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Abstract: Nested sampling is an efficient algorithm for the calculation of the Bayesian evidence
and posterior parameter probability distributions. It is based on the step-by-step exploration of the
parameter space by Monte Carlo sampling with a series of values sets called live points that evolve
towards the region of interest, i.e., where the likelihood function is maximal. In presence of several
local likelihood maxima, the algorithm converges with difficulty. Some systematic errors can also be
introduced by unexplored parameter volume regions. In order to avoid this, different methods are
proposed in the literature for an efficient search of new live points, even in presence of local maxima.
Here we present a new solution based on the mean shift cluster recognition method implemented in a
random walk search algorithm. The clustering recognition is integrated within the Bayesian analysis
program NestedFit. It is tested with the analysis of some difficult cases. Compared to the analysis
results without cluster recognition, the computation time is considerably reduced. At the same time,
the entire parameter space is efficiently explored, which translates into a smaller uncertainty of the
extracted value of the Bayesian evidence.
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1. Introduction

At present, Bayesian methods are routinely used in many fields: astrophysics and cosmology [1–8],
particle physics [9], plasma physics [10,11], machine learning [12] and many others [13,14]. In the
past few years, they were also applied to nuclear [15,16] and atomic physics [17–21]. On one hand,
one of the reasons for this success is related to the possibility of assigning a probability value to models
(hypotheses) from the analysis of the same set of data in a very defined framework. In opposite to
this, classical statistical tests and criteria (e.g., chi-square and likelihood ratio, Aikaike information
criterion [22], etc.) are completely powerless if any defined preference does not emerge. On the other
hand, the implementation of Bayesian methods is only now widely possible thanks to the recent
relatively cheap cost of computation power. A large computing capability is in fact required for the
fine exploration of the probability distribution of the model parameters. Unlike standard methods,
which are mostly reduced to minimization/maximization problems (of the likelihood function or
chi-squares), Bayesian approaches have to deal with non-trivial integrations in multi-dimensional
space. One of the key points of Bayesian model selection is in fact the calculation of the Bayesian
evidence, also called marginal likelihood, defined by

E(M) ≡ P(Data|M, I) =
∫

P(Data|a,M, I)P(a|M, I)dJ a =
∫

LM(a)P(a|M, I)dJ a. (1)

It consists in the integral of the likelihood function LM(a) = P(Data|a,M, I) in the J-dimensional
parameter space (with J the number of the parameters) weighted by the prior probability P(a|M, I) of
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the parameters a of a defined modelM and where I represents the background available information.
From the evidence, the probability of the model P(M|Data, I) is simply evaluated by the formula

P(M|Data, I) ∝ E(M)P(M|I), (2)

where P(M|I) is the prior probability of the model itself. The challenging part resides in the
multi-dimensional integration of Equation (1). For this matter, different approaches have been developed
in the past, some of them are Markov Chain Monte Carlo (MCMC) based techniques (see e.g., [14,23])
for the integration of LM(a)P(a|M, I). As an alternative, the nested sampling method has been proposed
by Skilling in 2004 [24–26]. With this method, the multi-dimensional integral in Equation (1) is
reduced to a one-dimensional integral and calculated. Because of its high-efficiency and relatively
moderate calculation power requirement compared to other approaches, the nested sampling method is
actually implemented in several data analysis codes such Multinest [3,27], Diamonds [28], Polycord [29],
UltraNest, DNest4 [30] and Dynesty [31] for the computation of the Bayesian evidence and posterior
probability distributions. Because of its efficient sampling, nested sampling is also routinely used to
study thermodynamic partition functions [32–35] and to explore potential energy landscapes of atomistic
systems [36–38].

When several maxima of the likelihood function are present, nested sampling algorithm can
however encounter problems with converging correctly. The parameter space exploration can become
inefficient or exclude entire regions, which introduces systematic errors in the estimation of the
evidence. In order to avoid such a problem, several solutions are proposed in the literature. Here we
present an original approach based on cluster recognition with the mean shift method, one of the classic
clustering algorithm widely used and included in the major machine learning libraries. This method
is implemented in the program NestedFit, a code developed by one of the authors and described in
details in [39,40].

An introduction to nested sampling and NestedFit code is presented in Section 2. The description
of the mean shift algorithm, its implementation on NestedFit and the results of some tests are presented
in Section 3. The article will end with a conclusive section (Section 4).

