
entropy

Article

Input Pattern Classification Based on the Markov
Property of the IMBT with Related Equations and
Contingency Tables

István Finta 1,*,†, Sándor Szénási 2,† and Lóránt Farkas 1,†

1 Nokia, Bell Labs, Bókay street 36–42, H-1083 Budapest, Hungary; lorant.farkas@nokia-bell-labs.com
2 Department of Informatics, J. Selye University, Bratislavská cesta 3322, SK-94501 Komárno, Slovakia;

szenasis@ujs.sk
* Correspondence: istvan.finta@nokia-bell-labs.com
† These authors contributed equally to this work.

Received: 1 December 2019; Accepted: 17 February 2020; Published: 21 February 2020
����������
�������

Abstract: In this contribution, we provide a detailed analysis of the search operation for the Interval
Merging Binary Tree (IMBT), an efficient data structure proposed earlier to handle typical anomalies
in the transmission of data packets. A framework is provided to decide under which conditions
IMBT outperforms other data structures typically used in the field, as a function of the statistical
characteristics of the commonly occurring anomalies in the arrival of data packets. We use in
the modeling Bernstein theorem, Markov property, Fibonacci sequences, bipartite multi-graphs,
and contingency tables.

Keywords: data structure; balanced binary tree; bipartite graph; Bernstein theorem, Fibonacci
sequence; Markov property; state space; contingency table

1. Introduction

In large-scale or distributed systems, different types of data are generated locally, in the computer
nodes composing the system. However, if the generated data also has to be handled or stored in
a remote location, then the data has to be broken into packets and transmit over the network towards
their destination. Since neither the transmission networks themselves, nor the consisting devices
are perfect, some of the packets may arrive out-of-order, while others may be lost permanently.
Additionally, packets that are mistakenly considered to be permanently lost during the transmission
are sent several times. This may result in duplication on the receiving side.

Applications need to be prepared to handle out-of-order delivery, packet duplication, and
packet loss, to an extent depending on the application specifics. A video application might neglect
them overall, while a banking application might have very strict requirements to mitigate them.
The efficiency of handling these phenomena depends on the underlying data structures used for the
administration of packet arrival.

Binary search trees [1] are widely used in several fields of computer science. Their behavior is well
studied, and under certain conditions, e.g., when assuming that the trees are balanced, the average
cost of a search operation as a function of the number of nodes can be easily estimated. Nevertheless,
traditional BSTs store all the keys. However, there are situations when it is more important to decide
whether a key is already in the data structure or not, such as in the case of an Extract Transform Load
(ETL) application. Hash tables [1] represent a solution in which the average time complexity of search
operation is O(1). However, in so called long running systems, the requirement to keep all the keys
for a long period to ensure duplication-free operation, translates to proportionally high storage space
requirement, like CHORD [2].

Entropy 2020, 22, 245; doi:10.3390/e22020245 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e22020245
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/22/2/245?type=check_update&version=3

Entropy 2020, 22, 245 2 of 20

To detect packet loss and duplication, a special, tree-like data structure was proposed, the Interval
Merging Binary Tree (IMBT) [3], appropriate for cases when the keys are sequentially ordered by
design, or there is a possibility to map the keys onto the natural numbers.

In [4], we performed an analysis of IMBT in a scenario where packets arrive out-of-order according
to arrival processes most frequently experienced in practical cases. We applied this data structure over
a stream processing framework, like Storm [5].

As part of an additional analysis [6] the full state-space of IMBT has also been determined.
In‘contrast to a data structure like AVL balanced BST [7] or Red Black balanced tree [8], in the case of
IMBT, it is not possible to determine the average complexity of the search operation as the exclusive
function of the already stored keys because states are more than one-dimensional, even if the tree is
balanced. Therefore, for each number of stored keys, N, we had to give an estimate of the possible
number of different average time complexities. The state-space is an exponential function of N.
An additional outcome of the analysis revealed that the contingency table [9] is, by design, suitable to
classify different statistical input key distributions [10,11]. Therefore by the association of a particular
occurrence of the contingency table with N it is possible to determine the average time complexity of
the operation in question.

The purpose of this contribution is to give a classification of the average cost of search operation
based on the Markov property [12,13] of the process represented by the number of nodes in the
tree which depends on the pattern of packet losses/duplications at the input. Since the observed
random variables are dependent, the weak dependent related Bernstein-criterion/theorem [14,15] is
also considered during the examinations. We use contingency tables to visualize these evolutions.

The paper is divided as follows. In Section 2 we briefly summarize the data processing
environment and the main characteristics of IMBT, then we introduce the role of contingency tables.
Then in Section 3 we discuss the two main cases, first when the gaps in the originally continuous
string of keys are permanent ones, and second when the loss of keys are temporary ones and gaps
are gradually filled. In Section 3.1 we introduce the case of permanent gaps and in Section 3.2 we
describe the case of temporary gaps. Section 4 contains proofs and deductions related to the formulated
theorems. In Section 5 the theoretical results will be compared to existing data structures. Additionally,
in this section we introduce the outcome of some selected simulations, which confirm the theories.

2. Interval Merging Binary Tree and Contingency Table

2.1. The Data Processing Environment and the Motivation Behind IMBT

Consider an environment where the group of distributed measuring instruments, say that k
instances (M1, M2,. . . Mk), emit their measurement reports RMi periodically, as seen in Figure 1a.
Each instrument has its own unique identity. Our goal is to collect, normalize, and transport these
measurement reports, along with guaranteed duplication filtering and high-speed (near real-time)
processing. To achieve this, first, we apply the following mapping rule: During the first period
the RM1 report from M1 is associated with number 1 (RM1 7−→ 1), and subsequently RM2 7−→
2, . . . , RMk 7−→ k. Supposing that the time of report generation is part of the unique identity, like in
case of attribute-based naming (or one can easily extract it from the report), from the second period we
apply the mapping RM1 7−→ (k + 1), RM2 7−→ (k + 2), . . . , RMk 7−→ (k + k), from the third period:
RM1 7−→ (2k + 1), RM2 7−→ (2k + 2), . . . , RMk 7−→ (2k + k), etc., based exclusively on the unique
identity and the time of the report generation as shown in Figure 1b.

