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Abstract: In underwater acoustic signal processing, direction of arrival (DOA) estimation can
provide important information for target tracking and localization. To address underdetermined
wideband signal processing in underwater passive detection system, this paper proposes a novel
underdetermined wideband DOA estimation method equipped with the nested array (NA) using
focused atomic norm minimization (ANM), where the signal source number detection is accomplished
by information theory criteria. In the proposed DOA estimation method, especially, after vectoring
the covariance matrix of each frequency bin, each corresponding obtained vector is focused into
the predefined frequency bin by focused matrix. Then, the collected averaged vector is considered
as virtual array model, whose steering vector exhibits the Vandermonde structure in terms of
the obtained virtual array geometries. Further, the new covariance matrix is recovered based on
ANM by semi-definite programming (SDP), which utilizes the information of the Toeplitz structure.
Finally, the Root-MUSIC algorithm is applied to estimate the DOAs. Simulation results show that
the proposed method outperforms other underdetermined DOA estimation methods based on
information theory in term of higher estimation accuracy.

Keywords: underwater acoustic signal processing; wideband signals; direction of arrival (DOA)
estimation; nested array (NA); atomic norm minimization (ANM); information theory criteria

1. Introduction

Direction of arrival (DOA) estimation is an important issue in numerous fields of array signal
processing, which has widespread applications in radar, sonar, acoustics, navigation, communications,
speech enhancement [1–3] and multiple-input multiple-output (MIMO) systems [4]. Along with
the recent development of underwater sonar systems, DOA estimation could supply the direction
information, which plays various important roles in underwater target tracking [5–7] or target
localization. Currently, plenty of mature and robust DOA estimation methods, such as estimating
signal parameter via rotational invariance techniques (ESPRIT), multiple signal classification (MUSIC),
etc. have achieved super-resolution estimation performance for narrowband signals [8]. Further,
compared with narrowband signal sources, the wideband counterparts are able to provide more useful
and interfering information where the array phase differences lie on two factors, i.e., the DOAs of
sources and frequencies. Meanwhile, in passive sonar system, the radiation noise signal [9] from
underwater vehicles is also a wideband signal. In light of such characteristics, wideband DOA (WDOA)
estimation has attracted more research interests [10–12]. Among the classical wideband processing
algorithms, the incoherent signal subspace method (ISM) can only deal with uncorrelated signal,
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which averages over the results of all frequency bins as the final fuse result. Alternatively, the coherent
signal subspace method (CSM), whose main idea is to collect the averaged array covariance matrix
by the focusing technique, not only can handle both uncorrelated and correlated signals, but also
improves DOA estimation performance [13].

Traditionally, using a uniform linear array (ULA) formed with M sensors can detect at most M− 1
signal sources successfully. However, handling underdetermined DOA estimation with fewer physical
sensors than signal sources is a fundamental challenge and has great attention and concern in recent
years [14–18]. To tackle such wideband DOA estimation issue, the sparse array structure has been
proposed as one possible solution. Currently, two classes of recognized sparse linear arrays (SLA),
i.e., nest arrays (NA) [19] and coprime arrays (CPA) [20,21], have been utilized to construct a virtual
array based on the difference co-array concept theory, which enable to increased number of degrees of
freedom (DOF), since the coordinate positions of virtual sensors are established by the consecutive and
non-consecutive lag differences among the physical sensors. The CPA can deal with MN signal sources
equipped with (M + N + 1) sensors. Unfortunately, it fails to apply the augmentation techniques
directly because it is unable to construct a filled co-array. By contrast, NA can easily generate a filled
difference co-array, which makes itself one of the most attractive array configuration.