2. Nested Sampling and NestedFit

2.1. The Nested Sampling Algorithm

Nested sampling is based on the reduction of the multi-dimensional integral in Equation (1) for
the evidence computation into a one-dimensional integral

E(M) =
∫ 1

0
L(X)dX. (3)

X represents the normalized value of the volume, weighted by the prior probability P(a|I), of the
portion of J-dimensional space of parameters where L(a) is higher than a certain value L:

X(L) =
∫

L(a)>L
P(a|I)dJ a. (4)

Equation (3) is numerically calculated using the rectangle integration method subdividing the [0, 1]
interval in M + 1 segments with an ensemble {Xm} of M ordered points 0 < XM < ... < X2 < X1 <

X0 = 1:
E(M) ≈∑

m
Lm∆Xm, (5)

where Lm = L(Xm) isgiven by the invertible relation in Equation (4) and ∆Xm is simply given by
Xm − Xm+1 or by the more accurate trapezoid rule ∆Xm = 1/2(Xm−1 − Xm+1). Each ∆Xm represents
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a slice of parameter space of nested hypervolumes defined by Equation (4), giving the algorithm
its name.

The evaluation of Lm is obtained by a recursive step-by-step exploration of the likelihood function
by a Monte Carlo sampling. A collection of K parameter values {ak}, called live points, corresponds to
K random points {ξ1,k} in [0, 1] interval. When the live point ã1 = a1,k′ corresponding to the highest
value of {ξ1,k}, ξ1,k′ = max{ξ1,k} (with L1 = min{L(ξ1,k)} = L(ξ1,k′) ≡ L(ã1) from Equation (4)) is
discarded, the mean value of the interval occupied by the remaining ξk points shrinks to

Xm = max
k 6=k′
{ξk} ≈

(
K

K + 1

)m
≈ e−m/K (6)

with, at this first step, m = 1.
If a new live point anew is found with the condition L(anew) > Lm=1, a new set of ξm=2,k points

is constructed and the next procedure iteration step starts. For each step, the discarded values
ãm = am,k′ are stored together with their corresponding likelihood values Lm = L(ãm). The Xm are
obtained by their average expectation value from Equation (6). Step by step, the nested volumes built
with the condition L(a) > Lm converge around the parameter space regions corresponding to high
values of the likelihood function. When the algorithm converges, the evidence is evaluated from the
different values Lm, ∆Xm using Equation (5). From the set of collected values of the discarded live
points ãm and the associated weights wm = Lm∆Xm, the posterior probability P(a|Data,M, I) can be
determined. More details on the nested sampling algorithm and its implementation can be found in
Refs. [3,24–27,41,42].

2.2. Bottleneck of Nested Sampling and Proposed Solutions

The difficulty of this elegant method is to efficiently find a new live point at each step within the
hypervolume contour defined by L(a) > Lm. Codes that use the nested sampling method generally
encounter difficulties to find new live points anew when several maxima of the likelihood function
are present. In this case, the exploration of the parameter space becomes generally inefficient or
can consider only one local maximum while introducing systematic errors in the estimation of the
evidence. In order to avoid these problems, different strategies have been proposed in the literature.
These strategies can be divided into two categories: with a cluster recognition algorithms and without
cluster recognition, but with other improvements of the search algorithm for new live points.

A first attempt to improve the search of new live points for multimodal problems via MCMC has
been proposed by Veitch and collaborators in 2010 [42]. Here 10% of the steps of the random walk are
determined by a combination of three past points and not only the previous point of the Markov chain.
In this way, a more efficient sampling is obtained without need of cluster recognition.

Another improved random walk method for nested sampling algorithm is the diffusive nested
sampling, developed by Brewer et al. in 2011 [43] and implemented in DNest4 [30] program. Here,
the passage between maxima is facilitated by blurring the condition L(ai) > Lm for the parameter
values explored by the MCMC, allowing to momentarily pass in regions with lower values of the
likelihood function.

Alternatively to random walks, the use of single- or multi-particle trajectories have been
implemented for improving the search of new points in complex landscapes of the function to maximize
or minimize. This is the principle of Galilean and Hamiltonian Monte Carlo exploration [34,44]. In the
first case, linear trajectories and reflection from hard boundaries, given by the minimal likelihood
threshold value, are considered. In the second case, more complex trajectories are computed from the
motion determined by the Hamiltonian function, like in molecular dynamics, assimilated here to the
likelihood function.

