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Abstract: In this study, high-entropy alloy films, namely, AlCrTaTiZr/AlCrTaTiZr-N, were deposited
on the n-type (100) silicon substrate. Then, a copper film was deposited on the high-entropy alloy
films. The diffusion barrier performance of AlCrTaTiZr/AlCrTaTiZr-N for Cu/Si connect system
was investigated after thermal annealing for an hour at 600 ◦C, 700 ◦C, 800 ◦C, and 900 ◦C. There
were no Cu-Si intermetallic compounds generated in the Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks
after annealing even at 900 ◦C through transmission electron microscopy (TEM) and atomic probe
tomography (APT) analysis. The results indicated that AlCrTaTiZr/AlCrTaTiZr-N alloy films can
prevent copper diffusion at 900 ◦C. The reason was investigated in this work. The amorphous
structure of the AlCrTaTiZr layer has lower driving force to form intermetallic compounds; the lattice
mismatch between the AlCrTaTiZr and AlCrTaTiZ-rN layers increased the diffusion distance of the
Cu atoms and the difficulty of the Cu atom diffusion to the Si substrate.

Keywords: high-entropy alloys; diffusion barriers; thermal stability; amorphous structure; lattice
distortion; lattice mismatch

1. Introduction

Copper film has a better electron migration resistance and lower resistivity than aluminum film.
Copper film is a promising material in the interconnect of very large-scale integration technologies [1].
However, the copper interconnection has the problem of interdiffusion between the copper and
silicon, which becomes serious at 180~200 ◦C [2]. It is necessary to insert a film called a diffusion
barrier and adhesion promoter (DBAP) between Cu and Si to increase the failure temperature. With
the development of the integrated circuit (IC) industry, the characteristic size has decreased. The
conventional barrier materials have microstructure defects.

The diffusion barriers were investigated in recent years, such as the ZrN (20 nm) [3], MoN
(50 nm) [4], TaN (8 nm) [5], and Ir/TaN (5/5 nm) [6]. Most of these diffusion barriers contain two or
three elements. These traditional diffusion barrier materials cannot block the diffusion of the Cu and Si
at about 600 ◦C, which greatly limits the development of ICs. The materials with more elements in
various material systems may be a good choice [7–9]. One of the attempts is based on multi-element
materials, involves not just more elements, but more major elements, which was called high-entropy
alloys (HEAs) by Yeh and co-workers [10–17]. HEAs have four main core effects: (1) thermodynamic,
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high-entropy effects; (2) kinetically-sluggish diffusion; (3) structurally, severe lattice distortion; and
(4) cocktail effect properties [18,19]. According to prior studies [20–24], high-entropy alloys have
great potential for coating applications. The amorphous structures develop easily in high-entropy
alloys [16]. They have the thermal stability of high-entropy alloys [25] and chemical stability after high
temperature annealing [26]. These characteristics of high-entropy alloys and their nitride films are
important advantages for using high-entropy alloys as diffusion barriers. High-entropy alloys can be
candidates for next-generation diffusion barriers [27,28]. A previous study showed that HEAs, such
as the diffusion barrier of AlMoNbSiTaTiVZr50N50 [27], can sustain a high temperature of 800 ◦C
for 30 min. The sandwiched Cu/FeCoBTiNb/Si [29] film showed a failure temperature of 550 ◦C for
30 min by inhibiting the Cu diffusion. The (TiTaCrZrAlRu)N [30] film can sustain a high temperature
of 900 ◦C for 30 min. Compared with traditional diffusion barriers, the high-entropy alloy diffusion
barriers have a higher failure temperature. However, the problem for the bonding of the diffusion
barriers and the Cu film is not mentioned. In this paper, not only is the diffusion barrier performance
of the diffusion barriers is studied, but also the bonding between the Cu film and the diffusion barrier
layer are studied.

In this study, the AlCrTaTiZr/AlCrTaTiZr-N (HEA/HEAN) films were inserted between the Cu
layer and Si substrate for promoting bonding, electrical characteristics, and thermal stability of the
Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks. Its microstructures and properties were investigated
by the cross-sectional transmission electron microscopy (XTEM) and X-ray diffraction (XRD). Its
electrical characteristics were investigated by a four-point probe station (4PP). The results show that
AlCrTaTiZr/AlCrTaTiZr-N films can prevent the Cu and Si diffusion.