Alternatively, compressed sensing (CS), based on sparse signal processing techniques, has worked
well in the DOA estimation application [22–24], whose irreplaceable advantage is to allow the DOA
estimation with deficient snapshots, especially single snapshots, without enlarging the array aperture
size [25]. Compared with traditional signal subspace methods, i.e., the spatial smoothing MUSIC,
underdetermined CS-based DOA estimation attains not only a higher number of DOF but also better
DOA estimation performance owing to the exploitation of all the unique co-array lags in lieu of
only the consecutive part. Shen et al. [26] proposed a focused compressive sensing DOA estimation
method for the underdetermined wideband signals, which enables reducing the complexity. However,
the conventional CS approach has several huge disadvantages: (1) The true signal DOAs are always
supposed to fall onto the predefined grid, otherwise the signals cannot be represented by the discrete
dictionary [27]. (2) It lies on a finite-size DOAs grid, and finer grids give rise to the numerical instability
issue. In particular, the true DOAs are not necessarily assumed to lie on a grid.

Developed as a gridless CS approach, Tang et al. [28] proposed a gridless atomic norm technique,
which can be formulated as semidefinite programming (SDP) to recover off-grid sources with high
probability from compressive measurements. The ANM approach attains off-grid estimation at
super-resolution estimation performance of parameter due to the Vandermonde structure of the signal.

In this paper, aiming at addressing the problem of fewer physical sensors than signals in DOA
estimation application, we propose a novel underdetermined DOA estimation method for wideband
signals equipped with NA, which is based on ANM to seek and obtain the optimal Toeplitz covariance
matrix. Firstly, inspired by SLAs’s benefits, the virtual array formed by the difference co-array is
used as a substitute for the physical array geometry. We then build the virtual signal mode through
vectorizing the covariance matrix of each frequency bin, and collecting the average vector by focusing
technique. Finally, the Toeplitz covariance matrix is recovered via the ANM, which is beneficial for
improving the estimation accuracy. The reason is that the retrieved Toeplitz covariance matrix is
not only a low-rank Toeplitz matrix, but also a denoising covariance matrix. In addition, we use
the information theory methods, named Akaike’s information criterion (AIC), minimum description
length (MDL), and corrected AIC (AIC-C3) [29,30], to detect the number of signal sources.

The rest of this paper is organized as follows. In Section 2, the wideband signal model and
problem formulation are introduced. The novel underdetermined wideband DOA estimation method
via focused ANM is proposed in Section 3. Comprehensive simulations are presented to verify the
performance of the proposed novel method in Section 4, followed by the conclusions in Section 5.

Notations: Vector a and matrices A are represented by lowercase and uppercase bold characters,
respectively. A refers to an atom set. C and R denote the complex number and the real number,
respectively. (·)H and (·)∗ represent the conjugate transpose and conjugate, respectively. ‖a‖2 is the `2
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norm of a. Symbols ‖·‖F, Rank(·), and tr(·) stand for the Frobenius norm, rank, and trace of a matrix,
respectively. Expectation operator is denoted by E[·]. diag(·) implies that a diagonal matrix is formed
from the given vector as the diagonal elements. vec{·} denotes the vectorization operator. ⊗ denotes
the Kronecker product and � refers Khatri–Rao product. b·c represents rounding down.

2. Signal Model and Problem Formulation

Consider a two-level nested arrays of M sensors with the M1 = bM
2 c sensors in the inner sub-array,

while M2 = M−M1 sensors in the outer sub-array, and both sub-arrays are the uniform linear array
(ULA). d1 denotes the separation between the sensors of the inner sub-array, while d2 represents the
counterpart of the outer sub-array, which is equivalent to (M1 + 1)d1. The NA structure is shown in
Figure 1, in which the position of the sensors are given by the sets

H ={hm : m = 1, 2, · · · , M}
={m1d1, m1 = 0, 1, · · · , M1 − 1} ∪ {m2d2 − d1, m2 = 1, 2, · · · , M2}.

(1)

0 1d
1 1( 1)M d 2 1d d 2 12d d

2 2 1M d d

Level 1 Level 2

Figure 1. A two-level NA with M1 sensors in the inner sub-array and M2 sensors in the outer sub-array.