In the case of the presence of several maxima, these methods significantly improves the search
of new points but do not allow to pass from one maximal region to another, which limits their
efficiency. A completely different approach has been proposed by Martiniani and collaborators in
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2014 [45]. To take into account the presence of several maxima without recurring to cluster recognition,
they suggest global optimization techniques to use the knowledge of identified local maxima and
their statistical weight and then to perform parallel nested sampling in correspondence of each
significant region.

A first solution with the use of a cluster recognition algorithm has been implemented in Multinest
code already in 2008 [3,27]. Here, new live points are randomly selected in an ellipsoid that is defined
by the covariance matrix of the present live points. Cluster analysis is used for partitioning of the
parameter spaces in a series of ellipsoids. This is obtained by implementing the k-means clustering
algorithm, which is triggered when the estimated volume occupied by the live points is much smaller
than the ellipsoid volume estimated from their covariance matrix. A partition in two cluster is initially
performed (k = 2) and recursively repeated (always with k = 2) to obtain an efficient partition of the
space with many ellipsoids.

In the more recent Polycord program [29], where the search of new live points is based on the slice
sampling (a MCMC that uses the live point covariant matrix to provide a probability distribution for
the choice of the random walk direction), the cluster recognition is obtained by the k-nearest neighbor
algorithm. Once the different cluster are identified, for each of them a parallel exploration and analysis
via slice sampling MCMC is independently performed.

In the recent and very complete nested sampling code Dynesty [31], different sampling methods
are proposed: from random uniform selections in ellipsoids, like Multinest, to a series of MCMC
(random walks, slice sampling, . . . ). Difficult cases with several likelihood maxima are treated by
decomposing the parameter space in several ellipsoids via a cluster analysis (using k-means algorithm
like Multinest), or spheres or cubes (with same radius/side, one per each live point implementing the
RadFriends algorithm [46]) with no need of any cluster recognition technique.

In the following sections, we present a new alternative method based on an MCMC and where
the mean shift algorithm is used for the identification of clusters. It is implemented in the existing
nested sampling code NestedFit, which is briefly introduced as well in the next paragraph.

2.3. The NestedFit Program

NestedFit is a general-purpose code for the evaluation of Bayesian evidence and parameter
probability distributions based on nested sampling algorithm. It is written in Fortran90 with some
subroutines in Fortran77, and parallelized via OPEN- MPI. It is mainly developed and implemented for
the analysis in the fields of atomic, nuclear and solid-state physics [16,39,40,47–50]. It is accompanied
by a Python function library for visualization of the results and for automatization of series of analyses.
In this publication we present the version 3.2 that has the cluster analysis of the live points as substantial
upgrade with respect to older versions (see Ref. [39] for v. 0.7 and Ref. [40] for v. 2.2). In addition, in this
new version some new improvements in the search of live point are also implemented. The source
code is freely available in the repository https://github.com/martinit18/nested_fit.

The code requires two main input files: the main input file (nf_input.dat) where the analysis
parameters are selected, and the data file, in the format (channel, counts) or (channel, y value,
y uncertainty). Dependent on the data format, a Poisson or Gaussian statistics likelihood function
is used. The function name in the input file indicates the model to be used for the calculation of
the likelihood function. Several functions are already defined in the function library for different
model of spectral lines. Additional functions can be easily defined by the user in a dedicated routine.
Non-analytical or simulated profile models can be considered as well. In this case, one or more
additional files have to be provided by the user for interpolation by B-splines using FITPACK
routines [51].