2. Experimental Details

The AlCrTaTiZr/AlCrTaTiZr-N films were deposited on Si substrates by the UDP 650/4 magnetron
sputtering equipment. The size of the sputtering target used was length (380 mm) by width (175 mm)
by thickness (10 mm). The sputtering target contained equimolar Al, Cr, Ta, Ti, and Zr elements, which
were obtained by vacuum arc melting.

Acetone and ethanol were used to clean the Si substrate before depositing the HEAs films. The
parameters setting for AlCrTaTiZr deposition on Si substrates was 0.8 A current, −80 V bias voltage,
room temperature, and 20 sccm Ar gas. The parameter setting for AlCrTaTiZr-N deposition on
AlCrTaTiZr layer was 0.8 A current, −80 V bias voltage, room temperature, and mixed gases with 16
sccm Ar and 4 sccm N2. The chamber vacuum pressure was 2.5 × 10−5 Torr before sputtering. The
working pressure was 2 × 10−3 Torr during sputtering. The AlCrTaTiZr/AlCrTaTiZr-N films thickness
was about 20 nm.

The Cu film was deposited on the AlCrTaTiZr-N layer by the UDP 650/4 magnetron sputtering
equipment at a current of 1 A, a bias voltage of −50 V, room temperature, and 20 sccm Ar gas. The
chamber vacuum pressure was 2.5 × 10−5 Torr before sputtering. The working pressure was 2 × 10−3

Torr during sputtering. The film deposition time was six minutes, and the film thickness was about
200 nm.

Then, the Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks were annealed in an encapsulated vacuum
quartz tube with pressure <1 × 10−5 Torr for an hour at 600 ◦C, 700 ◦C, 800 ◦C, and 900 ◦C. In order to
avoid the delamination from thermal stresses, a cooling rate of 5 ◦C/min was used once the temperature
was above 200 ◦C. Below this temperature, natural cooling in the air for the film stacks was allowed.

The surface morphology of the as-deposited and thermally annealed Cu/AlCrTaTiZr/AlCr
TaTiZr-N/Si film stacks was observed by the scanning electron microscope (SEM) in a Nova Nano (FEI,
Hillsboro, Oregon, USA) with an acceleration voltage of 15 kV. The X-ray diffractometer (XRD) with
a D8 Advanced (Bruker, Billerica, MA, USA) was installed with Cu Kα radiation (tube parameters:
40 kV; 40 mA). The diffractograms were measured in a diffraction angle range (2θ) of 20◦ to 80◦ with a
step size of 0.02◦ and 0.1 s/step. The crystal structures of the film stacks were analyzed by the XRD. The
analysis of the overall chemical composition was carried out by energy dispersive X-ray spectroscopy
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(EDS) with an Apollo XP spectrometer (EDAX, Philadelphia, PA, USA). The sheet resistance of the
as-deposited and thermally annealed film stacks was measured by four-point probe with a Model
280SI (4D, America). The microstructures and lattice structures of the as-deposited and annealed films
were observed by a high-resolution transmission electron microscope (HR-TEM) with a H-600 (Hitachi,
Tokyo, Japan). The 3D atomic distribution within Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si was measured by
the atomic probe tomography (APT) with a LEAP4000XHR (CAMECA, Paris, France).

3. Results

The results of the EDS analysis (Table 1) revealed that the contents of metallic elements in the
AlCrTaTiZr layer and AlCrTaTiZr-N layer were nearly equimolar ratio and close to the ratio of metallic
elements in the sputtering target.

Table 1. Composition of the AlCrTaTiZr layer and AlCrTaTiZr-N layer (At%).

Al Cr Ta Ti Zr N

Sputtering target 21.28 20.83 19.86 19.11 18.92 0
AlCrTaTiZr 22.15 22.56 18.28 19.46 17.54 0

AlCrTaTiZr-N 16.64 17.22 15.31 15.11 14.69 21.02

Figure 1 shows the XRD patterns of the AlCrTaTiZr layer and AlCrTaTiZr-N layer. Figure 1
revealed a broad peak in the AlCrTaTiZr layer, indicating that this layer presented an amorphous
structure. High-entropy alloys have high mixed entropy, and the atomic size difference of metal atoms
will cause severe lattice distortion, which promotes the formation of amorphous structures in thin
films [31]. It can be seen that four diffraction peaks at 36.5◦, 42◦, 59.5◦, and 78.4◦ corresponded to the
(111), (200), (220), and (222) lattice planes of the face centered cubic (FCC) AlCrTaTiZr-N layer. The
AlCrTaTiZr-N layer had FCC crystal structures rather than co-existing separated nitrides [32].
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Figure 1. XRD patterns of the AlCrTaTiZr layer and AlCrTaTiZr-N layer.