Assume that K wideband stationary signals at the directions of θ1, θ2, ..., θK from the far-field
impinge on the nested array, where θk represents the kth signal source. Then, the received signal xm(t)
of the mth sensor can be expressed as

xm(t) =
K

∑
k=1

sk(t− τm(θk)
)
+ wm(t), m = 1, 2, · · · , M, (2)

where the wm(t) is noise part, whose entries are zero-mean Gaussian random variables with σ2

variance. τm(θk) represents the propagation delay associated with the kth signal impinging and the
mth sensor.

Wideband signal after time-sampling is split into L non-overlapping segments, and an N-point
discrete Fourier transform (DFT) is carried out over each segment data. The output at frequency bin fn

is modeled as
xn,l = An(θ)sn,l + wn,l n = 1, 2, · · · , N; l = 1, 2, · · · , L, (3)

where sn,l is the signal vector and wn,l represents the additive noise vector in the frequency domain.
The array manifold matrix An(θ) ∈ CM×K of the nth frequency is

An(θ) =
[
an(θ1), an(θ2), · · · , an(θK)

]
, (4)

whose columns denote array steering vectors for K signal sources of the nth frequency bin, that is

an(θk) =
[
e−2jπ fnτm(θk), e−2jπ fnτ2(θk), · · · , e−2jπ fnτM(θk)

]T
, (5)

where an(θk) ∈ CM, τm(θk) = hmsin(θk)/c, and c is the signal source propagation velocity.
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Then, the covariance matrix Rxn of the nth bin data can be expressed as

Rxn = E
[
xn,lx

H
n,l

]
= An(θ)Rsn An(θ)

H + Rwn

= An(θ)diag(ρn)An(θ)
H + σ2

wI,

(6)

where Rsn = E
[
sn,lsH

n,l

]
= diag(ρn) denotes the only signal covariance matrix at the frequency bin fn,

and ρn =
[
ρ2

n,1, ρ2
n,2, · · · , ρ2

n,K

]T
is the source power vector, while Rwn = E

[
wn,lwH

n,l

]
= σ2

wI is the

noise covariance matrix, and σ2
w =

[
σ2

n,1, σ2
n,2, · · · , σ2

n,M

]T
represents the noise power vector.

In practice, the covariance matrix Rxn is estimated from the sample covariance matrix R̂xn with
the L non-overlapping segments, and R̂xn is given by

R̂xn =
1
L

L

∑
l=1

xn,lx
H
n,l , (7)

Vectorizing R̂xn in Equation (7), we have

rn = vec{R̂xn} = Bn(θ)qn + σ2
w Ǐ, (8)

where
Bn(θ) = An(θ)

∗ �An(θ)

=
[
bn(θ1), bn(θ2), · · · , bn(θK)

]
∈ CM2×K,

(9)

with
bn(θk) = a∗n(θk)⊗ an(θk), (10)

where qn =
[
ρ2

n,1, ρ2
n,2, · · · , ρ2

n,K

]T
represents the signal vector, and Ǐ = vec{I} ∈ CM2×1. Note that

Bn(θ) is a tall matrix and can provide useful information for increasing the DOF; in other words,
M < Rank

(
Bn(θ)

)
< M2. According to the concept of difference co-array [19], we can get a new

virtual array position of the ULA

H = {hq − hp : q, p = 1, 2, · · · , M}

=

{(
−M2(M1 + 1) + 1

)
d1, · · · , 0, d1, · · · ,

(
M2(M1 + 1)− 1

)
d1

}
∈ R1×M̃,

(11)

where M̃ = 2M2(M1 + 1)− 1.
The goal of the paper is to determine the θ from rn in Equation (8).

