
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Figure 7. Lorenz curves plotted for the kinetic exchange model with heterogeneous savings under
a variety of conditions. Two intriguing behaviors are observed: one is the unilateral flow of wealth
by the economic barrier for ta wo-class society and the other is the nonlinear behavior of a solidarity
parameter on mitigating wealth inequality. At η = 0.1, the Gini coefficient seems to be minimized
although numerically.

In addition, we compute the Shannon entropy [37] to quantify randomness and stochasticity in
wealth distributions. Given the numerical histogram, the Shannon entropy is expressed as

S(w) = −
∑N

i=1
p(wi) × ln p(wi) (19)

where p(wi) denotes a discrete probability of one’s wealth belonging to
[
wi −

∆w
2 , wi +

∆w
2

]
with a bin

size ∆w. Table 2 contains the computed results of the Shannon entropy and the Gini index. As shown
in Table 2, the robustness of the Shannon entropy implies that microscopic replacements among agents
make no impact on the stochastic structure of the whole stationary system.

Table 2. A kinetic exchange model with quenched heterogeneous savings is only considered because it
is most suitable for the real wealth distribution. The entropy is computed numerically with ∆w = 1
for qualitative comparison. The entropy measure is robust compared to the Gini index over varying
solidarity parameter. Also, the Gini index becomes stable for increasing solidarity parameter above a
certain value approximately to be = 0.03 while the Shannon entropy is robust over varying solidarity
parameter at statistical stationary states.

Model Solidarity Parameter Entropy, S(w) Gini Index

2-5 model

η = 0 0.9595 0.9371
η = 0.01 5.2524 0.4768
η = 0.03 5.2087 0.3874
η = 0.05 5.1369 0.3794
η = 0.08 5.1992 0.3878
η = 0.1 5.1594 0.3728
η = 0.15 5.1608 0.3662
η = 0.2 5.1512 0.3704
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4. Discussion and Conclusions

In this study, we have presented a modified agent-based stochastic model by introducing a
two-class society with wealth-dependent trading rules and a solidarity formation, in order to explain
the dynamic aspects of the Pareto regime and the polymodal behavior of income/wealth distributions
observed in some cases [27,28]. According to previous kinetic exchange models, all agents trade in
the same manner irrespective of their own wealth. For example, this behavior of random exchange
between the poorest and the superrich is in some respects very unreasonable. So we first established
a two-class society, which is based on empirical facts [26], and modified the random exchange rule
into the wealth-dependent trading rule. In our study, we adopted the 80–20 and 90–10 classifying
criteria as rule-of-thumb in order to establish a two-class society. In the forthcoming research, we
will closely examine the effect of a classifying criterion. When we applied this modification to the
existing kinetic models, a drastic bimodal distribution appeared—that is, there was no intermediate
regime in the distribution as shown in Figure 3. This looks very unreal in terms of studies empirically
reported so far. Therefore, we incorporated the solidarity-forming factor in our two-class model. This
modification is motivated from activities of labor unions and the government’s inequality-mitigating
policies. We mainly investigated the impact of our two constraints or modifications on the kinetic
exchange model with quenched heterogeneous saving propensity, which yields to a power law
distribution for the high end although the Pareto exponent is fixed to one. Using our final stochastic
model, we obtained two interesting facts. One is the varying Pareto exponent over varying solidarity
parameter, which explains the dynamic aspects of the high end. There is also a varying scale regime
as shown in Figure 6. As the solidarity parameter increases, the scale range gets smaller and the
Pareto exponent increases. Furthermore, it is noticeable that the Pareto exponent of a two-class society
with no solidarity is still estimated to be one as shown in Figure 6. That is, the solidarity parameter
is the key ingredient in varying the power-law exponent in income/wealth distribution. The other
is the peak-like polymodal behavior observed in Figure 5. In fact, the bimodal and the polymodal
income/wealth distributions are not clear in empirical income/wealth distributions so far except those
in J.C. Ferrero’s works [27,28], where the Japanese income distribution in 1998 shows an unclear
bimodal behavior [27] and the Argentine income distribution shows a two-humped bimodal behavior
never observed in other empirical works [28]. This polymodal behavior was not generated from the
previous kinetic exchange model. Although our peaked distribution is not the same as those in Japan
1998 and Argentina 2002, our two-class society model with solidarity presents a possibility to generate
unfamiliar income distribution rarely observed in reality.

We give a summary of our numerical results in the following. Our model led an egalitarian
society into extreme social polarization with the Gini coefficient estimated to be more than 0.94 and the
Shannon entropy to be 0.96 for the case with heterogeneous saving propensity under the condition of
no solidarity. Also, the intermediate part of wealth distribution is completely collapsed irrespective of
model details considered here. Nevertheless, the high end showed a robust Pareto-law behavior with
the same Pareto exponent. Another intriguing finding is that a most even society, that is, a society
with higher homogeneous saving propensity is most severely polarized by the economic barrier. This
is probably due to the definition of 4x = ε ×min

(
xi(t), x j(t)

)
, according to which the 4x is greater

compared to other cases since the difference between randomly chosen two wealth is smaller as the
society gets more and more even. When the solidarity is involved in the two-class society model, a
varying Pareto exponent and a poly-model behavior in distribution emerged. This finding can give a
clue to understand the varying Pareto exponent in the high end and the polymodal behavior in the
intermediate regime in terms of solidarity factors. The solidarity factor can be extended further over our
simple argument, that is, the activity of labor unions and the government’s counter-inequality policies.

Although our model partly succeeded in reproducing the varying Pareto exponent and the
polymodal behavior in distributions, there are some critical limitations. First, we just consider the
closed economy, which is numerically and analytically well analyzed in terms of kinetic exchange
models. In forthcoming research, we will examine the validity of our model in the open economy.
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Second, a two-class society hypothesis is not universal but in some respects ad-hoc. Therefore, we
need to study the possibility of multi-class society. Third, the wealth-dependent trading rules are
also ad-hoc, so we need to consider general cases. Lastly, we cautiously propose the possibility of
evaluating the government’s counter-inequality policies using our model.
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