Several data sets can be analyzed at the same time. This is particularly important for the correct
study of physically correlated spectra at the same time, e.g., background and signal-plus-background
spectra. This is implemented by using a global user-defined function composed by different models to
describe each spectra but with common parameters between the models.

https://github.com/martinit18/nested_fit


Entropy 2020, 22, 185 5 of 17

The main analysis results are summarized in one output file (nf_output_res.dat). Here the
details of the computation, number of trials, number of iteration, can be found as well as the final
evidence value and its uncertainty E± δE, the parameter values corresponding to the maximum of the
likelihood function, but also the mean, the median, the standard deviation and the confidence intervals
one, two and three sigma (68%, 95% and 99%) of the posterior probability distribution of each parameter.
δE, or more precisely δ(ln E) is evaluated by running the nested sampling several time for different
sets of starting live points. δ(ln E) is obtained by the standard deviation of the different values of ln E,
the natural estimation to study the uncertainty of E [52,53]. The information gainH and the Bayesian
complexity are also provided in the output. Data for plots and for further analyses are provided
in separated files. The step-by-step information of the nested sampling exploration can be found
in the largest output file that contains the live points used during the parameter space exploration
ãm, their associated likelihood values Lm and weight wm = Lm∆X. From this file, the different
parameter probability distributions and joint probabilities can be build from the marginalization of the
unretained parameters.

Details of the NestedFit search algorithm are presented in the next section. Additional information
can be found in Refs. [39,40].

2.4. NenstedFit Search Algorithm

The search of new live points in NestedFit is based on a random walk called lawn mower
robot [39,40,54], which is represented in Figure 1a. It is composed by a sequence of N steps (or
jumps, with N selected by the user) starting from a randomly chosen live point. Each step has
an amplitude and direction given by the J-dimensional vector f rσ where each component f rjσj is
determined by factor f , selected by the user, a random number rj and the standard deviation of the
current live points σj with respect to the jth parameter. For an efficient covering of the entire parameter
space, f and N should be chosen with the criterion

f × N & 1 (7)

to explore regions within a distance of the order of one standard deviation around the starting point.
Each new step, which correspond to a new parameter set an, is accepted if L(an) > Lm. If L(an) < Lm,
a new set of rj is chosen. The number of total tries nt is recorded. The choice of the values for f and N
is very critical and it could vary from case to case. N has to be large enough to lose the memory of
the starting live point position, but an increase of it produces a linear increase in computation time.
A similar situation arises for f . If it is too small, a strong correlation between live points is artificially
created. If it is too large, many failures can occur. From our experience, a reasonable range of values is
N = 20− 40 and f = 0.1− 0.2. In any case we suggest a visual check of the explored live points for
detecting possible correlations.

If the number of failures becomes too high (nt � N), two different strategies are implemented for
finding a new live point. In the first one, schematically represented in Figure 1b, a new parameter set
is determined by randomly choosing a point between the last failing chain point an with L(an) < Lm

and the barycenter of the current live points. As for the lawn mower robot method, also this algorithm is
due to Simons [54] but it was not implemented in the past versions of NestedFit.. The second method,
represented in Figure 1c, consists of building a new synthetic live point anew from the jth components
from distinct live points: (anew)j = (am,k)j where k is randomly chosen between 1 and K (the total
number of live points) for each j. If anew L(anew) > Lm, the new point is considered, otherwise another
random live point is chosen as start of the random walk.

The two strategies are chosen randomly when nt = Nt (Nt chosen by the user in the configuration
file) and nt is reset to zero. As suggested by the schemes in Figure 1, the first one favors a re-centering
of the live points. In the opposite, the second can more easily explore peripheral regions. This second
strategy was in fact the only present in the previous versions of NestedFit (where also Nt was a fixed
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parameter of the code), and it was developed to improve the search algorithm for multimodal cases
facilitating jumps between maximal regions of the likelihood function [39,40].

If the entire above procedure is repeated subsequently too many times (NNt, selected by the user),
the cluster analysis, described in the following sections, is triggered for improving the search of new
live points.

Another random 
live point

A new built 
live point

L(an) < 

value limit

Starting point:  
a random live point

a0

an-1

an

a1

an

New live 
point

a)

Another random 
live point

A new built 
live point

L(an) < 

a0

an

value limit

Mean of the 
current live points
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b)

value limit

A random live 
point

am,k

am,k’ a'new

anew

Another random 
live point Another new 

built live point

A new built 
live point

c)

Figure 1. Graphical presentation of the different search algorithms discussed in the text. (a): Exploration
of the parameter volume via the lawn mower robot for finding a new live point. (b): Search of a new
live point from the parameter set an outside the limit L(a) > Lm and the barycenter of the current live
points. (c): Construction of the new live point from different coordinates of the current live points.