3. Wideband Signal Processing Using Virtual Array

3.1. Virtual Array Signal

Recall that the vector rn in Equation (8) contains the repeat rows, which do not help for improving
the DOF. After removing the repeat rows and sorting its remaining rows of the rn, we obtain a new
vector by the following operation

zn = Gn(θ)qn + w̃n, (12)

where zn ∈ CM̃ and w̃n = σ2
w ĨM̃ ∈ CM̃ represent the new observation vector and the new noise vector,

respectively. Gn(θ) =
[
gn(θ1), gn(θ2), · · · , gn

]
∈ CM̃×K is redefined as the filled virtual manifold
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matrix, which is equivalent to the counterpart of a ULA with M̃ sensors. The virtual array steering
vector gn(θk) exhibits a Vandermonde structure of size M̃ as follows

gn(θk) =



e−2jπ fnτ(−M2(M1+1)+1)(θk)

e−2jπ fnτ(−M2(M1+1)+2)(θk)

...
e−2jπ fnτ0(θk)

...
e−2jπ fnτ(M2(M1+1)−1)(θk)


, (13)

3.2. Focusing on the Virtual Array

It is known that the CSM, which is a classic way of wideband signal processing [31], can lead to
less complexity and better DOA estimation performance. The key point of CSM is to design focusing
matrices {Pn}N

n=1, whose purpose are to transform the manifold matrices at frequencies {fn}N
n=1 to

that at the pre-selected reference frequency f0 as follows [32]

PnGn(θ) = G0(θ), (14)

where G0(θ) denotes the virtual array manifold matrix at the referenced frequency f0. Note that
rotational signal subspace (RSS) method is a well known way of CSM [13], whose focusing matrices
{Pn}N

n=1 are gained through minimizing a Frobenius norm of the obtained virtual array manifold errors

min
Pn
‖G0(θ))− PnGn(θ)‖F

s.t. PnPH
n = I,

(15)

where Pn should be a unitary matrix, yielding [33]

Pn = Ur
n(U

l
n)

H. (16)

We now define an excessive matrix E = Gn(θ)G0(θ)
H, whose left and right singular vectors are

defined as Ul
n and Ur

n, respectively. Accordingly, the product of the virtual array yn is defined through
multiplying the focusing matrix by z̄n

yn = Pnz̄n = PnGn(θ)qn + Pnw̃◦n. (17)

After focusing processing, we can reconstruct a new single wideband signal model by averaging
the obtained signal of each frequency as follows

ȳ =
1
N

N

∑
n=1

yn =
1
N

N

∑
n=1

Pnz̄n

=
1
N

N

∑
n=1

PnGn(θ)qn +
1
N

N

∑
n=1

Pnw̃◦n

= G0(θ)q̄ + P̄w̃◦n,

(18)

where q̄ = 1
N ∑N

n=1 qn ∈ CK×1 is a column vector and P̄ = 1
N ∑N

n=1 Pn. For the Gaussian white noise,
there is w̃◦n = σ2

w ĨM̃.
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3.3. Source Number Detection Using Information Theory Criteria

As is known, the key factor for source number detection is the obtained sample covariance matrix.
Unfortunately, we cannot get an optimal covariance matrix directly by the new reconstructed single
wideband signal in Equation (18). The spatial smoothing method is one of effective solutions for
such problem. We can divide the virtual array into M̃+1

2 + 1 subarrays, each with M̃−1
2 − 1 sensors.

The output of the n′ th subarray is defined as ȳn′ , whose corresponding covariance matrix Rn′ is
written as

Rn′ = ȳn′ ȳ
H
n′ . (19)

Meanwhile, we can obtain the averaged covariance matrix R, that is

R =
1

( M̃+1
2 + 1)

M̃+1
2 +1

∑
n′=1

Rn′ . (20)

Afterwards, applying EVD on the matrix R, we have

R = Udiag(λ)UH, (21)

where U and λ are the eigen vector matrix and eigenvalues, respectively. Here, we have the
non-increasing order of such eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λ M̃−1
2 −1

. (22)

We next introduce the information theory methods: AIC, AIC-C3, and MDL [29,30] for source
number detection. These three methods can be organized as follows:

AIC(k) = 2L̃(M̃− k)logΛ(k) + 2k(2M̃− k) (23)

MDL(k) = L̃(M̃− k)logΛ(k) +
1
2

k(2M̃− k))logL̃ (24)

AIC− C3(k) = 2L̃(M̃− k)logΛ(k) + C, (25)

where Λ(k) is the maximum likelihood

Λ(k) =
1

M̃−k ∑M̃
i=k+1 λi

(∏M̃
i=k+1 λi)

1
M̃−k

, (26)

and

C =
(4M̃k− 2k2 + 2)(2M̃L̃ + 2M̃k + k2 + 2)

2M̃L̃− 2M̃k + k2 − 2
− 4M̃k− 2k2

2M̃L̃− 2M̃k + k2 . (27)

where L̃ and k represent the number of snapshots and the number of DOF, respectively.
Then, we estimate the signal source number K by

K̂AIC = arg min AIC(k)

K̂MDL = arg min MDL(k)

K̂AIC−C3 = arg min AIC− C3(k).

(28)
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3.4. DOA Estimation via ANM

3.4.1. ANM Principle

In the literature [28,34], the ANM principle is that the signal is expressed as a linear combination
of a few atoms over a known atom set, and then, the structural information of these atoms,
i.e., Vandermonde structure, is utilized for signal reconstruction from measurements.

We assume the signal Φ contains several components, which exhibit the same Vandermonde
structure and especially belong to a basic atom set A. Therefore, we can define the atomic norm of Φ

over the atom set A, which has the form

‖ Φ ‖A= inf

{
∑
n
|sn|
∣∣∣∣Φ = ∑

n
snAn, An ∈ A

}
, (29)

whose main task is to seek the sparsest decomposition of Φ over A. In other words, if the signal Φ

has a special form, i.e., a linear combination form, the signal Φ is considered to be sparse over the
atom set of A in Equation (29). Knowing the A, the components of Φ can be retrieved using `1 norm
minimization as follows:

arg min
An ,sn

{
∑
n
|sn| s.t. Φ = ∑

n
snAn, An ∈ A

}
. (30)

Equation (30) can be tackled by seeking out the atomic norm ‖ Φ ‖A, while the optimal atom set
is also obtained for estimating DOAs.

In the presence of noise, the observed measurement Ψ = Φ + w contains the signal and the noise,
thus the corresponding atomic norm is written as

min
Φ
‖ Φ ‖A s.t. ‖ Ψ−Φ ‖ ≤ ε, (31)

where ε denotes the noise threshold. The problem in Equation (31) is called the atomic norm
minimization, which can be solved via SDP.

3.4.2. DOA Estimation

Here, recall Equation (18); in the case of being noiseless, Equation (18) only contains the signals
information, which can be rewritten as

ȳ = s? ∆
= G0(θ)q̄ =

K

∑
k=1

q̄kg0(θk), (32)

where q̄k = 1
N ∑N

n=1 qk
n = 1

N ∑N
n=1(ρ

k
n)

2, and all K steering vectors {g0(θk)}K
k=1 have the same structure,

i.e., Vandermonde structure. Furthermore, they belong to a known atom set Av. According to the
ANM definition, the signal s? can be considered as the sparse signal over the atom set Av.

Afterwards, the set of atoms by all possible G0(θ) can be readily formed as follows:

Av :=
{

G0(θ) : θ ∈ (−π/2, π/2]
}

. (33)

Apparently, the noiseless version of Equation (32) of ȳ is viewed as a positive combination of
complex sinusoids over the atom set Av . It has been indicated that the atomic norm of s? is said to be
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minimized, when only those atoms corresponding to the true signals {θk}K
k=1 are selected to linearly

describe s?, which has the form

‖s?‖Av
∆
= inf

{
K

∑
n=1
|q̄k|
∣∣∣∣q̄kg0(θk), g0(θk) ∈ Av

}
. (34)

To practically solve Equation (34), an SDP formulation of ‖s?‖A is given as

min
u,v

{
1
2

tr(T(u)) +
1
2

v
}

s.t.