The SEM images of the Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks are shown in Figure 2. It
shows the cross-sectional morphologies of the as-deposited, 600 ◦C, 800 ◦C, and 900 ◦C annealed
Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks. For the as-deposited film stacks, the interface between
the Cu and AlCrTaTiZr layers was clear. There was no gap. After annealing at 600 ◦C and 800 ◦C, the
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contact between the AlCrTaTiZr and Cu layers was still good. The Cu layer did not peel off, and there
was no gap between the AlCrTaTiZr and Cu layers. After annealing at 900 ◦C, gap and holes could
be observed in the Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks. However, the Cu layer still did not
peel off.
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Figure 2. SEM cross-sectional morphologies of (a) as-deposited, (b) 600 ◦C annealed, (c) 800 ◦C
annealed, and (d) 900 ◦C annealed Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks.

Figure 3 shows the SEM surface morphologies of the as-deposited, 600 ◦C, 800 ◦C, and 900 ◦C
annealed Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks. Figure 3a shows that the as-deposited copper
layer was smooth and had no obvious characteristics on its surface. Figure 3b shows that the copper
layer had copper grain growth on the surface after annealing at 600 ◦C. Grain growth happened on
the copper layer with a diameter 40 nm after 600 ◦C, 0.5 µm after 700 ◦C, and 1 µm after 800 ◦C
annealing. Figure 3d shows there were a little of micro-holes in the copper layer after 900 ◦C annealed
Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks. The formation of these micro-holes might be due to the
thermal stress of the copper layer, rather than the diffusion of copper.

Figure 4 shows the XRD patterns of the as-deposited, 600 ◦C, 800 ◦C, and 900 ◦C annealed
Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks. For as-deposited film stacks, three diffraction peaks at
43.4◦, 50.6◦, and 74.3◦ corresponded to the (111), (200), and (220) lattice planes of the FCC Cu. The
diffraction peaks of the copper layer did not change after 600 ◦C, 800 ◦C, and 900 ◦C annealing. Grain
growth in the copper layer was responsible for the sharper diffraction peaks. Figure 4 reveals a broad
peak in the analysis, indicating that this film presented an amorphous structure. The AlCrTaTiZr
metallic layer was an amorphous structure [33]. After 900 ◦C annealing, some compounds or solution
phases were formed due to the reactions between the AlCrTaTiZr-N layer and Si substrate or between the
AlCrTaTiZr-N layer and Cu layer, such as Cr4Si4Al13. Although the Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si
film stacks were annealed at even 900 ◦C, the Figure 4 still exhibits no signals of copper silicide which
indicated that the AlCrTaTiZr/AlCrTaTiZr-N films still acted as an effective barrier for the interdiffusion
of Si and Cu at a high temperature.
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Figure 4. XRD patterns of the as-deposited, 600 ◦C annealed, 800 ◦C annealed, and 900 ◦C annealed
Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks.

Figure 5 shows the sheet resistance of the as-deposited, 600 ◦C, 800 ◦C, and 900 ◦C annealed
Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks to identify the interdiffusion of Si and Cu. As plotted in
Figure 5 clearly, the sheet resistance decreased from 0.248 Ω/square to 0.058 Ω/square after 600 ◦C
annealing. The reason is that grain growth of the Cu layer will eliminate most grain boundaries and
defects. At 900 ◦C, the sheet resistance of the film stacks increased to approximately 4.62 Ω/square.
However, according to the aforementioned XRD and SEM analyses, the resistivity increase was possibly
not due to the failure of the film stacks since the resistivity would drastically increase once the Cu
silicides formed.
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4. Discussion

As shown in the cross-sectional morphologies in Figure 2, the gap appeared due to the different
coefficients of thermal expansion for the metal nitrides and Cu. The coefficient of thermal expansion
for Cu is 17.5 × 10−6 m/◦C which is larger than the metal nitride. For example, the coefficient of
thermal expansion for TiN is 6.8 × 10−6 m/◦C and for TaN is 4.2 × 10−6 m/◦C [14]. If the Cu layer is
directly sputtered on the metal nitride layer surface, the thermal expansion amount between them
are significantly different during high temperature annealing. This difference caused a poor bonding
property between the AlCrTaTiZr-N layer and Cu layer, resulting in a peeling off tendency of the Cu
layer [34,35].