3. Mean Shift Clustering Algorithm and Its Implementation

3.1. Preliminary Tests and Considerations on Other Cluster Recognition Algoritms

Before the implementation of one particular cluster recognition method in NestedFit,
different algorithms from classical machine learning libraries (https://scikit-learn.org as example)
have been considered and some of them have been tested with simple Python scripts. For this purpose,
we used different ensembles of live points issued from NestedFit runs on real data when convergence
problems were encountered. We excluded a priori Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) method. This method is well adapted for detecting cluster with singular shapes
(e.g., arc of a circle) without necessarily improving the implemented random walk algorithm that
is based on the standard deviation of the recognized cluster. We then tested the Gaussian mixture
method with the determination of the number of clusters based on the expectation-maximization
algorithm. The results were not convincing and required external criteria for determining the number
of clusters. For similar reasons, we excluded the k-means method that requires a preliminary choice of
number of clusters and the x-means method that uses external criteria to determinate the best choice
of k. We did not consider the recursive use of k-means with k = 2, like in the Multinest code, to keep a
simple cluster recognition implementation.

https://scikit-learn.org
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From these preliminary tests and considerations, the mean shift clustering algorithm [55,56]
emerged for its simplicity of implementation, its robustness and, more importantly, because it does not
require a choice of the number of clusters before the analysis.

3.2. The Mean Shift Algorithm for Cluster Recognition

Mean shift is a recursive algorithm based on the iterative calculation of the mean of points within
a given region. Considering an ensemble {xi}, for each point the mean value mi of the neighbor points
NH(xi) is calculated recursively via a kernel function K(xi, xj) via

ms,i =
∑xs,j∈NH(xs,i)

K(xs,i, xs,j)xs,j

∑xs,j∈NH(xs,i)
K(xs,i, xs,j)

, (8)

with s = 1 and xs=1,i = xi for the first step. Then the procedure is repeated considering instead of the
initial points xi, the mean values of the previous step, xs,i = ms−1,i, until convergence or the maximum
number of allowed steps is reached. Different points belonging to the same cluster are identified by
the vicinity of the final ms,i values.

With the present implementation, via a Fortran module in NestedFit, the identification of the
neighbor points NH is determined by the Euclidean distance d(xi, xj) < D, with D selected by the
user. Two choices of K are available: a flat kernel K(xi, xj) = 1, and a Gaussian kernel K(xi, xj) =

exp(−d(xi, xj)/`), with ` the bandwidth selected by the user. Before the implementation of the
mean shift algorithm, the live points are normalized to their minima and maxima (xk)j = [(am,k)j −
min{(am,k)j}]/[max{(am,k)j} −min{(am,k)j}] to have parameter D and ` dimensionless and in a fixed
possible range [0, 1].

At the end of the analysis, each live point has an additional flag indicating its belonging cluster
that is used in the main NestedFit search algorithm.

3.3. Mean Shift Implementation in NestedFit

As written above, the cluster analysis is triggered when there are too many tries in the main
search algorithm (nt = Nt × NNt). Once the cluster analysis is performed, the algorithm restarts
from a random live point but, instead of the standard deviation of whole ensemble of live points σ,
only the standard deviation of the belonging cth cluster σcluster

c is used for the random walk. Even if
the cluster analysis is not perfect (e.g., too many or too few clusters are recognized), the generally
smaller values of σcluster

c compared to σ significantly improves the efficiency of the nested sampling.
When the algorithm becomes inefficient (nt reach Nt), a new starting live point is chosen. When nt is
becoming too high again ( nt = Nt × NNt), a new cluster analysis is performed and the calculation
continues until the end of the evidence calculation. Because of the random selection of the starting
live point, small clusters have small probability to be chosen, and naturally disappear (or eventually
grow) to the advantage (disadvantage) to clusters with higher (lower) likelihood values during the
nested sampling.

To illustrate the cluster recognition at work in NestedFit, two practical examples are considered.
In both cases, a Gaussian kernel has been used with a relatively large value of D = 0.5− 0.6 in order
to avoid having too many isolated clusters and ` = 0.1− 0.2, which ensures a good convergence of
the algorithm. The cluster analysis is triggered after few failures, NNt = 2− 3, with a relatively low
number of maximal tries nt (Nt = 100− 200) to change search strategy quite often when it becomes
critical. With these criteria, the cluster analysis is triggered only about 2− 10 times for one entire
nested sampling computation.