[
v (s?)H

s? T(u)

]
� 0,

(35)

where T(u) is a Toeplitz matrix. According to the authors of [28,35], any PSD Toeplitz matrix allows
for Vandermonde decomposition. For any

(
{q̄k, θk}K

k=1, K < M̃
)

, define u = ∑K
n=1 |q̄k|g0(θk) and the

Toeplitz matrix T(u) is formed from the first row of the vector u = [u1, u2, · · · , uM̃], that is

T(u) =


u1 u2 · · · uM̃

(u2)
H u1 uM̃−1

...
...

. . .
...

(uM̃)H (uM̃−1)
H · · · u1

 . (36)

The SDP yields the optimal vector u and the Toeplitz matrix T(u), in which the true signals θ

are estimated.
In practice, we usually do not have the s? directly, and the measurement ȳ contains the noise in

Equation (18). According to Equation (31), the ANM formulation can be written as

min
ŝ?

{
ξ ‖ ŝ? ‖Av + ‖ ȳ− ŝ? ‖2

2

}
. (37)

Equation (37) makes a regularized denoising formulation to recover s?. ‖ ŝ? ‖Av represents the
sparsity enforcing term, and the quadratic term of Equation (37) is used to control the noise. ξ is
a regularization parameter.

According to Equation (35), Equation (37) now can be converted to an equivalent SDP formulation
as follows:

min
û,v,ŝ?

{
1
2
(tr(T(û)) + v) + ξ‖ȳ− ŝ?‖2

2

}
s.t.

[
v (ŝ?)H

ŝ? T(û)

]
� 0,

(38)

where ξ is a regularization parameter balancing Toeplitz structure and the noise tolerance to the
observation ȳ, i.e., ‖ȳ− ŝ?‖2

2 (least-squares term), whose poor choice may increases the probability
of a bad solution. Therefore, an optimal section of ξ plays a very important role in guaranteeing
signal recover. The SDP formulation in Equations (35) and (38) can be implemented efficiently by the
CVX toolboxes.

After attaining the optimal Toeplitz matrix T(û) in Equation (38), the subspace Root-MUSIC
method is utilized to estimate the direction of K signal sources, θ̂ = [θ̂1, θ̂2, · · · , θ̂K].
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Remark on targets angle separation condition: Here, targets angle separation means the required
angle separation between neighbouring signal source. According to the IV.2 theorem [34], the sufficient
separation condition is

sin(4θmin) ≥
1⌊

(M̃−1)
4

⌋
4θmin ≥ arcsin

 1⌊
(M̃−1)

4

⌋
 ,

(39)

Note that Equation (39) is only a sufficient condition in ANM, and always much more conservative
in most realistic applications. That is to say, if Equation (39) is indeed not satisfied, one may have
a chance to get the DOAs.

The overall implementation of our proposed solution is summarized as Algorithm 1.

Algorithm 1 The proposed undetermined wideband DOA estimation method.

Input:

The data: X;
Output:

Estimation of θ : θ̂;

1: Wideband signal processing and obtain the output of the frequency domain after DFT: xn,l ;
2: Obtain the covariance matrix of each frequency: Rxn ;
3: Vectorizing: rn = vec{Rxn} ;
4: Reduce redundancy and sort by (12) ;
5: Fix the focusing frequency: f0 ;
6: Calculate the focusing matrices: P1, P2, · · · , PN by (15) and (16) ;
7: Recover the optimal Toeplitz matrix: T(û) through SDP via (38) ;
8: Estimate the DOAs via Root-MUSIC.