The coefficients of thermal expansion for the AlCrTaTiZr and AlCrTaTiZr-N layers were
calculated. The coefficients of thermal expansion for each element in AlCrTaTiZr are listed as
follows: Al: 27.4 × 10−6 m/◦C, Cr: 6.2 × 10−6 m/◦C, Ta: 7.0 × 10−6 m/◦C, Ti: 10.8 × 10−6 m/◦C, and Zr:
6.9 × 10−6 m/◦C [36]. According to the following formula [35]

α =
∑

αi × i% (1)

where α is the coefficient of thermal expansion for AlCrTaTiZr alloy, αi is the coefficient of thermal
expansion for each element, and i% is the ratio for each element in the AlCrTaTiZr layer. The sputtering
target was prepared with an equimolar ratio of elements. The coefficient of thermal expansion for the
AlCrTaTiZr layer is approximately 11.66 × 10−6 m/◦C and close to the thermal expansion coefficient
of Cu. Thus, sputtering the AlCrTaTiZr layer on the AlCrTaTiZr-N layer can enhance the bonding
between Cu and AlCrTaTiZr-N layer.

The 700 ◦C and 800 ◦C annealed Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks had lower sheet
resistance than that of the as-deposited film stacks. Heat treatment effectively eliminated the defects in
the copper layer. However, grain growth and some impurities, such as oxygen and nitrogen, could
reduce the electron scattering, thereby reducing the resistance of the film stacks.

The results of XRD, SEM, and 4PP only roughly revealed the crystal and structural changes
in the film stacks. Our interest was focused on the effect of the annealing temperature on
the microstructure changes of the film stacks. The HR-TEM cross-sectional morphology of the
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Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks are shown in Figure 6. Before and after annealing, an
approximately 3 nm SiO2 layer was clearly observed between the Si and AlCrTaTiZr-N layers. In
Figure 6a, four layers including the SiO2 layer, AlCrTaTiZr-N layer, AlCrTaTiZr layer, and Cu layer
could be clearly identified before annealing. The AlCrTaTiZr layer was characterized as an amorphous
structure. A previous article indicated that the formation of amorphous structures is mainly caused by
the different atomic size of the elements in high-entropy alloys [31]. Moreover, the lattice spacings of
these nanocrystalline phases were determined to be approximately 0.241 nm and 0.218 nm, respectively,
which are similar to the average values of the (111) and (220) planes of the mixed FCC structure
in Table 2. After 900 ◦C annealing, crystallization of the amorphous structure was observed. The
measured lattice spacing of the nanocrystalline phase is approximately 0.213 nm, which is similar to
the average values of the (111) planes of Al, Cr, Ta, Ti, and Zr (Table 3). As exhibited in Figure 6c,
unclear interfaces among the Cu layer, AlCrTaTiZr layer, and AlCrTaTiZr-N layer formed after 900 ◦C
annealing. However, the interfaces among the AlCrTaTiZr-N layer, SiO2 layer, and Si layer were still
clearly distinguished. As observed, some intermetallic compounds appeared, such as a Cu–AlCrTaTiZr
phase, around the AlCrTaTiZr/Cu interface. Intermetallic compounds were also observed in the
AlCrTaTiZr/AlCrTaTiZr-N films. Si–AlCrTaTiZr-N phase was observed around the AlCrTaTiZr-N/Si
interface [37]. During 900 ◦C annealing, Si atoms were diffused into the AlCrTaTiZr-N layer. However,
the diffusion of Cu and Si was retarded by the AlCrTaTiZr/AlCrTaTiZr-N barrier films. The lattice
structure of the Si substrate was still observed, and no signals of any other Cu–Si phases are found,
which is consistent with the XRD and 4PP results.
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Figure 6. (a) cross-sectional high-resolution transmission electron microscope (HR-TEM) image of the
as-deposited Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks; (b) corresponding HR-TEM image of the zone
C, and (c)–(f) cross-sectional HR-TEM image of the 900 ◦C annealed Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si
film stacks.
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Table 2. Crystal structures and lattice constants of the individual metallic elements in AlCrTaTiZr-N.