The first example consists of the analysis of a high-resolution X-ray spectrum corresponding to
the helium-like 1s2p 3P2 → 1s2s 3S1 intrashell transition of uranium obtained by Bragg diffraction
from a curved crystal [57]. For the analysis of the spectra, we assume the presence of four Gaussian
peaks with the same width and a flat background. The second analysis is related to the measurement
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of the single decay of H-like 142
61 Pm ions to the stable 142

60 Nd bare nucleus via electron capture. Here,
an exponential decay with a sinusoidal modulation is used as a model, considered parameters are the
relative amplitude, pulsation and phase (see Ref. [16] for more details). Both data sets, presented in
Figure 2, are characterized by low statistic and the presence of many local maxima of the likelihood
function, which makes them therefore difficult to analyze. In the first case, the possible permutations
of the position of different peaks correspond to different maxima of the likelihood (4! = 24 maxima
for four peaks). In the second case, the multimodal behavior is caused by the different possible
combinations of phase and pulsation values and corresponding beats.
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Figure 2. Data corresponding to the high-resolution X-ray spectrum of the helium-like uranium
1s2p 3P2 → 1s2s 3S1 intrashell transition obtained by Bragg diffraction from a curved crystal [57]
(left) and of the single decay of H-like 142

61 Pm ions to the stable 142
60 Nd bare nucleus via electron

capture [16] (right).

To observe the evolution of the nested sampling algorithm with and without cluster analysis in
the first case, we represent in Figure 3 the evolution of one of the model parameters (ãm)j relative
to the position of one of the four Gaussian peaks as function of the step number m for ten different
choices (tries) of starting live points. Different colors correspond to different values of the step weight
wm = Lm∆Xm. Parameters with higher values or wm had a higher influence on the final evidence and
probability distributions P(a|Data,M, I). When the cluster analysis was not implemented (Figure 3
(top)), each try slowly converged to one likelihood maximum only, which corresponds to one of the
four possible positions. The convergence in different maxima produced as consequence a spread of the
values of the Bayesian evidence E.

In contrast, when the cluster analysis was turned on (Figure 3 (bottom)), all four possible peak
positions were considered at the same time and were equally explored for any try. The convergence
improvement was directly observable in the smaller value of uncertainty of the evidence E. When the
cluster analysis was off, we had ln E = −320.52± 1.71 and ln E = −323.22± 0.17 when it was on.
These results were obtained with f = 0.1 for the analysis without clusters and f = 0.2 for the analysis
with it, N = 20 and K = 2000 for both cases. The uncertainty of the previous values, and for all
following evaluations, was obtained from the standard deviation of 16 different ln E values obtained
running the analysis with 16 different sets of starting live points. The smaller value of f for the run
without clusters was chosen to reduce the computation time, which was still about eight times longer
than with the cluster analysis. It is interesting to note that, surprisingly, the two main values with
and without cluster analysis werere compatible (note: a difference of 0.9 in the ln E corresponds to
about two sigmas [58]), without a systematic shift due to the exploration of a smaller parameter space.
Only the associated uncertainty significantly changes.
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Figure 3. Evolution of one of the components of the discarded live points ãm relative to the position of
one of the four considered Gaussian peaks (see text) as function of the nested sampling step and for ten
different choices starting live points. Results relative to the analysis without (top) and with the cluster
analysis (bottom).

To better visualize the cluster analysis process, a 3D presentation of the evolution of three
components of ãm, relative to the position of three peaks is presented in Figure 4. Each image is
obtained just after a cluster analysis, where different clusters are represented by different colors.
To note, the analysis was triggered only a few times (four times for this selected example with
K = 2000, Nt = 200, NNt = 2 and with a Gaussian kernel with D = 0.6 and ` = 0.2), showing the
efficiency of the clustering recognition in the search of new live points (for about 60000 steps for each
run). After the first run of the mean shift analysis, only a large cluster (and few isolated live points)
were identified. In the following cluster analysis, all 24 different maxima likelihood regions were
correctly identified.