4. Simulation Results

To show the benefits of our proposed method, we used several simulations to testify its better
DOA estimation performance, compared to the existing wideband DOA estimation methods: W-SpSF
method [18], spatial smoothing MUSIC (SS-MUSIC) [36], and OGSBL [37]. Moreover, to better
demonstrate the estimation performance of these four methods, the Cramer–Rao lower bound (CRLB)
for wideband signal provided in [18,38] was used as the benchmark, which represents a lower bound
for unbiased estimator. In addition, we used the information theory methods, i.e., AIC, MDL,
and AIC-C3, to detect the signal source number.

4.1. Simulation Setting

We considered a two-level nest array with six physical sensors, whose inner sub-array and outer
sub-array have the same amount of sensors, that is to say, M1 is equal to M2 = 3. The physical sensors
locate at [0, d1, 2d1, 3d1, 7d1, 11d1], and d1 is equal to 1/2λ, where λ represents the wavelength
corresponding to the center frequency f0 = ( fl + fh)/2. In addition, c = 1500 m/s denotes the signal
propagation velocity of underwater acoustic scenarios. Therefore, we have d1 = l/2λ = c/(2 f0).
The unchangeable default simulation parameters setting is shown in Table 1, and a co-array of NA
with six sensors is displayed in Figure 2.
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Table 1. The default simulation settings.

Parameter Value

Number of sensors (M) 6
Number of sensors of inner sub-array (M1) 3
Number of sensors of outer sub-array(M2) 3
Low frequency ( fl) 1000 Hz
High frequency ( fh) 5000 Hz
Center frequency ( f0) 3000 Hz
Velocity of underwater acoustic (c) 1500 m/s
Azimuthal range 0–180 degree

0

1

2

3

4

5

6

W
ei

gh
t c

oe
ff

ic
ie

nt

-10 -5 5 100
Virtual array

Figure 2. Weight coefficient of co-array of NA with six sensors.

4.2. Performance Comparison

4.2.1. Source Number Detection

To verify the detection accuracy of wideband signal with NA, we compared the probability of
detection using the mentioned information theory method in the overdetermined and underdetermined
cases, respectively. Under the overdetermined scenario, we assumed that five wideband signals
impinge on the NA from −30◦, −15◦, 0◦, 15◦, 29◦, and seven wideband signal sources are from
−45◦,−30◦, −15◦, 0◦, 15◦, 29◦, 44◦ for the underdetermined scenario. We varied the SNR from −15
to 5 dB , and fixed snapshots to 30. Figure 3 shows the result of the probability of detection versus SNR.
The detection accuracies of AIC are the highest in low SNR, followed by AIC-C3 and MDL, as the case
may be. The detection accuracies of all information theory methods for five signals are higher than
those of seven signals. Table 2 displays the needed SNRs of the three methods, when the probability
of detection are equal to 0.9 and 1, respectively.
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Figure 3. Probability of detection versus SNRs.

Table 2. The probability of detection of the mentioned methods versus SNR.

Methods Pd = 0.9 Pd = 1

Overdetermined Case Underdetermined Case Overdetermined Case Underdetermined Case

AIC −10 dB −8.2 dB \ \
AIC-C3 −8.2 dB −8.2 dB −6.8 dB 1.0 dB

MDL −6.8 dB −5.0 dB −5.5 dB −4.2 dB

4.2.2. DOA Estimation

We compared the normalized spatial spectrum of all methods under the overdetermined
and underdetermined scenarios, respectively. Firstly, five uncorrelated signal sources were at
[−30◦, −15◦, 0◦, 15◦, 29◦] and the SNR and snapshots were set as −5 dB and 30, respectively.
In addition, the grid size was 0.5 degree in W-SpSF method. Figure 4 displays the normalized spatial
spectrum for the five signal sources with the NA of six sensors. In Figure 4, the dashed lines are used
to represent the true signal sources, while the solid lines stand for the estimated DOAs. It can be
seen that five wideband signals can be detected successfully by SS-MUSIC, W-SpSF method, OGSBL,
and the proposed method in the low SNR. However, there is a sidelobe peak with the performance
of W-SpSF, and worse accuracy for some angles are displayed with the performance SS-MUSIC and
OGSBL. Therefore, our proposed method has the best detection and estimation performance as the
DOA estimations are closest to the true signals.