Thermometers of the national weather service might be an example of endpoints for such a system.

Entropy 2020, 22, 245 3 of 20

Figure 1. (a) Meters with periodically emitted measurement reports. (b) Rule-based sequence
number association.

In the following, we consider the case when the reporting period might differ instrument group by
instrument group. Let us denote by rp1, rp2,. . . , rpl the different reporting periods in increasing order
(longer period is marked by higher index). For the sake of simplicity, suppose that all the longer periods
are integer multiples of all the shorter ones. That is, rp2 = a× rp1, rp3 = b× rp1 and rp3 = c× rp2,
such that a, b, c ∈ N. Since b× rp1 = c× rp2 ⇒ b = ac. In this case, it is also easy to create a set of
substitution rules, aided by the fact that the measurements can be linearized. Under linearization, here
we mean such an operation where during the determination of the assignable intervals (contiguous
sequence of integer numbers) of measurements with a longer period, we recursively consider that
ranges of sequential numbers, whose ranges were assigned before to the shorter periods measurements.

One can think about the linearization as the dimension reduction of two-dimensional data with
Hilbert space-filling curve [16].

Examples for such a mixed reporting environments might be the IoT (Internet of Things) reporting
entities of modern agro-meteorology systems, where different measurement features require different
measurement periods; or a physical experiment, where different measurements, observing the same
event, depend on the feasible/available granularity.

The mobile networks can also be considered such a system, in which mixed/heterogeneous
measurement periods exist: In the case of a mobile network, ten thousand network elements
continuously measure several parameters (signal strength, dropped packages, dropped connections,
location updates, etc.) with a different emitting period. In an extensive mobile network,
the geographical distribution is also an important factor. Due to its distributed nature, there is
no guarantee that during the raw data collection all the raw data will travel in the same order on
the same path towards the central repository, even from the same source. Therefore, out-of-order
arrival or temporary/final loss and retransmission also might take place. To be able to process the
results near real-time, the application of a fast filtering method is essential. Due to the near real-time
criterion, a traditional database is out of the question. By the application of a constant time hash
table, the filtering speed could be satisfied, however, considering the enormous amount of data it can

Entropy 2020, 22, 245 4 of 20

become a bottleneck from a memory consumption point of view. To reduce the memory consumption
and increase the throughput of a processing system that operates in the above described/characterized
environment, the IMBT is introduced, as seen in Figure 2.

Figure 2. Mobile network: an example for mixed measurement periods.

In an idealized environment, when all the reports eventually arrive, as we shall see, the height of
the tree is stabilized around an expected result. Therefore, the time complexity of the average search
operation can be considered to be constant, that is, O(1).

However, the measuring environments are usually far from ideal. Therefore, for instance, due to
the failure of a network element, the measurement reports might not have been generated at all, or the
reports are lost eventually over the transmission, and final gaps appear in an ideally continuous
interval, which causes a variously increasing average cost of the search operations.

2.2. Interval Merging Binary Tree

We denote by interval a sequence of contiguous integer numbers, where the numbers represent
the keys, ordinal numbers counting a sequence of data packets received by a host in the network.
Interval Merging Binary Tree is such a binary tree, in which, nodes are composed of nonoverlapping
intervals that are not neighbors of each other. If we are only interested in if a certain packet arrived
or not, it is enough to store only the extremes of the intervals instead of storing all the keys, as seen
in Figure 3.

Figure 3. Interval Merging Binary Tree (IMBT) number of keys increasing and the interval evolving
while the number of nodes is constant.

Entropy 2020, 22, 245 5 of 20

From the perspective of storage requirements, IMBT outperforms other data structures, storing all
the keys if the average number of keys covered by the nodes of the tree is higher than 2. An additional
data structure is required if we want to make an operation on the values associated to the individual
keys, once it is decided, based on IMBT, whether a packet has arrived already, because IMBT reduces
the space of keys to a space of intervals.

To count the possible arrangements of intervals we need to assess the number of distinct ways
a number N of nodes can be partitioned into the sum of integers smaller than N. In the field of integer
partitioning [17] the Hardy–Ramanujan number [18] represents an upper estimate for that:

lim
N→∞

p(N) ≈ 1
4N
√

3
eπ
√

2N/3 (1)

Now let us consider the fixed number of different keys N. Assuming that all the keys might be equally
searched for, if N was stored in a traditional balanced binary search tree, then the average cost of
a search operation can be expressed by the following formula:

A(N) = log2(N) (2)

However, from Equation (1) it is clear that, by knowing only the already stored keys (that is N),
we can get p(N) number of different combination of nodes, regarding interval lengths. We have not
yet taken into account the effect of balancing either. Let us consider a simple example in which N = 4
and let us denote the individual keys by k1, k2, k3, k4. Based on the possible number of neighbors
(neighborship being equivalent to the fact that the second packet is the immediate next packet to the
first one), the following scenarios can be distinguished:

• None of the keys are neighbors of each other,
• Two of them are neighbors and the other two are not,
• Two of them are neighbors and the remaining two are neighbors as well,
• Three of them are neighbors and one is not,
• All the keys are neighbors of each other.

We can see that these scenarios actually translate to the integer partitions of N when N = 4: N =

1 + 1 + 1 + 1, N = 2 + 1 + 1, N = 2 + 2, N = 3 + 1 N = 4; that is p(N = 4) = 5 in this case. Three
out of five scenarios are shown in Figure 4. Figure 4a corresponds to k1 = 1, k2 = 3, k3 = 5, k4 = 7.
Figure 4b corresponds to k1 = 1, k2 = 2, k3 = 3, k4 = 4; while Figure 4c corresponds to k1 = 1, k2 = 3,
k3 = 2, k4 = 5 arrival patterns. N represents discrete time of arrival of the packets. The remaining axes
display the interval length of each node at a given time instant, represented by N.