The correct and simultaneous identification of all maxima translated to a more regular histogram
of probability distributions evaluated from the nested sampling outputs. This is shown in Figure 5,
where the 2D histogram relative to the joint probability of position and amplitude of one of the peaks
is presented for the analysis with and without cluster recognition. When the cluster analysis was
not implemented, the presence of very localized maxima of the probability distribution reflected
the pathological behavior of the nested sampling convergence to only one of the likelihood maxima.
On the contrary, a much smoother distribution of the joint probability was present when the cluster
analysis was on.
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Figure 4. Results of the cluster recognition corresponding to the analysis of four Gaussian peaks.
The position of three peaks are represented. Different colors represent different identified clusters.
In black, the projection to some planes are represented. The 24 likelihood maxima (corresponding to
the 4! permutation of the position of four peaks) are well visible.
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Figure 5. Joint probability distribution of the position and amplitude of one of the four considered
peaks obtained without (left) and with cluster analysis (right).

A more quantitative measurement on the cluster analysis was obtained by varying the number
of used live points K. As it can be observed in Figure 6 (left, top), the final evidence did not change
significantly with K. In opposite, the evaluated uncertainty (in blue) changed by several orders
of magnitudes and was systematically larger than its theoretical estimation (in black) δ(log E) ≈
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√
H/K [25,52], whereH is the information gain. When the evaluated evidence uncertainty was plotted

in logarithmic scale (Figure 6 (left, bottom)), it can be observed that, for high values of K (≥ 500),
δ(log E) was proportional to 1/

√
H/K as expected (δ(log E) ∝ Kc with c = −0.52± 0.02), but was

systematically higher by a factor of about 1.6 than the estimated accuracy (not shown in the bottom
figure). When K was too low (K < 500 in the present case), even with the cluster analysis, the nested
sampling algorithm could not efficiently explore the 24 minima producing a systematic increases
of δ(log E).
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Figure 6. (Top) evaluation of the logarithm of the evidence for different number of live points K for the
four gaussian peaks analysis (left) and the modulated exponential decay (right). In blue are indicated
the uncertainty values evaluated by the results of 16 different run for each case. In black the theoretical
uncertainty

√
H/K estimated from the information gain H. (Bottom) dependency of the evaluated

uncertainty and CPU time with K. The dashed lines are the fits with power laws, which results are also
shown. Data relative to K < 500 and K > 5000 are excluded for the fit of log E uncertainty and CPU
time, respectively.

As expected, the computation time (equivalent for one single CPU) per set of live points grew
almost linearly with K. A simple fit gives an exponential dependency ∝ Kc with c = 1.13± 0.01.
A significant deviation was observed for K = 10, 000. In this case the cluster analysis, which number
of operations was proportional to K2, significantly contributed to the total computation time.

Cluster analyses of above results were obtained all with the same set of parameters: with a
Gaussian kernel and with D = 0.6, ` = 0.2, Nt = 200 and NNt = 2. The exploration of the algorithm
efficiency as dependence of these parameters is investigated and the corresponding results are resumed
in Figure 7, where the final evidence values and required computation time are presented for different
parameter sets. Several cases were considered with flat and Gaussian kernel, indicated in the label by
‘f’ and ‘g’, respectively, and different values of D and `, indicated in the label as well (only D for the flat
kernel). As it can be noticed, for too small values of D and ` the final accuracy was poor. This is related
to the identification of too many and too small clusters that finally induced an inaccurate, but fast,
exploration of the parameter space. On the opposite, for too large values, one or very few clusters
were identified. In these cases, the cluster algorithm was called very often without really improving
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the situation but increasing significantly the total computation time. Gaussian kernel proves to be
more robust and flexible than a flat kernel, probably due to the presence of the counter-reaction of the
two parameters. The optimal parameter choice depended on the specific problem and the values of
Nt and NNt. It was generally observed that low values of Nt allowed for changing starting live point
often enough improve the efficiency of the algorithm. NNt had to be adapted to trigger enough times
the cluster analysis, but not too often.
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Figure 7. Values of log E and CPU time for different choices of parameter values of the cluster
recognition algorithm. Uncertainties of the evidence relative to the labels ‘f 0.7’ and ‘g 0.8 0.3’ are not
evaluated because of the large computation time corresponding to these cases.