Then, we compared the detection performance of all methods for the underdetermined case.
The seven signals were the same as in Figure 3. The SNR and snapshots were again fixed as −5 dB
and 30, respectively. Figure 5 shows the normalized spatial spectrum for the five signal sources of
all methods, respectively. It is shown that all methodd can detect seven peaks successfully in the
normalized spatial spectrum nearby the true DOAs. The normalized power of SS-MUSIC is worse
for some signals, and there is a certain deviation in this method. W-SpSF method has a sidelobe and
a certain deviation, as well. Although OGSBL has stronger normalized power, its DOA estimations
are farthest from the true signals. Figure 5 shows that the propose method gives the best detectable
capability, since it has strong normalized power and its estimated DOAs are closest to the true signals.
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Figure 4. Normalized spatial spectrum for K = 5 sources when M = 6, L = 30, and SNR = −5 dB.
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Afterwards, to evaluate the estimation accuracy of our proposed method, we give the estimation
results of all methods in the light of the root mean square error (RMSE), that is

RMSE =

√√√√ 1
KQ

K

∑
k=1

Q

∑
q=1

(θ̂kq − θk)2. (40)

where θk and θ̂kq denote the kth true angle and the kth estimated angle in the qth Monte Carlo
trial, respectively. Unless otherwise specified, seven wideband signals impinged on the NA from
−45◦,−30◦, −15◦, 0◦, 15◦, 29◦, 44◦. We varied SNR from −10 to 20 dB at the step of 3 dB and
fixed snapshots to L = 30. Figure 6 shows the results averaged over Q = 100 Monte Carlo trials
as a function of SNR. It can be observed that OGSBL and SS-MUSCI have the same performance,
whose estimation accuracies do not improve markedly with the SNR increasing. Although the W-SpSF
method outperforms the SS-MUSIC method when SNR > −1 dB, and its RMSE curve is gradually
close to the CRLB curve, our proposed method’s estimation accuracy is the closest to the counterpart
of CRLB. The reason is that the method we propose can recover the optimal covariance matrix with
Toeplitz structure, which is beneficial to obtain accurate DOAs.
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Figure 6. RMSE of DOA estimation for K = 7 sources versus SNRs when M = 6 and L = 30.

Finally, to further illustrate the estimation performance of our proposed method, the RMSE versus
the number of snapshots was examined for all methods. In this simulation, the value of snapshots
was varied from 20 to 90, while the SNR was fixed to 5 dB. In Figure 7, we note that all methods can
obtain more accurate estimation performance by increasing the number of snapshots. Obviously, the
RMSE of OGSBL is still the largest among all methods followed the RMSE of SS-MUSIC (Figure 7).
Although the W-SpSF RMSE curve tends to decrease most quickly versus the number of snapshots,
its performance is worse than the counterpart of the proposed method in all regions. Therefore, under
the case of same snapshots, the proposed method exhibits better performance in comparison with
SS-MUSIC, OGSBL, and W-SpSF method.
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Figure 7. RMSE of DOA estimation for K = 7 sources versus the number of snapshots when M = 6
and SNR = 5 dB.

5. Conclusions

In this paper, a novel wideband DOA estimation technique equipped with NA is proposed, which
seeks and utilizes the Toeplitz structure of the reconstructed virtual array by ANM and thus can work
well under the underdetermined wideband case. Our method provides an effective solution through
collecting the vectorized covariance matrix via sub-band focusing operation to reformulate the single
wideband model of virtual array, recovering the optimal Toeplitz covariance matrix and improving the
Root-MUSIC by Toeplitz structure enhancement. Numerical simulations showed that the proposed
method outperforms the state-of-the-art methods. In the next work, we will continue to study the
wideband coherent signals DOA estimation via ANM with sensors position error.
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