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Abstract: The growing number of operations in implementations of the non-local fractional
differentiation operator is cumbersome for real applications with strict performance and memory
storage requirements. This demands use of one of the available approximation methods. In this
paper, the analysis of the classic integer- (IO) and fractional-order (FO) models of the brushless
DC (BLDC) micromotor mounted on a steel rotating arms, and next, the discretization and efficient
implementation of the models in a microcontroller (MCU) is performed. Two different methods for the
FO model are examined, including the approximation of the fractional-order operator sν (ν ∈ R) using
the Oustaloup Recursive filter and the numerical evaluation of the fractional differintegral operator
based on the Grünwald–Letnikov definition and Short Memory Principle. The models are verified
against the results of several experiments conducted on an ARM Cortex-M7-based STM32F746ZG
unit. Additionally, some software optimization techniques for the Cortex-M microcontroller
family are discussed. The described steps are universal and can also be easily adapted to any
other microcontroller. The values for integral absolute error (IAE) and integral square error (ISE)
performance indices, calculated on the basis of simulations performed in MATLAB, are used to
evaluate accuracy.

Keywords: fractional calculus; Grünwald–Letnikov differintegral; BLDC motor model;
microcontroller implementation

1. Introduction

Optimal solutions for implementing models of plants are of great interest to industry, since they
enable the extension of the computer-aided simulations performed in computation software such as
MATLAB/Simulink. In numerous control systems, it is essential that the process of tuning the controller
on the basis of measurements of system output involves as few costly plant identification iterations as
possible. A common solution involves synthesizing the plant model from the measured characteristics
and implementing it in a dedicated software environment or microprocessor-based hardware platform.
Significant difficulties arise when the models are described by fractional-order calculus (FOC) [1–3].
Much research on fractional-order control systems uses computational software for analysis and
simulations. A noticeably smaller proportion addresses the problem of digital implementation of
FOC equations on real devices, not only theoretically, but also practically [4–8]. In contrast to the
well-known bounded numerical approximations of a classic integer-order derivative, such as backward
or central differences, the problem arises of a constantly increasing number of discrete convolution
operations over time. In order to reduce the negative impact of this issue, numerous approximation
methods have been proposed [9–12], divided between the time-domain and frequency-domain. In the
time domain, limited memory-based approaches are the most popular, including the Short Memory
Principle (SMP) algorithm introduced by Igor Podlubny [3]. In the frequency domain, a selected range
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of Bode characteristics G(ω) can be approximated using the well-known Oustaloup Recursive filter
algorithm (ORA) [10] or modifications thereof. Hardware implementation of fractional order models in
control engineering is of great interest for the purposes of offline controller tuning and testing in already
developed industrial control systems, which must not be affected in any way. An accurate, equivalent
mathematical model realized as a dedicated hardware platform is usually desired. It can be very useful
in such cases to use a microcontroller (MCU) as the target plant, with the output signal calculated on
the basis of a transfer function of its model. Alternatively, one can consider designing an equivalent,
time-continuous fractance circuit. In our research, we focus on the former approach, touching on
the problem of discretization of the fractional-order model and combining approximation methods
with universal optimization programming techniques to improve performance, reduce computation
time, and limit the size of the occupied microcontroller memory with a negligible impact on accuracy.
As a rule of a thumb, optimal implementation allows a higher order N of approximation formulas,
producing more complex but accurate equations, which can be computed during the same constant
sampling period. The presented example of microcontroller implementation is an essential part of the
testing hardware platform, which is designed for the purpose of developing a sophisticated variable
fractional-order PID (VFOPID) controller to be used in a closed-loop control system with multiple
brushless DC (BLDC) motors. The paper is arranged as follows: In Section 2, the proposed testing
platform and plant models are described. A description of the MCUs selected for the experiments
is also provided. In Sections 3 and 5 approximation and discretization techniques, useful for the
implementation of the models on the target platform, are discussed. Two approaches are considered:
approximation with an ORA and numerical evaluation of the fractional differential equation using a
truncated Grünwald–Letnikov (GL) definition. Some remarks related to implementation are given in
Section 4. Conclusions are given in the final Section 6.