The analysis of the other considered case was characterized by a completely different cluster
evolution. In Figure 8 we represent the amplitude, pulsation and phase of the modulation values after
each cluster analysis. After the first run, several clusters were identified even if no clear structures were
visible. In the following analysis, a very complex landscape was drawn, with many clusters and with
very narrow values in omega. Even if characterized by very different sizes for the different parameters
(even after their normalization), different clusters were well identified by the mean shift algorithm.

The complex dependency on the modulation pulsation ω is also presented in Figure 9, where its
evolution as function of the nested sampling step is represented for two different choices of starting
live points. It can be observed that the rich landscape of the likelihood value as function of ω was
well reproduced for each try, demonstrating the efficiency of the cluster analysis implementation
once again.

As in the previous example, similar values of the Bayesian evidence were found: ln E =

−1921.54± 0.12 without cluster analysis and −1922.04± 0.21 with. In contrast to the previous case,
the uncertainty for the analysis without cluster analysis was very small. This was mainly caused
by the choice of the value f = 0.014 (and N = 40, K = 5000), a very small value compared to the
value set for the analysis with cluster analysis (with f = 0.1, N = 20, K = 5000). This small value
of f contradicted in fact also the recommendation from Equation (7) with the risk to introduce some
systematic errors in the computation. It was however required for insuring the convergence of the
computation, which was otherwise impossible without cluster analysis. Like the previous example,
the computation time without cluster analysis was in the best case about eight times longer than with
the cluster analysis.
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Figure 8. Results of the cluster recognition corresponding to the analysis of the modulation of the
exponential decay. The relative amplitude, pulsation and phase are represented. Different colors
represent different identified clusters. In black, the projection to some planes are represented.

Figure 9. Evolution of one of the components of the discarded live points ãm relative to the pulsation
ω of the modulation of the single ion exponential decay (see text) as function of the nested sampling
step with cluster analysis and for two different starting live points selections.
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When the number of live points K was varied, keeping the other parameters fixed (Gaussian
kernel with D = 0.6, ` = 0.2, Nt = 100 and NNt = 3), we could observe in Figure 6 (right) a similar
tendency for the results as in the previous case. The estimated evidence accuracy was found to be
proportional, as expected, to 1/

√
K ( δ(log E ∝ Kc with c = −0.48± 0.08). Here too, δ(ln E) was by a

factor of 4.4–5.5 higher than the estimated accuracy. Because of the presence of less local minima than
in the case of the four Gaussian peaks problem, the evaluated accuracy followed the proportionality to
1/
√

K down to K = 100. An almost linear dependency of the computation time on K was visible in
this case too (CPU time ∝ Kc with c = 1.13± 0.01), with a significant deviation for K = 10, 000 due to
the high cluster analysis requirements for high K.

These two examples show the general behavior of the cluster algorithm and its dependency on
the parameters choice. However, each case can be different and the user should vary the different
parameters to reach the required accuracy. A general and simple suggestion is to use a large number
of live points to efficiently explore the whole parameter space. This is crucial when multiple local
maxima of the likelihood function are present to avoid missing one of them. This is an important
requirement even when a cluster analysis is available.

4. Conclusions

We present a new application of cluster recognition to a nested sampling algorithm for the
evaluation of the Bayesian evidence and posterior parameter probability distributions. For this matter,
we selected the method of the mean shift, a robust and simple classical cluster recognition method
widely used in the machine learning community. This clustering algorithm proved itself well adapted
to critical data analysis when several likelihood maxima are present. It has been implemented in the
program NestedFit and tested with two different benchmark cases, proving its efficiency in exploring
the parameter space without excluding any region. As a consequence, the computation time is reduced
by a factor at least eight. At the same time, a smaller value of the estimated evidence uncertainty is
obtained. As a result from study the dependency on the different algorithm parameters, a sufficiently
high number of live point should be always used, even when the cluster analysis is implemented,
to efficiently explore all local likelihood maxima. Moreover for a good efficiency of the mean shift
cluster recognition, its typical parametric distances (D and `, the maximal neighbours distance and
the bandwidth of the Gaussian kernel) should neither be too small or too large. In one case very low
accuracy, but fast computation is obtained, in the other case the computation time increases too much.

In this article we explore only the implementation of the mean shift algorithm for cluster
recognition. In the future, we plan to explore other methods like the k-nearest neighbours and
the x-means method, successfully used in other nested sampling codes, and compare NestedFit
performances with these codes in benchmark cases.
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