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Abstract: The q-exponential form ex
q ≡ [1 + (1− q)x]1/(1−q) (ex

1 = ex) is obtained by optimizing

the nonadditive entropy Sq ≡ k 1−∑i pq
i

q−1 (with S1 = SBG ≡ −k ∑i pi ln pi, where BG stands for
Boltzmann–Gibbs) under simple constraints, and emerges in wide classes of natural, artificial and
social complex systems. However, in experiments, observations and numerical calculations, it rarely
appears in its pure mathematical form. It appears instead exhibiting crossovers to, or mixed with,
other similar forms. We first discuss departures from q-exponentials within crossover statistics, or by
linearly combining them, or by linearly combining the corresponding q-entropies. Then, we discuss
departures originated by double-index nonadditive entropies containing Sq as particular case.

Keywords: q-exponentials; nonextensive statistical mechanics; nonadditive entropies; complex systems

1. Introduction

Nonadditive entropies have been used as a basis to explain a diversity of phenomena,
from astrophysics to the oscillatory behavior of El Niño [1–3], from DNA to financial markets [4,5]
from high-energy physics of collisions to granular matter and cold atoms [6–8], among many others.
It turns out that wide classes of complex systems can be satisfactorily handled within a generalization
of Boltzmann–Gibbs (BG) statistical mechanics based on the nonadditive entropy

Sq ≡ k
1−∑W

i=1 pq
i

q− 1
= k

W

∑
i=1

pi lnq
1
pi

(q ∈ R; S1 = SBG ≡ −k
W

∑
i=1

pi ln pi;
W

∑
i=1

pi = 1) , (1)

where W is the total number of microstates and k is a conventional positive constant (usually k = kB in
physics, and k = 1 in computational sciences), the q-logarithmic function being defined as
lnq z ≡ z1−q−1

1−q (ln1 z = ln z). This theory is currently referred to as nonextensive statistical mechanics,
or q-statistics for short [9–11]. The optimization of Sq with simple constraints yields

pi =
e
−βqEi
q

∑W
j=1 e

−βqEj
q

, (2)

where {Ei} are the energy eigenvalues, and the q-exponential function (inverse of the q-logarithmic
function) is defined as follows:

ex
q ≡ [1 + (1− q)x]

1
1−q
+ (q ∈ R; ex

1 = ex) , (3)
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where [z]+ = z if z > 0 and zero if z ≤ 0; notice that this definition implies that, for q < 1, there is
a cutoff at xcuto f f = −1/(1− q) < 0 [9]. In the limit q → 1, Equation (2) recovers the celebrated
BG weight.

The aim of the present article is to discuss in detail some departures from a pure q-exponential
function which frequently emerge in real situations. Such variations are used in the statistics of
nucleotides in full genomes [4], the re-association of folded proteins [12], standard map for intermediate
values of the control parameter [13], to mention but a few. We focus on crossover statistics (Section 2),
linear combinations of q-exponential functions (Section 3), linear combinations of q-entropies (Section 4),
and some two-indices entropies, namely Sq,δ [14], SBR

q,q′ [15] and Sq,q′ [16] (Section 5).

2. Multiple Crossover Statistics

Crossover statistics is often useful whenever the phenomenon which is focused on exhibits a
q-exponential behavior within a range of the relevant variables, and then makes a crossover to another
q-exponential function with a different index q. Although rare, it can, in principle, happen that several
crossovers successively occur one after the other. We will refer to it as multiple crossover statistics.

Illustrations of such crossovers can be found in [12,17–21].
Let us consider the following ordinary differential equation:

dy
dx

= −ayq (y(0) = 1; a ∈ R) . (4)

Its solution is given by
y(x) = e−a x

q . (5)

Multiple crossovers emerge from the following nonlinear ordinary differential equation:

dy
dx

= −
M

∑
k=1

ak yqk (q1 < q2 < · · · < qM) , (6)

with y(0) = 1, and 0 ≤ a1 ≤ a2 ≤ · · · ≤ aM, where the right-hand term is constituted by a linear
combination of nonlinear terms. Consequently

x =
∫ 1

y

dz

∑M
k=1 ak zqk

. (7)

We know that Equation (7) has analytical solutions for M = 1 and M = 2 (Figure 1). For M > 2,
we need to solve this equation numerically.