2. Plant Models

The closed-loop control system of an unmanned aerial vehicle (UAV) quadcopter arm, presented
in Figures 1 and 2, consists of a hardware platform with two micro BLDC motors, an encoder and a
controller for modeling and designing an accurate control law for a dedicated fractional-order PID
(FOPID) controller [3]. For small angles we treated the plant as a black box and provided classic,
first and second integer-order Küpfmüller models, further enhanced by a model described by the
fractional-order transfer function (FOTF). Matching the response of simple fractional order model
approximation with the original data exceeded first and second-order Küpfmüller models. However,
several assumptions and specific implementation techniques had to be considered, which will be
described in the sections that follow. The transfer functions of the models, prepared in MATLAB R2017b
computation software using PID Tuner applet, Optimization Toolbox and FOMCON [13,14] are:

1. First-order plus dead time (FOPDT)

GFOPDT(s) =
KP

(1 + TPs)
e(−TDs) =

1
(1 + 0.4934s)

e−1.2279s (1)

where KP denotes the gain of the model, TP is a time constant and TD is the delay of the plant.
2. Second-order plus dead time (SOPDT)

GSOPDT(s) =
KP

(1 + TPs)2 e(−TDs) =
1

(1 + 0.319s)2 e−1.064s (2)

3. Non-integer-order plus dead time (NIOPDT)

GNIOPDT(s) =
KP

ansvn + an−1svn−1 + ... + a0sv0
e(−TDs) =

1
(0.18234s1.9909 + 0.65536s0.98319 + 0.9992)

e−1s
(3)
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where an . . . a0 denote constants and νn . . . ν0 values of fractional orders.

Figure 1. Block scheme of the testing hardware platform (1-BLDC micromotor, 2-high-precision
encoder, 3-adjustable arm, 5-controller).

Figure 2. UAV arm testing platform with the BLDC motor and microcontroller (1-BLDC micromotor,
2-high-precision encoder, 3-adjustable arm, 4-rigid frame, 5-controllers, 6-power supply).

For the purpose of experiments on a real hardware platform, the ARM Cortex-M7 core-based
32-bit microcontroller from the STM32 High Performance series, model STM32F746ZG [15] was used.
The following configuration was being set up during the main program initialization routine:

• maximum value of the main clock frequency fCPU = 216 MHz,
• analog-to-digital converter (ADC) synchronized with the internal timer interrupt routine (ISR) to

sample the input signal on an ADC pin at fADC = fs = 1 kHz,
• number of ADC domain clock cycles required for a single ADC conversion cADC = 15 providing

the best possible accuracy of 12-bit resolution. Time of conversion tconv ≈ 10 µs,
• single-precision hardware floating-point unit (FPU) and compiler warnings on

automatic double-precision promotion enabled (software-simulated support for
double-precision arithmetic),

• 60 Hz PWM output signal with adjustable duty cycle for driving the 11VDC-supplied
micro-BLDC driver.
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3. Discretization

As mentioned in the previous chapter, integer-order models can be easily implemented on any
microcontroller, in the form of digital finite (FIR) or infinite impulse response (IIR) filters [16,17].
A significantly better performance, due to the lower number of operations (feedforward and feedback
taps), can be achieved with models implemented as IIR filters, which is important specifically for
real-time calculations performed on a microcontroller at the cost of potential breakdown of stability.
Discretization of the transfer functions (1) and (2) was performed using two well-known methods,
the zero-order hold and bilinear transform (Tustin’s), at a sampling frequency of f s = 1 kHz.
The zero-order hold was selected for the best matching with the original characteristics.

1. Discrete first-order plus dead time (DFOPDT)

HFOPDT(z) =
b0 + b1z−1

1− a1z−1 z−TD (4)

where bi and aj are numerator and denominator coefficients, respectively, and TD is the number
of delay input samples at a given sample rate fs. The exact values of the coefficients are presented
in Table 1.

2. Discrete second-order plus dead time (DSOPDT)

HSOPDT(z) =
b0 + b1z−1 + b2z−2

1− a1z−1 − a2z−2 z−TD (5)

3. Discrete non-integer-order plus dead time (DNIOPDT)

Discretization of the non integer-order transfer function (3) was performed in three consecutive
steps. First, approximation of the transfer function in the frequency domain was obtained
by applying Oustaloup’s Recursive filter algorithm (ORA) [10,18], approximating the complex
variable s of the fractional order 0 < ν < 1, using the following formula:

sv ≈ K
N

∏
k=−N

s + ω′k
s + ωk

= ωv
h
(s−ω′−N) (s−ω′−N+1) . . . (s−ω′N)

(s−ω−N) (s−ω−N+1) . . . (s−ωN)
(6)

where [ωb, ωh] denotes the frequency range of the approximation, N is the order and

ω′k = ωb(
ωh
ωb

)
k+N+0.5−0.5v

2N+1 , ωk = ωb(
ωh
ωb

)
k+N+0.5+0.5v

2N+1 . As a result, function (6) generates (2N + 1)

poles and zeros in total. If ν > 1 then sν is first replaced with s(n+u) = snsu, where n is an
integer number and u is a fractional part, approximated by the algorithm. Different values for the
approximation order N were tested over the selected frequency range ω ∈