Figure 4. IMBT examples of evolving types for N = 1. . . 4. (a) No neighbors, (b) all keys are neighbors,
(c) three keys are neighbors, one key is not.

Entropy 2020, 22, 245 6 of 20

In [6] we have proven that these arrangements with or without balancing can be mapped onto
the rows and columns of a contingency table in the following way.

2.3. The Role of Contingency Tables on the Analysis of IMBT

Let us take a snapshot of IMBT and sort the intervals according to their length in monotone
increasing order. Let n be the number of nodes in the IMBT. Let us denote by li ∈ L the length of the
intervals belonging to a node ni from the IMBT, where L is a multi-set. We can denote by j the number
of distinct interval lengths. To all j we can assign a number d(j) that is the number of intervals with
the same length associated to j. It is necessarily true that j ≤ n. These numbers d(j) are located in the
header of the contingency table, that is, on the top of each column.

Now let us sort the intervals according to the distance of the nodes associated to them from the
root node in a monotonic increasing order. Let us denote by si ∈ S the number of comparisons required
to reach the left hand value of an arbitrary node ni, where S is a multi-set. The previously introduced
si is the distance. Then let us create as many wi, i ∈ 1. . . k for as many distinct distances there are.
Finally let us assign to all wi a number d(wi) meaning the number of intervals/nodes with the same
distance from the root node. It is necessarily true that k ≤ n. These d(wi) numbers are located in the
right side of the contingency table, that is in the end of each row.

Two examples are presented in the following. First we represent a traditional, completely balanced
BST in a contingency table, Figure 5.

Figure 5. The balanced binary search tree related contingency tables. The (a–c) cases belong to the
three different N values: 3, 7, and 15.

In the second example, we show an IMBT and the related contingency table. For the sake of
simplicity, suppose that there is a completely balanced IMBT with seven nodes, and the lengths of
all the intervals are the same. That is, with the above notation: l1 = l2 = l3 = l4 = l5 = l6 = l7 = a.
See Figure 6.

Figure 6. IMBT with seven nodes and the related contingency table. The arrows and the filled circles
are marking the order and number of comparisons during the search operations.

Entropy 2020, 22, 245 7 of 20

As can be seen in the figure, due to the equal length intervals, there is only one j and the number
of intervals with the same length associated to it is d(j) = 7. Of course, as we shall see, there are many
arrangements where the interval lengths are different.

We can recognize two deviations between the contingency tables associated to BSTs and IMBTs.
First, in the header of the contingency table belonging to the traditional BST, N = n number of keys
appear. However in case of IMBT, the number of nodes n is present, since this number is not necessarily
equivalent with the number of keys N covered by the tree so far. The second deviation is that although
both trees are balanced, the number of nodes with the same distance from the root in case of BST
follows the series of powers of two, but in case of IMBT it is a combination of a Fibonacci sequence
and an additional term, as shown in [6].

3. Arrangements Related Conditions, Theorems, and Equations

By now we know a model in which we can count the average cost of search operation by simple
multiplication of the corresponding values in the contingency table.

In the following, we will define some metrics and through these we will examine the evaluation
of the contingency table.

Let us denote by N the number of keys stored in the IMBT so far just like above. However, unlike
above, to be able to examine the evolution of the number of nodes in the tree, we introduce a random
variable, Vi, which is the instantaneous number of vertices (nodes previously) in the tree at time
instant i, where i ∈ 1 . . . N. It is obvious from the definition that V1 = 1 and Vi can be mapped to states
in a stochastic matrix. The distribution of the lengths of the intervals is affected by the homogeneity
and the finite/infinite nature of the stochastic matrix.

We define the series of instantaneous average interval lengths by the following formula:

L̄i =
li
1 + li

2 + · · ·+ li
Vi

Vi
, (3)

where i is the time instant (i ∈ 1 . . . N) and li
k is the length of the interval stored by node k at time

instant i. L̄i is a random variable as well.
We assume that for the series of L̄i the following constraints are true:

• There is an expected value a, to which the individual random variables, ai, stochastically converge
to as N tends to infinity, where a = lim

N→∞
(a1 + a2+. . .+aN)/N.

• There is a c = (σ2
1 + σ2

2+. . .+σ2
N)/n independently from N, where σi is the standard deviation of

the interval lengths at time instant i.
• There is a non-negative function r(x) for which r(0) = 1, lim N → ∞(r(1) + r(2)+. . .+r(n))/n =

0, and additionally |corr(L̄i, L̄i)| ≤ r(|i− j|), i, j ≥ 1.

The conditions mentioned above together constitute the Bernstein-theorem [14]. According to
the theorem, if the three constraints are simultaneously met, then the weak law of large numbers is true.

Using the Bernstein theorem as a starting point, we can identify two types of completely different
input pattern classes, for which the behavior of contingency tables is examined and the cost of average
search operation is determined:

• In the first case only a nonrecurring, transient, infinite state stochastic matrix can be composed
based on the associated states Vi. Additionally we assume that the Bernstein-theorem is true for
the series of L̄i,

• In the second case, we assume that based on the state Vi, it is possible to create a stochastic matrix
which has a finite state-space, is aperiodic, irreducible (that is ergodic), and recurrent.

Entropy 2020, 22, 245 8 of 20

The satisfaction of the first criterion implies that the average interval length is upper bounded.
As a result, the variance of the interval lengths is also upper bounded, therefore, the scenario in which
we have a composition of a large interval with continuously increasing length with increasing number
of small ones, is not valid. Rather, as N increases, there will be an increasing number of gaps between
the intervals, associated with permanently missing keys, that is, keys where the probability of arrival
of the associated packet converges to zero. Both from the previous fact and from Equation (3) it is
obvious that Vi is proportionally increasing as well.