Particularly for crossover between two curves (M = 2) with q1 and q2, we have:

dy
dx

= −a1yq1 − a2yq2 = −µq1 yq1 − (λq2 − µq1)y
q2 (y(0) = 1) , (8)

where we have identified (a1, a2) ≡ (µq1 , λq2 − µq1) in order to facilitate the connection with the
notation used in [12]. Let us incidentally mention that this equation enabled the study of the anomalous
behavior of folded proteins.
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To solve Equation (8), we use Equation (7), which yields

x =
1

µq1

y1−q1 − 1
q1 − 1

−

(
λq2
µq1

)
− 1

1 + q2 − 2q1

×
[

H
(

1; q2 − 2q1, q2 − q1,
(

λq2

µq1

)
− 1
)

−H
(

y; q2 − 2q1, q2 − q1,
(

λq2

µq1

)
− 1
)]}

(9)

with

H(y; a, b, c) = y1+a
2F1

(
1 + a

b
, 1;

1 + a + b
c

;−ybc
)

, (10)

where 2F1 is a hypergeometric function.
For the particular case q1 = 1, we obtain

y =
1[

1− λq2
µ1

+
λq2
µ1

e(q2−1) µ1x
] 1

q2−1
. (11)

It is certainly worth mentioning that its q2 = 2 instance yields y =
[
1− λ2

µ1
+ λ2

µ1
eµ1x

]−1
,

whose λ2/µ1 >> 1 asymptotic behavior becomes y ∝ 1/[eµ1 x − 1]. It is precisely through
this ordinary-differential path that Planck found, in his historical 19 October 1900 paper,
the thermostatistical factor which eventually led to his celebrated law for the black-body radiation
with the ultimate identification µ1x → hν/kBT [22,23].

slope = 1
1-q2

slope = 1
1-q1

xc1

xc2
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10-9

10-7

10-5

0.001

0.100
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Figure 1. y(x) (log-log plot). For the case M = 1 with (q, a) = (2.7, 1) (blue curve) and, for the case M = 2,
the crossover between two curves, namely with q1 = 1 (black curve) and q1 = 1.7 (red curve) respectively,
both with (q2, λq2 , µq1 ) = (2.7, 1, 1× 10−5). For the red curve, we have the crossover characteristic values
(xc1 , xc2 ) = (0.588, 8.407× 108), which indicate the passage from one regime to another.
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For the case M = 3, we have

dy
dx

= −a1yq1 − a3yq2 − a3yq3 (12)

whose analytical solution is intractable. Therefore, we use numerical methods to solve it. In contrast,
the characteristic values (xc1 , xc2 , xc3) where changes of behavior of the curve occur are analytically
accessible. Those values are obtained through the following considerations. For the characteristic
value xc1 , we have

y(xc1) ∼ [(q3 − 1)a3xc1 ]
− 1

q3−1 ∼ 1 . (13)

Consequently

xc1 =
1

[(q3 − 1)a3]
. (14)

For xc2 we have

y(xc2) ∼ [(q2 − 1)a2xc2 ]
− 1

q2−1 ∼ [(q3 − 1)a3xc2 ]
− 1

q3−1 , (15)

hence

xc2 =
[(q3 − 1)a3]

q2−1
q3−q2

[(q2 − 1)a2]
q3−1

q3−q2

. (16)

Similarly, we have

xc3 =
[(q2 − 1)a2]

q1−1
q2−q1

[(q1 − 1)a1]
q2−1

q2−q1

. (17)

Therefore, for the M = 3 particular case whose parameter values are a1 = 5× 10−11, a2 = 1× 10−4 and
a3 = 1, with q1 = 1.2, q2 = 1.7 and q3 = 2.7, we have xc1 ≈ 0.59, xc2 ≈ 1.68× 107 and xc3 ≈ 5.47× 1013,
as shown in Figure 2a,b. It is similarly possible to study multiple crossovers for the case M > 3.

slope = 1
1-q3

slope = 1
1-q2

slope = 1
1-q1

 

xc1

xc2 xc3
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0.01

x

y

Figure 2. Cont.
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Figure 2. Crossovers in y(x) for M = 3 (log-log plots) (a) between two curves with (q1, q2) =

(1, 1.7) (red curve), (q1, q2) = (1.2, 1.7) (blue curve) respectively, both with (q3, a1, a2, a3) =

(2.7,5× 10−11,1× 10−4,1), and (b) a change was done on the blue curve, with q1 = −1 (black curve);
the cutoff occurs at xcuto f f ≈ 4.48× 104.