Nitride AlN CrN TaN TiN ZrN HEAN (Average)

Crystal structure FCC FCC FCC FCC FCC
d(111) (nm) 0.247 0.241 0.247 0.252 0.260 0.248
d(220) (nm) 0.216 0.208 0.218 0.223 0.229 0.218

Table 3. Crystal structures and lattice constants of the individual metallic elements in AlCrTaTiZr.

Metal Al Cr Ta Ti Zr HEA (Average)

Crystal structure FCC BCC BCC HCP HCP
d(111) (nm) 0.216 0.208 0.218 0.223 0.229 0.218

Figure 7 shows the distribution of the Cu/AlCrTaTiZr/AlCrTaTiZr-N alloy films elements (Cu,
Al, Cr, Ta, Ti, Zr, and N) after annealing at 900 ◦C, which was measured by APT. As observed, the
composition of the AlCrTaTiZr/AlCrTaTiZr-N films were relatively uniform after annealing at 900 ◦C.
The layer had no obvious crystal boundary and partial clustering. The Cu layer had some diffusion
into the AlCrTaTiZr layer with a distance of less than 10 nm, which is consistent with the HR-TEM
results shown in Figure 6e. The Cu diffusion into the Si substrate was apparently retarded by the
AlCrTaTiZr/AlCrTaTiZr-N barrier films.
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TaTiZr-N/Si film stacks with atomic positions of the Cu, Al, Cr, Ta, Ti, Zr, and N.

According to the above SEM, HR-TEM, XRD, 4PP, and APT results, the AlCrTaTiZr/AlCrTaTiZr-N
films have an excellent diffusion barrier performance. The superior performance of the
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AlCrTaTiZr/AlCrTaTiZr-N films should be attributed to its excellent structural and chemical stability.
The insert of an amorphous layer is the major factor. The grain boundaries of the diffusion barrier
are fast diffusion pathways of Cu atoms. The stability of the amorphous barrier structure can avoid
this problem.

At first, sputtering the amorphous layer can inhibit the activity of oxygen, which can prevent
the oxidation of the diffusion barrier layer. If the diffusion barrier layer was oxidized after high
temperature annealing, oxygen can diffuse through the grain boundary of the Cu to the surface of the
Cu layer. This leads to the agglomeration of Cu and causes the Cu layer to break [35]. Additionally,
if the oxygen content is high in the film stacks, the electron scattering of the film is relatively large
which will increase the square resistance of the film stacks. After annealing, the oxides will weaken the
electrical and physical properties of the Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks. Therefore, the
AlCrTaTiZr layer inhibits the activity of oxygen, which can improve the diffusion barrier performance
of the films and increase the reliability of the Cu interconnection [37].

Secondly, the amorphous structure of the AlCrTaTiZr layer has a lower driving force to form
intermetallic compounds. The driving force can be estimated by the formation energy. The formation
energy (∆G) of the AlCrTaTiZr alloy can be expressed as:

∆G = ∆H − T∆S (2)

where the ∆H is the formation enthalpy and ∆S is the formation entropy. The ∆H formation enthalpy
of AlCrTaTiZr can be calculated by the following Equation (3) [38]:

∆H = 4
n∑

i, j = 1
i > j

∆Hmix
ij cic j (3)

where n is the total number of elements in the alloy, ci and cj are the concentration of the i and j
elements, and the ∆Hmix

ij is the mixing heat of the i and j elements. Table 3 is the values of ∆Hmix
ij [39].

Accordingly, the calculated the formation enthalpy (∆H) is −20 kJ/mol.
The formation entropy can be calculated according to the Boltzmann’s entropy formula:

∆S = k lnω (4)

k =
R

Na
(5)

where k is the Boltzmann’s constant, ω is the number of ways of mixing, R is the gas constant, and
Na is the Avogadro’s constant. Therefore, the configurational entropy of the mixed AlCrTaTiZr alloy
is 13.38 J/(mol·K). The formation energy of AlCrTaTiZr is −42.11 kJ/mol at 900 ◦C. It can be seen in
Table 4 that these elements alloy enthalpy of mixing with respect to each other have approaching zero
or positive. The result means that the Al, Cr, Ta, Ti, and Zr react with each other difficultly [14].