The satisfaction of the second criterion implies the presence of temporary gaps only: in spite of
the increasing N the finite number of nodes implies that the instantaneous average interval length is
increasing, that is the number of gaps is upper bounded.

3.1. Permanent Gaps

In the case of permanent gaps, the mean of the average interval length is a constant value, a.
We do not exclude the possibility of having temporary gaps, due to the out-of-order arrival of packets.
As a result, the header d(ii) in the associated contingency table will follow a kind of distribution.
Taking into account the effect of temporary gaps in the analysis would make the analysis more
complex, but their effect is minor, therefore they will be discarded in the subsequent.

3.1.1. Linked List Arrangement

In this realization, our additional assumption against the keys is that there is a smallest one.
The tree degenerated into a linked list and three associated contingency tables with Vi = n = 3,

Vi = n = 7 and Vi = n = 15 are shown in Figure 7.

Figure 7. Linked list degenerated IMBT and three associated contingency tables.

Theorem 1. In the case when there is no shuffling and no balancing at all, the tree degenerates to a linked
list and

A(N, a) =
N
a
+

a− 1
a

. (4)

From the contingency table, it is clearly visible that the wi follows the sequence of odd numbers
and d(wi) remains constant.

3.1.2. Completely Balanced Arrangement

We assume a completely balanced tree with the number of node power of 2, that is n = 2l − 1.
Three associated contingency tables with Vi = n = 3, Vi = n = 7 and Vi = n = 15 are shown
in Figure 8.

Entropy 2020, 22, 245 9 of 20

Figure 8. Completely balanced IMBT and three associated contingency tables.

Theorem 2. With the above conditions, the average cost of the search operation can be expressed with the
following formula:

A(N, a) =
3
2

log2

(N
a
+ 1
)
+

3a
2N

log2

(N
a
+ 1
)
− a + 1

a
. (5)

As is visible from the figure and as we have proven in [6], the balancing has a typical fingerprint
in the d(wi) distribution: It follows the Fibonacci sequence until the middle of the rows on the way
from the top rows to the bottom rows.

Supposing that N >> 0, and a > 0. Then we can apply the following simplification on
Equation (5):

A(N, a) ≈ 3
2

log2(
N
a
) =

3
2

log2(N)− 3
2

log2(a) (6a)

= log2(N) +
1
2

log2(N)− 3
2

log2(a). (6b)

That is, an IMBT with the given criteria will outperform a BST as long as the difference of the second
and third term is negative, in other words, provided that:

a >
3
√

N (7)

3.2. Temporary Gaps Only

Let us assume in the following cases that it is possible to compose from Vi a finite state {1. . . p},
ergodic (aperiodic, positive recurrent), at least partially recurring stochastic matrix.

Let us denote by Mj the mean recurrence time in state j. If Mj is finite then state j is positive
recurrent. The state j in which the expected return time is the smallest one, will represent the number
of nodes in the IMBT as a steady-state value. Therefore we can substitute that state with value n = j.

Regarding the distribution of the interval lengths, which are necessarily increasing, we will
distinguish two possible realizations.

Entropy 2020, 22, 245 10 of 20

• In the first realization we suppose that the increasing interval lengths are uniformly distributed to
nodes, the number of which is fixed.

• In the second realization the distribution is not uniform.

3.2.1. Linked List Like Arrangement

In this subsection, our additional assumption against the keys is that there is a smallest one, which
we may always call first and as time goes by the probability that all the keys near the first key have
already arrived is increasing.

Since the gaps are temporary ones, out-of-order arrival implies there are keys which arrive late,
therefore temporary side-branches might appear over time, outside of the main branch. The length of
these temporary branches depends on the statistics of the out-of-order arrival pattern. Subsequent
side-branches are not taken into account because their effect is marginal.

Theorem 3. With the distribution characterized above, the data structure degenerates into a linked list. Suppose
that the increasing lengths are uniformly distributed across the nodes. Then, due to the uniformly distributed
increasing lengths, the average cost of the search operation does not depend on N:

A(N, a) = n. (8)

Figure 7 accurately describes this scenario as well.

In the following, we suppose that the distribution of the lengths is not uniform, but node-heavy,
meaning that every node contains a single key only, except one, which contains all the remaining
N − n + 1 keys. That heavy node can reside at the tail, in the middle, or at the root of the linked list
degenerated tree.

Theorem 4. Then the average costs of search operations in case of node-heavy arrangements are the followings:

lim
N→∞

Atail heavy(N, a) = 2n. (9a)

lim
N→∞

Amiddle heavy(N, a) = n. (9b)

lim
N→∞

Aroot heavy(N, a) = 2. (9c)

The related arrangements and contingency tables are shown at Figures 9 and 10 respectively.

Entropy 2020, 22, 245 11 of 20

Figure 9. The linked list degenerated IMBT with heavy nodes. (a) is tail heavy, (b) is middle heavy and
(c) is root heavy IMBT.

Figure 10. The associated contingency tables of linked list degenerated IMBT with heavy nodes. (a) is
tail heavy, (b) is middle heavy and (c) is root heavy contingency table.

3.2.2. Completely Balanced Arrangement

Two scenarios are considered:

• The increasing lengths of intervals are uniformly distributed across the tree,
• The distribution of lengths follows an exponential distribution.

The first case is fairly simple. Since the number of nodes is fixed with value n, it is easy to see the
following.

Theorem 5. considering a completely balanced IMBT the average cost of search operation is such a constant,
which is proportional with the logarithm of n. Based on Equation (6b), considering that a >> 0 (since a
increasing infinitely) we get:

A(N, a) ≈ C(n)− 1. (10)

Entropy 2020, 22, 245 12 of 20

From the formula it is visible that, just like in case of Theorem 3, the A(N, a) is independent
from N.

The other case is a little bit trickier: it depends on the length distribution. Suppose that the nodes
with smaller key values hold the longer intervals, while nodes with the highest key values hold the
shorter intervals. Additionally, the rightmost interval is always one. Compensating this constraint
without increasing the number of nodes the leftmost interval always absorbs the surplus.