3. Linear Combination of Normalized q-Exponentials

For a linear combination of normalized q-exponentials, we consider a probability distribution
function P = P(x) , x ∈ X ⊂ R+ such that:

P(x) =
M

∑
k=1

bk pk(x) =
M

∑
k=1

bk
e
−βqk x
qk

Zqk

(q1 ≤ q2 ≤ · · · ≤ qM < 2; βqk > 0 , ∀ k) , (18)

with ∑M
k=1 bk = 1 (bk ≥ 0), {Zqk} being normalization factors (the upper limit q < 2 emerges in order

to {Zqk} being finite). Those quantities are determined by imposing, for all k ∈ {1, ..., M},∫ ∞

0
dx pk(x) = 1 i f qk ≥ 1 , (19)∫ 1

βqk (1−qk)

0
dx pk(x) = 1 i f qk < 1 . (20)

It follows
Zqk =

1
βqk (2− qk)

, ∀ qk < 2 . (21)

Let us focus on two specific particular cases, namely M = 2 with q1 = q2 ≡ q, and M = 3 with
q1 = q2 = q3 ≡ q; βq1 ≡ β1, βq2 ≡ β2, βq3 ≡ β3, and Zqk ≡ Zk. It follows that

p(x) = b1
e−β1 x

q

Z1
+ b2

e−β2 x
q

Z2
(22)

with b2 = 1− b1, 1/Z1 = β1(2− q), and 1/Z2 = β2(2− q), and

p(x) = b1
e−β1 x

q

Z1
+ b2

e−β2 x
q

Z2
+ b3

e−β3 x
q

Z3
(23)

with b3 = 1− b1 − b2, 1/Z1 = β1(2− q), 1/Z2 = β2(2− q) and 1/Z3 = β3(2− q). See Figures 3 and 4.
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β = 0.1 , q = 1.11

β = 1.5, q =1.11

Linear 
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Figure 3. p(x) (log-log plot) of three curves (case M = 2) with parameters q = 1.11 and β = 0.1
(blue dashed curve), β = 1.5 (red dashed curve), and their linear combination (black curve) with
b1 = 1× 10−5 and b2 = 1− b1.

Linear

combination
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β = 1.5
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Linear combination
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Figure 4. p(x) (log-log plots) of four curves with parameters q = 1.11, β = 1.9 (blue dashed curve),
β = 1.5 (red dashed curve), β = 1.2 (gray dashed curve), and their linear combination (black curve).
(a) Four curves with β = 1.5 (blue dashed curve), β = 1.1 (red dashed curve), β = 0.1 (gray dashed
curve) and their linear combination (black curve). (b) With b1 = 1 × 10−5, b2 = 1 × 10−3 and
b3 = 1− b1 − b2, both with q = 1.11 (case M = 3).
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In Figure 4 (M = 3), we fix the value qk = 1.11 for k = 1, 2, 3. Another illustration of the linear
combination consists of fixing the value βqk = β for k = 1, 2, 3 and using three different values for qk.
In the case illustrated in Figure 5, the linear combination remains close to the curve corresponding to
(q, β) = (1.2, 0.1).

p(x) = b1
e−β x

q1

Zq1

+ b2
e−β x

q2

Zq2

+ b3
e−β x

q3

Zq3

(24)

with b3 = 1− b1 − b2, 1/Zq1 = β(2− q1), 1/Zq2 = β(2− q2) and 1/Zq3 = β(2− q3).

Linear

combination

q = 1.9

q = 1.5

q = 1.2

0.1 1 10 100 1000
10-8

10-6

10-4

0.01

1

x

p
(x
)

Figure 5. p(x) (log-log plot) of four curves (case M = 3) with parameters β = 0.1, q = 1.2 (blue dashed
curve), q = 1.5 (red dashed curve), q = 1.9 (gray dashed curve), and their linear combination
(black curve) with b1 = 1× 10−5, b2 = 1× 10−3 and b3 = 1− b1 − b2.

Linear combinations of this kind (either of q-exponentials, or of q-Gaussians) have been fruitfully
used in [4,13,24,25].