[
10−4, 103

]
rad

s . Step
response and Bode characteristics for N ∈ [1, 5] are presented in Figures 3 and 4. It is noticeable
that all values of the order N provide satisfactory approximations of the initial fractional order
transfer function. Nevertheless, we proceeded with approximation orders N ≥ 3. Since the
approximation polynomials had over 14 zeros and poles, in the second step, a reduction was
performed using the balancing reduction technique [19], available in MATLAB as balred method.
Minimization of the cost functions for a new reduced-order plant model of a fixed balred order
M = 3, M ∈ N revealed that of several ORA filters, approximation of the order N = 3 ensured
the best match between both characteristics.

GNIOPDT (s) ≈ 0.00142 s3 − 0.01047 s2 + 5.75346 s + 2.01679
s3 + 4.10156 s2 + 7.13415s + 2.01552

e−1s (7)
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Figure 3. Oustaloup approximations of order N for fractional-order models. Step responses.
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Figure 4. Oustaloup approximations of order N for fractional-order models. Bode diagram.

Figures 5 and 6 present unit step responses of the implemented platform integer- and
fractional-order models, the latter approximated using the recursive Oustaloup filter method. Discrete
2nd-order model characteristics are presented with +0.2 offset to improve visibility.
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Figure 5. Measured microcontroller outputs with implemented integer-order (1st and 2nd) models.
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Figure 6. Measured microcontroller outputs with fractional-order (ORA) models.

4. Implementation Difficulties

It is important to stress two general points related to implementation. When discrete transfer
functions (see Table 1) are obtained in MATLAB, one should be aware of the default Short Fixed Decimal
display format, which rounds the numbers to four decimal places. Double precision representation
of coefficients bi, aj can appear in the Variables explorer or after the activation of the long format
display mode using the MATLAB routine: format long. This is necessary to avoid the model from
losing stability caused by the implementation of truncated values for the coefficients. It is first
necessary to determine the desired precision of the floating-/fixed-point number representation in the
microcontroller software and the presence of the hardware floating-point unit, as these factors have
a great impact the performance of the algorithm. The transfer functions of the proposed IIR filters
were transformed into difference equations and implemented on an STM32F746ZG microcontroller in
C programming language. To preserve the asymptotic stability of the designed models, in the case
of fractional-order approximation the calculations had to be performed using software simulated
double-precision arithmetic. This had a significant impact on performance, increasing the required
number of CPU cycles from cavg,sp = 2650 to cavg,dp = 8500 (320%). The alternative approach involved
the evaluation of the FOTF in the time domain, as will be described in the next section.
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Table 1. Numerator and denominator coefficients of the discrete transfer functions (4) and (5), and of
the continuous model (7).

Coeff HFOPDT(z) HSOPDT(z) HN IOPDT(z)

b0 1.123629474892E-04 2.90801788577010E-06 0.00141997809862250
b1 1.901155870198E-03 6.60568256821855E-06 −0.00426750404873265
a1 9.979752146549E-01 1.993748864318110 2.99589971448314
b2 - 0.25547387436067E-06 0.00428081749129811
a2 - −0.993758633492438 −2.99180655152227
b3 - - −0.00143328952852651
a3 - - 0.995906835027740
TD 1228 1065 1000

5. Time-Domain Approach Using the Grünwald–Letnikov Differintegral Operator and SMP

To compare the efficiency and accuracy of the Oustaloup approximation, we considered a
fractional-order differential equation evaluated in the time-domain on the basis of the implementation
of the truncated Grünwald–Letnikov differintegral operator [20]. This technique is known as
the Short Memory Principle and restricts the boundaries of the operations to the most recent Nl
samples. The principle is applied usually to numerical evaluation but has been also proposed for
Riemann–Liouville and Caputo definitions [21]. Several different maximum memory lengths were
examined Nl =

{
N0 = tsim−t0

h , N0
2 , N0

5 , N0
10 , N0

20 , N0
50 , N0

100

}
where N0 denotes the total number of samples

from the start of the simulation t0 = 0 s, and was used as a reference value. The time responses of the
plant were obtained using a modified formula [22]:

y (kh) =
1

∑n
i=0

ai
hνi

[
u (kh)−

n

∑
i=0

ai
hνi

Nk

∑
j=1

wνi
j y(kh− jh)

]
(8)

where wνi
j denotes the Newton binomial weights in the GL definition:

wνi
j =

1 for j = 0

wνi
j−1(1−

1+νi
j ) for j = 1, 2, ...