We do not give the related formula and the associated deduction here, but consider the
construction of a similar, however, "more realistic" arrangement in the next subsection.

3.2.3. An Exception: Completely Balanced Arrangement, Temporary Gaps, Infinite Nodes, and
Increasing Average

In this subsection, we introduce an arrangement, where none of the two criteria from Section 2
hold: the average length of the intervals is increasing, along with the increasing number of nodes.
Our initial assumption is that the interval lengths are exponential according to power of two.
Additionally the longest interval has the smallest left-hand key value, the second longest interval has
the second smallest left-hand key value and so on. Moreover we suppose that the length of the shortest
interval is always 20.

Since we are examining asymptotic results we apply the simplification that only the right side
distances will be taken into account for the determination of the full weight of IMBT. That is, if the
length of an interval is li(= 2i) then, with this approach we weight the right distances of a node by the
full li, instead of li − 1(= 2i − 1). However, it is easy to see that as N → ∞ this difference becomes
insignificant.

By considering a tree nodes arrangement and applying the above constraints we obtain interval
lengths of 20, 21, 22. As we stipulated before, the longest interval has the smallest left key value.
Therefore, in a balanced IMBT 22 interval has the distance from the root 3 comparisons (we take
into account the right hand distances). The 21 interval is the root node, therefore, we count with
2 comparisons. The 1 key interval is in the right side of the balanced IMBT, therefore to reach the
majority of that keys requires 4 comparisons.

As we stated before, during the calculations we assumed that the following conditions are hold:

- Any key can be the subject of the search operation with equal probability,
- The key is already in the tree.

Therefore, during the determination of the average cost of search operation, the actually expected
value of comparisons is calculated. According to our assumption the probability of we are looking for
key k is 1/N, where k ∈ {1. . . N}. Since during the jth comparison several keys can be found the jth
comparisons has to be weighted with the length of the intervals. According to the above mentioned the
A(N) average cost is 1/N multiplied by the sum of weighted nodes, where a particular weight, which
belongs to a single node is the multiplication of the distance and the length of the interval. The sum of
weighted nodes, that is the total weight, is denoted by TW.

Let us assign the s1, s2 and s3 to the above numbers, respectively. That is, s1 = 3, s2 = 2 and s3 = 4.
The approximate value of the total weight of the tree is the following:

TW = s120 + s221 + s322 (11)

Now by extending our examination to a n = 7 nodes arrangement, the longest interval is 26.
The comparison weights depend on the lengths and the distances from the root, therefore in this case
we obtain:

TW = (s1 + 2)20 + (s2 + 2)21 + (s3 + 2)22 + (s1 + 1)20+4 + (s2 + 1)21+4+

(s3 + 1)22+4 + (s2 + 0)23 (12)

Entropy 2020, 22, 245 13 of 20

From the above two equations we can formulate the recursive extension/composition rule: Take
the given expression which is valid for n nodes. To determine the 2n + 1 nodes arrangement, first copy
the whole formula and increase by 2 the multipliers of the powers. Then add the formula with the
multipliers increased with one and powers increased by 2. According to modification 2, increase the
multiplier values by 1. Additionally, add the corresponding base 2 value to the exponents. Finally add
the missing new root member to the expression. To make it more understandable, here we give an
extension of Equation (12).

TW = (s1 + 2 + 2)20 + (s2 + 2 + 2)21 + (s3 + 2 + 2)22+

+ (s2 + 0 + 2)23 + (s1 + 1 + 2)20+4 + (s2 + 1 + 2)21+4 + (s3 + 1 + 2)22+4+

+ (s1 + 2 + 1)20+8 + (s2 + 2 + 1)21+8 + (s3 + 2 + 1)22+8+

+ (s2 + 0 + 1)23+8 + (s1 + 1 + 1)20+4+8 + (s2 + 1 + 1)21+4+8 + (s3 + 1 + 1)22+4+8+

+ (s2 + 0 + 0)27.

(13)

This is such a recursive rule, that it affects both the multipliers and the exponents. The related
contingency table is shown in Figure 11. In the figure, we indicated the number of steps that are
required to achieve the interval opening keys, instead of the closing. That is, every weight associated
values in the column are shifted by one.

Figure 11. The contingency tables of IMBT where all the interval lengths are different.

Based on the figure and Equation (13) we can say that

d(w1) = 1, where w1 = (s2 + 0 + 0) = 2

d(w2) = 1, where w2 = (s2 + 0 + 1) = 3

d(w3) = 2, where w3 = (s2 + 0 + 2) = (s2 + 1 + 1) = 4

d(w4) = 3, where w4 = (s2 + 1 + 2) = (s2 + 2 + 1) = (s1 + 1 + 1) = 5

(14)

etc.
Since the average length of the intervals is strictly tied to N, the average cost of search operation

is depending exclusively on N, that is

A(N) =
1
N
× TWN . (15)

Entropy 2020, 22, 245 14 of 20

4. Proofs and Deductions

In this section we give the proofs and deductions of the above results and theorems. During
the deductions, it is assumed that any key has the same probability to be searched for. That is
P(the key we are looking f or is km) =

1
N , where m ∈ (1. . . N).

4.1. Permanent Gaps

4.1.1. Linked List Arrangement

Proof of Theorem 1: Every node contains two keys, since a node covers an interval and the keys
represent the borders of that particular interval. Let us assume that a node in the tree covers a keys on
average. Then we can denote by ki the starting key and by ki + (a− 1) the ending key. Additionally,
due to the non-overlapping feature of IMBT, it is also trivial that (ki + a− 1) < ki+1.

First let us see the a = 1 case. In this case in the linked-list degenerated data structure the starting
and the ending keys are equal. As a consequence: if the key to be searched for is not equal with
ki then the second comparison with the right value of that particular node is necessary but, due to
ki == ki + a− 1, the outcome of the comparison is always false.