4. Linear Combination of q-Entropies

A linear combination of q-entropies can be written as follows:

S({pi}) =
M

∑
k=1

ck Sqk ({pi}) (q1 < q2 < · · · < qM) (ck ≥ 0) . (25)

This expression is generically not normalized. If we happen to prefer normalization for some specific
reason, it is enough to divide Equation (25) by ∑M

k=1 ck.
With the constraints ∑i pi − 1 = 0 and ∑i piEi −U = 0, where U is the internal energy of the

system and {Ei} are the energy eigenvalues, we define the functional f (α1, α2, {pi}) as follows:

f (α1, α2, {pi}) ≡
M

∑
k=1

ck Sqk ({pi}) + α1

(
1−∑

i
pi

)
+ α2

(
U −∑

i
piEi

)
. (26)

Then, through extremization, we obtain

∂

∂pj
f = 0 = ∑

k
ck

lnqk

1
pj
−
(

1
pj

)1−qk
− α1 − α2Ej (27)
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hence

E(pj) = −
α1

α2
+

1
α2

∑
k

ck

lnqk

1
pj
−
(

1
pj

)1−qk
 . (28)

We introduce convenient new variables, namely

α1 ≡ −α2µ, α2 ≡ β . (29)

This enables us to express Xj ≡ β(Ej − µ) as an explicit function of pj, namely

Xj = ∑
k

ck

lnqk

1
pj
−
(

1
pj

)1−qk
 . (30)

The cutoff condition, whenever present, is given by limpj→0 X(pj, q1, q2, . . . , qM) ≡
Xc(q1, q2, . . . , qM). For instance, for M = 3, we have (see Figure 6)

Xc(q1, q2, q3) =
c1

q1 − 1
+

c2

q2 − 1
+

c3

q3 − 1
, (1 < q1 ≤ q2 ≤ q3). (31)

p1.2,1.4,1.7(X)

p1.3,1.5,2.0(X)

p1.4,1.9,2.7(X)

p1.7,2.1,3.2(X)

c1 = 0.641026

c2 = 0.006410

c3 = 0.352564

Xc = 1.08 Xc = 1.82 Xc = 2.5
Xc = 3.72

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.1

0.2

0.3

0.4

0.5

X

p
q
1
,q
2
,q
3
(X
)

Figure 6. Four probability distributions pq1,q2,q3 (X) (M = 3) based on Equation (30) with (c1, c2, c3) =

(0.641026, 0.006410, 0.352564). From (31), we respectively obtain the cutoff values Xc = 1.08 for
(q1, q2, q3) = (1.7, 2.1, 3.2) (blue curve), 1.82 for (q1, q2, q3) = (1.4, 1.9, 2.7) (black curve), 2.50 for
(q1, q2, q3) = (1.3, 1.5, 2.0) (gray curve) and Xc = 3.72 for (q1, q2, q3) = (1.2, 1.4, 1.7).

The M = 2 particular case of (25) has been focused on in [24]:

S({pi}) = c1SBG({pi}) + c2Sq({pi}) (32)

where one of the entropies is the BG entropy (i.e., q1 = 1), and the other one Sq({pi}) corresponds to
q2 ≡ q 6= 1. Then, we have (see Figure 7)

pj =
{

aW
(

Aqe−(q−1)Xj
)} 1

q−1
(33)

where W(z) is the Lambert function, implicitly defined by WeW = z (see, for instance, [26]),

Aq ≡ 1
a e
−(q−1)

(
1− c2

c1(q−1)

)
, α1 ≡ −µα2, β ≡ α2

c1
and Xj ≡ β(Ej − µ) (this definition of β differs from that

in Equation (29)), with a ≡ c1
c2q = c1

(1−c1)q
. Aq is determined via the normalization of the probabilities

{pj}, i.e.,
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∑
j

pj = ∑
j

{
aW
(

Aqe−(q−1)Xj
)} 1

q−1
= 1. (34)

In other words, Aq implicitly depends on (q, c1). Whenever appropriate, we may go to the continuum
limit. If it is allowed to consider X ≥ 0, we have

∫ ∞

0

{
aW
(

Aqe−(q−1)X
)} 1

q−1 dX = 1, (35)

hence
qa−

1
q−1 = W(Aq)

1
q−1
[
q + W(Aq)

]
. (36)

This expression determines a as an explicit function of (q, Aq).

10 11 12
0

0.0001

0.0002

X

p
(X
)

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

X

p
(X
)

Figure 7. Three probability distributions p(X) based on Equation (33) with c1 = 0.3 and q = 1.01
hence Aq = 0.0238786 (black curve), q = 1.2 hence Aq = 0.6798077 (red curve), and q = 1.5 hence
Aq = 2.3025270 (blue curve).

It is known that, in nonextensive statistical mechanics [27], the constraints under which the entropy

is optimized might be chosen with escort distributions, namely, ∑i pi − 1 = 0 and ∑i pq
i Ei

∑i pq
i
−Uq = 0.