Table 4. Values of Hmix (kJ/mol) for all possible atomic pairs in the AlCrTaTiZr-N alloy.

N Al Cr Ta Ti Zr Cu Si

N ___ −92 −107 −173 −190 −233 −84 −81
Al ___ ___ −10 −19 −30 −44 −1 −19
Cr ___ ___ ___ −7 −7 −12 12 −37
Ta ___ ___ ___ ___ 1 3 −17 −55
Ti ___ ___ ___ ___ ___ 0 15 −66
Zr ___ ___ ___ ___ ___ ___ −23 −84
Cu ___ ___ ___ ___ ___ ___ ___ −19
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The severe lattice distortion is the third factor that contributes to the stability of the amorphous
structure. The severe lattice distortion impedes the crystallization of the AlCrTaTiZr layer. The severe
lattice distortion in the AlCrTaTiZr layer results from the large atomic size differences among the Al,
Cr, Ta, Ti, and Zr atoms. Lattice distortion causes strain energy. The amorphous structure has no
lattice framework, so the strain energy of the amorphous structure can be regarded as zero. It has been
pointed out that amorphous metals whose constituent elements show large size differences have a
higher atomic packing density [40]. This trend means that it is difficult for these metal atoms in the
amorphous structure to be rearranged, and these atoms have less free volume.

Fourthly, the lattice mismatch between the AlCrTaTiZr and AlCrTaTiZr-N layers increased the
diffusion distance of the Cu atoms, thereby increasing the difficulty of Cu atoms diffusion into the
Si substrate. In Figure 8, the diffusion pathways of Cu atoms in the AlCrTaTiZr-N diffusion barrier
structures and the AlCrTaTiZr/AlCrTaTiZr-N diffusion barrier structures are compared. The atoms in
the AlCrTaTiZr layer at the grain boundary of AlCrTaTiZr-N layer can block the diffusion pathways of
the Cu atoms.
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As shown in Figure 8b, the insert of the AlCrTaTiZr layer increases the diffusion distance of the
Cu atom on the barrier layer, according to the diffusion equation [30].

X = 2
√

Dt (6)

where X is the diffusion length, D is the diffusion coefficient, and t is the diffusion time. According to
the above study, the diffusion time is increased as the diffusion distance is increased with the alloy films
inserted. Then, diffusion coefficient D is decreased as X is not changed [30]. The diffusion coefficient
equation is

D = D0 exp(−
Qa

RT
) (7)

where D0 is the diffusion constant, Qa is the diffusion activation energy of atomic, R is the gas constant,
and T is the thermodynamic temperature. Without consideration of the diffusion constant D0, the
diffusion activation energies of atoms are valid both for the “thin film” and “semi-infinite” models [41].
As shown in the formula, the diffusion coefficient is inversely proportional to the diffusion activation
energy while the other parameters remain constant. Therefore, a decrease in the diffusion coefficient of
Cu atoms in the diffusion barrier films will increase the difficulty of Cu atoms diffusion in the diffusion
barrier films [42,43].
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5. Conclusions

The AlCrTaTiZr/AlCrTaTiZr-N films were investigated in this study as diffusion barrier for Cu
interconnects. The Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks were annealed at 900 ◦C for an hour.
The interface between the AlCrTaTiZr/AlCrTaTiZr-N films and Si substrate was clear. The bonding
property of the Cu and AlCrTaTiZr-N layer could be improved by inserting an AlCrTaTiZr layer. Even
at 900 ◦C, the AlCrTaTiZr/AlCrTaTiZr-N films with a thickness of 20 nm had a good resistance to the
Cu and Si interdiffusion. The amorphous structure of the AlCrTaTiZr layer had a lower driving force
to form intermetallic compounds. The severe lattice distortion and the reduced diffusion kinetics were
the factor for the AlCrTaTiZr/AlCrTaTiZr-N films to act as a very effective barrier material for inhibiting
the diffusion of the Cu. The lattice mismatch of the AlCrTaTiZr and AlCrTaTiZr-N layers increased the
diffusion distance and the difficulty of the Cu atom diffusion to the Si substrate. All the above results
indicated that the AlCrTaTiZr/AlCrTaTiZr-N films have an excellent diffusion barrier performance.
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