Since the number of the nodes is n = N/a, and here a = 1, therefore n = N. Based on this, we can
write that the average cost of SEARCH is equal to the expected value:

A(N) =
1
N

n

∑
i=1

(2i− 1)

=
1
N

[
2

n(n + 1)
2

− n
]
= N.

(16)

Now, we examine the a ≥ 2 case. It is still valid that n = N/a. Analogous to the previous
deduction we can write that the average cost of the SEARCH operation is:

A(N, a) =
1
N

n

∑
i=1

(2i− 1) + 2i(a− 1)

=
1
N

[
n(n− 1)− n + (a− 1)n(n− 1)

]
=

N + a− 1
a

=

=
N
a
+

a− 1
a

.

(17)

It is visible that substituting 1 into a we will return Equation (16).
An additional consequence is that as a grows the equation tends to:

N
a
+

a− 1
a
≈ N

a
+ 1. (18)

With the deduction above, Theorem 1 is proved. �

4.1.2. Completely Balanced Arrangement

From now on, the number of layers or levels is denoted by l (in contrast to the previous notation
of lengths). The root node is the l = 1.

Entropy 2020, 22, 245 15 of 20

Proof of Theorem 2: Based on our notations we can write that:

n =
N
a

,

l = log2(n + 1) = log2(
N
a
+ 1).

(19)

During the deduction we will use the following identity:

n

∑
i=1

i2i = n(2n+1 − 2)− (2n+1 − 4) + (n− 1)2. (20)

Based on the relations (Equation (19)) we can define the layer level sums:

2i−1 + 2i(a− 1) + (i− 1)2i−23 + (i− 1)2i−23(a− 1), (21)

where i means the ith level in the tree. However, this form is not suitable for equal transformations.
Therefore, we split the formula into a fixed member which is the first node and the layer level members.
Due to this split we will use an incremented i and the counter in the sum will last to l − 1 instead of l:

A(N, a) =
1
N

[
1 + 2(a− 1) +

l−1

∑
i

2i + (a− 1)2i+1 + 3i2i−1 + 3(a− 1)i2i−1
]
=

=
1
N

[
1 + 2(a− 1) +

l−1

∑
i

2a2i − 2i +
3a
2

i2i
]
=

=
1
N

[
1 + a− a2l − 2l +

3a
2

l2l
]
.

(22)

Since

a− a2l =− a(2l − 1) = −N

1− 2l =− N
a

(23)

we can write that

A(N, a) =
1
N

[3a
2

l2l − N − N
a

]
=

3a
2N

(
N
a
+ 1)log2(

N
a
+ 1)− 1− 1

a

=
3
2

log2

(N
a
+ 1
)
+

3a
2N

log2

(N
a
+ 1
)
− a + 1

a
.

(24)

With the deductions above, Theorem 2 is proved. �

4.2. Temporary Gaps Only

4.2.1. Linked List Arrangement

The proof of Theorem 3 is easily derivable from Equation (18), with the substitution of n = N
a :

A(N, a) =
N
a
+

a− 1
a
≈ n + 1 = C. � (25)

The proofs of node heavy cases, Theorem 4, are the following.

Entropy 2020, 22, 245 16 of 20

According to arrangement a) we can write that n = N/a, and

A(N, a) =
n

∑
i=1

2i− 1
N

+ 2n
N − n

N

= N
[2a− 1

a2

]
= n

2a− 1
a

.

(26)

It is visible from the results that as N and a grow along with n = const. the value tends to 2n,
which is not surprising considering that accumulation is possible merely in the last element.

Considering arrangement b) we will get that

A(N, a) =
n

∑
i=1

2i− 1
N

+
n + 1

2
N − n

N

=
1
2

N + a− 1
a

.

(27)

Comparing the result to Equation (25) we can see that the average SEARCH cost is half of that of
the uniformly distributed one.

Arrangement c) can be expressed by the following equation:

A(N, a) = 2
N − n

N

n

∑
i=1

2i− 1
N

= 2
N − n

N
+

2
N

n

∑
i=1

i− (n− 1)
N

= 2
N − n

N
+

2
N
(n(n + 1)

2
)
− (n− 1)

N

= 2
N − n

N
+

n(n + 1)
N

− (n− 1)
N

(28)

The result shows that by increasing N, next an n = const., A(N, a) tends to 2:

limN→∞ A(N, a) = 2. (29)

The proof of Theorem 4 is completed. �

4.2.2. Completely Balanced Arrangement

The Theorem 5 can be easily proven based on Equation (6b):

A(N, a)
3
2

log2

(N
a
+ 1
)
+

3a
2N

log2

(N
a
+ 1
)
− a + 1

a
(30)

By replacing N
a with n, and considering that during the examinations n = const.:

A(n = const., a) =
3
2

log2

(
n + 1

)
+

3
2n

log2

(
n + 1

)
− a + 1

a

= c1 + c2 −
a + 1

a
.

(31)

As a >> 0 (since a is increasing infinitely) we get the following approximation:

A(N, a) ≈ C(n)− 1.� (32)

During the proofs above, we restricted our examinations to such cases where the requested
key has already stored in the data structure. Of course the missing keys would modify the results:

Entropy 2020, 22, 245 17 of 20

the interval length of the gaps should be considered, instead of the interval length of the nodes. Here,
the weight of the half open intervals should be handled by care.

5. Evaluations and Simulations

Above, we analyzed the average time complexity of search operation of IMBT considering various
input patterns. In the following, to put the IMBT in context, first we compare the cost of the search
with the case of using other data structures in wide use. Throughout the comparisons, we consider
the effect of permanent gaps and temporary gaps which, as we shall see, play a role only in the case
of IMBT.

Then, we present the results of the selected simulations. In this case, we can point out hidden
gains caused by the reduced number of nodes. These reduce, for instance, the cost of a tree rotation.