(9)

and Nk is the number of previously processed samples:

Nk =

{
k for k ≤ Nl

Nl for k > Nl
, l ∈ [0, 6] (10)

Figure 7 presents simulated characteristics for all values of Nl and Table 2 below shows the
corresponding performance indices, including those obtained for ORA. As can be seen, reducing
the number of past samples below N4 = N0

20 (green curve) generates considerable error, which can
increase even more for plants characterized by longer transient states. Therefore, SMP lengths of N5,
N6 were not considered for further analysis. Reduced-order approximations obtained using the ORA
algorithm provided better results than nearly all SMP-based approximations. However, the value of
the maximum absolute percentage error (MaxAPE) was usually higher, due to the deviation between
the step response characteristics at the beginning of the transient state, near zero. This error dropped
rapidly for k→ ∞. Only for the memory lengths of SMP N ≥ N1 were the step response characteristics
(red curve) more accurate and similar to the initial step response of the fractional-order transfer
function (3). The number of CPU cycles required to evaluate the output signal was measured using the
Data Watchpoint and Trace unit of the microcontroller [23], by computing the difference between the
values in CYCCNT register, read in two separate sections of the program. Several different software
optimization techniques were applied to the algorithm in each iteration.
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Figure 7. Heaviside step response evaluated by the GL method and different memory lengths N.

Table 2. Accuracy of Short Memory Principle and of ORA with balred M = 3.

ISE IAE ITSE ITAE NRMSE MaxAPE

N0 = 5000 - - - - - -
N1 = 2500 7.1496× 10−7 9.2601× 10−4 4.0238× 10−6 5.0596× 10−3 99.91% 0.12%
N2 = 1000 5.7340× 10−5 1.1914× 10−2 2.9386× 10−4 5.8319× 10−2 99.24% 0.65%
N3 = 500 2.8593× 10−4 2.9316× 10−2 1.3949× 10−3 1.3625× 10−1 98.31% 1.25%
N4 = 250 3.9339× 10−4 3.4905× 10−2 1.9004× 10−3 1.6067× 10−1 98.01% 1.43%
N5 = 100 1.5484× 10−2 2.4532× 10−1 6.6317× 10−2 1.0198× 100 87.53% 6.60%
N6 = 50 1.9433× 100 2.6677× 100 8.8778× 100 1.1565× 101 0.00% 46.57%

NORA = 3 3.0352× 10−6 2.7942× 10−3 6.2302× 10−6 7.7747× 10−3 99.83% 12.22%
NORA = 4 3.0566× 10−6 2.7666× 10−3 6.5758× 10−6 7.9428× 10−3 99.82% 12.20%
NORA = 5 3.1344× 10−6 2.8097× 10−3 6.6456× 10−6 7.9841× 10−3 99.82% 12.66%

5.1. Initial Implementation- Look-up Tables, Shifted Input/Output Samples

In this step, arrays of lengths Nl were dynamically allocated to storing double-precision input
and output values and wi

j weight coefficients for each differintegral in the transfer function (3). wi
j

coefficients were precomputed at the program initialization (look-up table). During each analog-digital
conversion, a new input sample was added to the end of the input array and the values in the input and
output arrays were shifted left when the limit Nl was reached. Moreover, in the developed functions,
only pointers to structures and arrays were accepted as parameters, to reduce the amount of memory
occupied by the stack.

5.2. Replacing Arrays with Ring Buffers

Instead of shifting the values in the input/output arrays, a structure called a ring (circular) buffer
was used. This involves defining a moving writing pointer (e.g., inWrIdx) for each of the arrays. When
the buffer limit is reached (inWrIdx = Nl), the value is reset to point to the beginning of the buffer.
The input value indicated by the pointer is always the most recent, whereas inWrIdx+1 (or 0 if inWrIdx
= Nl − 1) points to the oldest sample. For models with delay, an additional delay buffer with two
pointers for writing and reading is initialized. Further optimization can be achieved when the array
lengths are powers of two. At the cost of higher memory consumption, the conditional operator for
checking the limit Nl is replaced with a much faster bitwise multiplication of the pointer by Nl .
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5.3. Enabling Optimization Flags

For the purposes of debugging and results verification, the program was initially built without
any optimization by the GCC compiler (–O0 flag). Using the values x = [1, 3] with the flag –Ox may
reduce the code length and the size of the binary [24]. The higher value of x, the more optimizations
are performed during the last stage of compilation. It should be noted that, according to the GCC
manual, –O3 may affect computation results and generate a binary larger than –O2, due to e.g., loops
unrolling. Therefore, –O2 is usually recommended for release building profiles.