5.1. Evaluations

We compare IMBT with AVL balanced BST, hash tables, and Splay trees [19]. AVL was selected
because AVL-based balancing has been applied by us for IMBT as well in our simulations. Hash was
selected since its average time complexity of search operation is a constant time. Splay tree was chosen
because it has a self-balancing structure influenced by the access pattern.

5.1.1. Permanent Gaps

Table 1 compares the performance of IMBT (balanced—IMBT-B, linked list degenerated—IMBT-LLD)
with data structures, in case there are permanent gaps.

Table 1. Evaluation of time and space complexity of data structures in case of permanent gaps.

Number
of Keys

Number
of Nodes

Space
Complexity

Search Operation
Time Complexity

(Average)

Search Operation
Time Complexity

(Worst Case)

AVL Balanced
BST N n = N O(N) O(log(N)) O(log(N))

Splay tree N n = N O(N) O(log(N)) O(log(N))
Hash N n = N O(N) O(1) O(N)

IMBT-LLD N n = N
a

O(2
a N) =

O(N)
O(N

a + a−1
a) = O(N) O(2

a N) = O(N)

IMBT-B N n = N
a

O(2
a N) =

O(N)
O(3

2 log2(
N
a)) =

O(log(N))
O(2× log2(

N
a)) =

O(log(N))

As we can see from the table, the permanent gaps reduce the IMBT-LLD to a linked list with
reduced number of nodes. The only gain here might be the constant divisor factor. In case a is high
enough, the space complexity is a fraction of all other data structures.

Not surprisingly, IMBT-LLD has the worst performance on search time of all the data structures.
For IMBT-B even the worst case has O(log(N)) time complexity, while a gain can originate from the
reduced space complexity which can be significant, depending on the value of a.

5.1.2. Temporary Gaps Only

Table 2 compares the performance of IMBT (balanced—IMBT-B, linked list degenerated—IMBT-LLD)
with data structures, in case there are temporary gaps. From the three variants of IMBT-LLD, only the
middle node-heavy variant will be covered.

Entropy 2020, 22, 245 18 of 20

Table 2. Evaluation of time and space complexity of data structures in case of temporary gaps.

Number
of Keys

Number
of Nodes

Space
Complexity

Search Operation
Time Complexity

(Average)

Search Operation
Time Complexity

(Worst Case)

AVL Balanced
BST N n = N O(N) O(log(N)) O(log(N))

Splay tree N n = N O(N) O(log(N)) O(log(N))
Hash N n = N O(N) O(1) O(N)
Middle
node-heavy
IMBT-LLD

N n =
const.

O(2n =
const.) = O(1) O(n = const.) = O(1) O(2n = const.) =

O(1)

IMBT-B N n =
const.

O(2n =
const.) = O(1)

O(C(n = const.)− 1)
= O(1)

O(C(n = const.)− 1)
= O(1)

The stochastically constant height of IMBT leads to stochastically constant search cost and constant
space complexity.

Therefore, where it is possible, it is worth it to apply artificial maintenance insertion operations to
eliminate the permanent gaps. Of course this is an application-specific decision, when, for instance,
the user is aware that a reporting instrument failed, a range of keys surely would never arrive to
the tree, otherwise the artificially inserted values override the real ones. Through a well-designed
maintenance insertion the height of the tree probably can be kept under a certain limit.

5.2. Simulations

Below, some selected simulations are presented. A mixed statistical model was applied that
was introduced in detail in [4]: The permanent gaps are induced by different Bernoulli distributions
and temporary gaps are generated through distinct extents of shuffling with the help of distinct λ

parameters of the exponential distribution.
During the simulations 1 million keys are always emitted, however, in case of permanent

gaps/loss, a prefixed ratio/amount of the keys did not arrive to the trees.
During the simulations we investigated the evolution of the number of nodes, number of rotations,

number of merges, etc., over the received keys and/or as a function of λ. In this contribution, we limit
our attention to the number of nodes as a function of received keys and λ.

We show the number of nodes over the received keys with different λ parameters, Figure 12.
The ratio of the permanent loss is 10 percent.

Figure 12. Time series of number of nodes for balanced BST and IMBT for permanent gaps.

In the case of BST, the required number of nodes is equal with the received number of keys.
Regarding IMBT, along with uniformly distributed gaps, the required number of nodes is

proportional with N/a to store the keys which is practically independent from λ. It is a permanent
space complexity gain compared to other data structures.

Entropy 2020, 22, 245 19 of 20

Taking into account the uniformly distributed character of the gaps and considering the
Equations (6b) and (7), the IMBT provides time complexity advantage on average up to N = a3

keys. Over that, only the space complexity gain remains. Otherwise, from a time complexity point of
view IMBT behaves just like other BSTs.

Next, the number of nodes of the balanced BST and IMBT over the received keys in the case of
temporary gaps only is evaluated, Figure 13.

Figure 13. Number of nodes for balanced BST and IMBT for temporary gaps, as a function of the
received keys/degree of shuffling.

In the case of BST, the result is similar to the previous one, which is visible on the left side of
the figure.

However, in case of IMBT the situation is different. As we theoretically predicted the number
of nodes becomes a stationary process in case of IMBT. This is visible on the right side of the figure,
which are the magnified results of the bottom of left measurements.

That is, the simulation confirms Equation (32), according to which A(N, a) can be considered
(stochastically) constant, that is the time complexity of the search operation is O(1). Moreover, the space
complexity can also be considered constant, as stated above. Therefore, the IMBT can be a very efficient
data structure both in terms of space/time complexity of the search operation.

During the previous simulations only every 10,000th states were displayed. In the following, for
demonstrating purposes, we provide the diagram, where all 1 million states are displayed with λ = 70.
From Figure 14 the stability of the process is clearly visible.

Figure 14. Balanced IMBT, temporary gaps only. Instantaneous number of nodes over received keys.

6. Conclusions

In the contribution above we have mixed together the Markov property based node number
behavior and the corresponding contingency tables. In numerous cases, where it was possible,

Entropy 2020, 22, 245 20 of 20

we gave a two-parameters-based formula to be able to estimate the average cost of search operations.
To conclude, in this contribution, two distinct ways have been presented that enable the analysis,
in the possession of a-priori knowledge on the traffic pattern, of the performance of the IMBT data
structure, and a subsequent decision whether to apply it over another well known data structure,
for the particular case.

Author Contributions: Conceptualization, I.F.; Methodology, I.F.; Project administration, L.F.; Resources, S.S. and
L.F.; Supervision, S.S. and L.F.; Writing—original draft, I.F.; Writing—review editing, S.S. and L.F.

Funding: This research was supported by the National Research, Development, and Innovation Fund of Hungary
within the Quantum Technology National Excellence Program (Project Nr. 2017-1.2.1-NKP-2017-00001).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; MIT Press and
McGraw-Hill: London, UK, 2009; ISBN 0-262-03384-4.

2. Stoica, I.; Morris, R.; Liben-Nowell, D.; Karger, D.R.; Kaashoek, M.F.; Dabek, F.; Balakrishnan, H. Chord: A
Scalable Peer-to-peer Lookup Protocol for Internet Applications. IEEE/ACM Trans. Netw. 2003, 11, 17–32.
[CrossRef]

3. Finta, I.; Farkas, L.; Sergyán, S.; Szénási, S. Interval Merging Binary Tree. In Proceedings of the ICA3PP 2017,
Helsinki, Finland, 21–23 August 2017. [CrossRef]

4. Finta, I.; Élias, G.; Illés, J. Packet Loss and Duplication Handling in Stream Processing Environment.
In Proceedings of the CINTI 2018, Budapest, Hungary, 21–22 Novermber 2018. [CrossRef]

5. STORM—A Distributed Real-Time Computation System. Available online: http://storm.apache.org/
documentation/Home.html (accessed on 28 November 2019)

6. Finta, I.; Szénási, S. State-space Analysis of the Interval Merging Binary Tree. Acta Polytech. Hung. 2019, 16,
71–85. [CrossRef]

7. Adelson-Velsky, G.; Landis, E. An algorithm for the organization of information. In Doklady Akademii Nauk;
Russian Academy of Sciences: Moscow, Russia, 1962; pp. 263–266.

8. Bayer, R. Symmetric binary B-Trees: Data structure and maintenance algorithms. Acta Inform. 1972, 1,
290–306. [CrossRef]

9. Lauritzen, S.L. Lectures on Contingency Tables, 2002, Electronic edition, Aalborg University. Available
online: http://www.stats.ox.ac.uk/~steffen/papers/cont.pdf (accessed on 28 November 2019)

10. Barvionk, A. Enumerating Contingency Tables via Random Permanents. Comb. Probab. Comput. 2008, 17,
1–19. [CrossRef]

11. Barvinok, A.; Luria, A.; Samorodnitsky, A.; Yong, A. An approximation algorithm for counting contingency
tables. Random Struct. Algorithms 2010, 37, 25–66. [CrossRef]

12. Chung, K.L. Markov Chains with Stationary Transition Probabilities; Springer: Berlin/Heidelberg, Germany, 1960.
13. Meyn, S.P.; Tweedie, R.L. Markov Chains and Stochastic Stability; Springer: London, UK, 2012; ISBN 9781447132677.
14. Bernstein, S.N. Theory of Probabilities. Moskva/Leningrad, Russia, 1946.
15. Doukhan, P.; Louhichi, S. A new weak dependence condition and applications to moment inequalities. Stoch.

Process. Their Appl. 1999, 84, 313–342. [CrossRef]
16. Lawder, J.; King, P. Querying Multi-dimensional Data Indexed Using Hilbert Space-Filling Curve. ACM

Sigmod Rec. 2000, 30, 19–24. [CrossRef]
17. Bóna, M. A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory; World Scientific

Publishing: Singapore, 2002; pp. 145–164, ISBN 981-02-4900-4.
18. Hardy, G.H.; Ramanujan, S. Asymptotic Equatione in Combinatory Analysis. Proc. Lond. Math. Soc. 1918, 2,

75–115. [CrossRef]
19. Sleator, D.D.; Tarjan, R.E. Self-Adjusting Binary Search Trees. J. ACM 1985, 32, 652–686. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TNET.2002.808407
http://dx.doi.org/10.1007/978-3-319-65482-9
http://dx.doi.org/10.1007/978-3-319-65482-9
http://storm.apache.org/documentation/Home.html
http://storm.apache.org/documentation/Home.html
http://dx.doi.org/10.12700/APH.16.5.2019.5.5
http://dx.doi.org/10.1007/BF00289509
http://www.stats.ox.ac.uk/~steffen/papers/cont.pdf
http://dx.doi.org/10.1017/S0963548307008668
http://dx.doi.org/10.1002/rsa.20301
http://dx.doi.org/10.1016/S0304-4149(99)00055-1
http://dx.doi.org/10.1145/373626.373678
http://dx.doi.org/10.1112/plms/s2-17.1.75
http://dx.doi.org/10.1145/3828.3835
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Interval Merging Binary Tree and Contingency Table
	The Data Processing Environment and the Motivation Behind IMBT
	Interval Merging Binary Tree
	The Role of Contingency Tables on the Analysis of IMBT

	Arrangements Related Conditions, Theorems, and Equations
	Permanent Gaps
	Linked List Arrangement
	Completely Balanced Arrangement

	Temporary Gaps Only
	Linked List Like Arrangement
	Completely Balanced Arrangement
	An Exception: Completely Balanced Arrangement, Temporary Gaps, Infinite Nodes, and Increasing Average

	Proofs and Deductions
	Permanent Gaps
	Linked List Arrangement
	Completely Balanced Arrangement

	Temporary Gaps Only
	Linked List Arrangement
	Completely Balanced Arrangement

	Evaluations and Simulations
	Evaluations
	Permanent Gaps
	Temporary Gaps Only

	Simulations

	Conclusions
	References