5.4. Enabling Hardware FPU Unit, Using CMSIS DSP Library

Since the release of the ARM Cortex-M4 core, STM32 microcontrollers have been equipped with
IEEE 754 compliant hardware floating-point units. Depending on the model of the microcontroller,
single- or double-precision units are available [23,25], supporting hardware accelerated operations on
float32_t or float64_t types, respectively. The unit is disabled by default and had to be configured first.

One may also find it helpful to enable double promotion warnings (-Wdouble-promotion in
GCC), to eliminate automatic casting of numbers to higher precision. Moreover, for calculations
on float32_t or fixed-point q31_t numbers, which were highly optimized by taking advantage of
dedicated intrinsic and SIMD operations, the CMSIS DSP library for ARM cores was considered.
This library contains implementations of several common DSP algorithms, from among which
arm_conv_partial_f32 and arm_scale_f32 functions were used for discrete convolution and vector
scaling operations, respectively. The overall performance vastly improved. However, the truncated
precision led to significant accumulated error (∆ek =

|yDP(k)−ySP(k)|
|yDP(k)|

100% = 28.3% for the last computed
output sample), disqualifying the model HNIOPDT in this form from practical application.

5.5. Other Approaches

Further optimizations are a topic of the ongoing research involving adaptive memory methods,
parallel implementation of numerical algorithms and calculations using fixed-point arithmetic. Finally,
assembly inlines placed in critical sections of the algorithms and platform-specific enhancements are
being considered. However, these approaches are strictly platform-dependent and must be adopted
for each architecture individually. The results of subsequent software optimizations are presented in
Figure 8. The algorithm processing past N4 = 250 samples, compiled with a –O2 flag, satisfied the
initial timing requirement, calculating the output in a time shorter than the sampling period ts = 1 ms.

Figure 8. Software optimizations of the numerical algorithm for calculating output of model (3) with
the maximum number of CPU cycles allowed (red dotted line).
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6. Conclusions

This study set out to address the problem of fractional-order model implementation. The non-local
fractional differential GL operator involves a constantly growing number of calculations, which can be
either bounded or replaced by an integer-order operator using one of the well-known approximation
methods. A model of a UAV arm with a BLDC motor was implemented, using two approaches
in the frequency- and time-domains: the Oustaloup approximation and numerical evaluation of
the differential equation using the Grünwald–Letnikov definition with the Short Memory Principle.
The performance of the algorithms was measured and compared. For orders NORA > 2 of the
Oustaloup approximation, similar step response characteristics were obtained. Moreover, in this
case, the required buffer size was limited to only four feedforward and four feedback samples,
vastly improving the calculation time and memory consumption. Higher accuracy could be obtained
by different levels of reduction in the numbers of poles and zeros. Another approach, based on
implementation of the Grünwald–Letnikov definition, required the introduction of the Short Memory
Principle. In this case, programming optimization techniques allowed the computation time to be
reduced by 15% or even 78% if CMSIS DSP and FPU hardware were used. This last result, however,
required redesigning of the model. The methods described in this paper can be easily adapted and
applied to other fractional-order models or control algorithms. Further work is underway, focusing on
parallel implementation and optimization of fractional order numerical algorithms and designing a
variable-, fractional-order PID controller with algorithms for determining the function of variable order.

Author Contributions: M.M. conceived the research direction and collected relevant information; M.M. designed
the Simulink and Matlab simulation and experiment; M.B. and R.W. built the test stand; M.M. provided
microcontroller implementation; M.B., M.M., and R.W. analyzed the data; M.M., M.B., and R.W. wrote the
paper. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Polish funds from the National Science Center under grant
DEC-2016/23/B/ST7/03686.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ADC analog-to-digital converter
BLDC brushless direct-current motor
CYCCNT Data Watchpoint and Trace Cycle Count Register
(D)FOPDT (discrete) first-order plus dead time
(D)NIOPDT (discrete) non-integer-order plus dead time
(D)SOPDT (discrete) second-order plus dead time
FIR finite impulse response
FO fractional-order
FOC fractional-order calculus
FOTF fractional-order transfer function
FPU floating-point unit
GL Grünwald-Letnikov
IAE integral absolute error
IIR infinite impulse response
IO integer-order
ISE integral square error
ISR interrupt service routine
MaxAPE maximum absolute percentage error
MCU microcontroller unit
ORA Oustaloup Recursive Approximation
SIMD Single Instruction Multiple Data
SMP Short Memory Principle
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UAV unmanned aerial vehicle
(V)FOPID (variable) fractional-order proportional-integral-derivative controller
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