We then have

f̃ (α1, α2, {pi}) ≡ c1SBG({pi}) + c2Sq({pi}) + α1

(
1−∑

i
pi

)
+ α2

[
Uq −

∑i pq
i Ei

∑i pq
i

]
(37)

hence

pj =

{
ae(q−1)

q W
(

Bq e
−(q−1)Xj
q

)} 1
q−1

, (38)

where Xj ≡ β′(Ej − µ) with β′ defined as

β′ ≡ β

∑j pq
j + (1− q)βUq

(39)

with β ≡ α2
c1

. Clearly, Bq is determined by

∑
j

pj = ∑
k

{
a e(q−1)

q W
(

Bqe
−(q−1)Xj
q

)} 1
q−1

= 1 . (40)
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Let us remind at this point that extremizing Sq with standard constraints is equivalent to extremizing
S2−q with escort constraints. The equivalence implies in doing the transformation q→ 2− q [27,28].

Let us address now the concavity/convexity of S{pi}. We illustrate with the linear combination of
two (M = 2) q-entropies with q1 and q2, assuming p1 ≡ p2 ≡ · · · ≡ p(W−1) ≡ p and pW = 1− (W − 1)p.
In other words, we consider

Sq1,q2(p) = c1

[
(W − 1)p lnq1

(
1
p

)
+ (1− (W − 1)p) lnq1

(
1

1− (W − 1)p

)]
+

c2

[
(W − 1)p lnq2

(
1
p

)
+ (1− (W − 1)p) lnq2

(
1

1− (W − 1)p

)]
.

(41)

The study of concavity of (41) can be done in the (q1, q2) space, taking also into consideration the
regions of non admissibility in which the entropy is neither concave nor convex.

We clearly note that when W = 3 (see Figure 8b), the black region is reduced compared to the
W = 2 case (Figure 8a). This result tends to suggest that the black region tends to disappear at W → ∞,
while the pink (convex) region predominates.

BG

Sq
(a)

q2

q
1

Sq

BG

q2

q
1

(b)

q1 = -1 q2 = 1

q1 = 0.2
q1 = -0.1

q1 = 1

(c)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

p

S
q
1
,q
2
(p
)

Figure 8. Concavity/convexity mapping for (41) with (c1, c2) = (0.48, 0.52), W = 2 (a) and W = 3 (b).
The green (pink) region represents all points whose entropy (41) is concave (convex). The black region
represents all points whose entropy is neither concave nor convex, having two local minima points and
a local maximum in between (a global maximum point at p = 0.5 and divergences at p = 0 and p = 1).
On the red point is localized the Boltzmann–Gibbs entropy and over the red dashed line cutting the
origin, we have all the Sq entropies. On the concave (convex) region we have Sq, q > 0 (q < 0). (c) Four
(W = 2) entropies with q2 = 1, and q1 = 1 (blue curve), q1 = 0.2 (green curve), q1 = −0.1 (black curve)
and q1 = −1 (pink curve).

5. Other Departures—Two-Indices Entropies

We focus here on other type of departures from pure q-exponentials, originated now from
two-indices nonadditive entropies which recover Sq as particular instances.
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5.1. Sq,δ

From [14], we have

Sq,δ ≡
W

∑
i=1

pi

[
lnq

1
pi

]δ
(q ∈ R; δ > 0) . (42)

We verify that Sq,1 = Sq. Extremization of Sq,δ under usual constraints yields

E(pj) = −
α1

α2
+

1
α2

[lnq
1
pj

]δ
− δ

(
1
pj

)1−q [
lnq

1
pj

]δ−1
 . (43)

Through (29), we have

Xj =

[lnq
1
pj

]δ
− δ

(
1
pj

)1−q [
lnq

1
pj

]δ−1
 . (44)

Taking into account the transformation q→ 2− q mentioned below Equation (40), the cutoff occurs for
q > 1, and Xc(q, δ) is given by (see Figure 9)

Xc(q, δ) = (q− 1)−δ (q > 1). (45)

p1.2,0.2(X)

p1.2,0.3(X)

p1.2,0.5(X)

p1.2,0.9(X)

Xc = 1.38

Xc = 1.62

Xc = 2.34

Xc = 4.26

(a)
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Figure 9. Illustrative probability distributions pq,δ(X). (a) q = 1.2 and δ = 0.2 hence, through (45),
Xc = 1.38 (gray curve); δ = 0.3, hence Xc = 1.62 (black curve); δ = 0.5 hence Xc = 2.34 (red curve)
and finally, δ = 0.9 hence Xc = 4.26 (blue curve); (b) (q, δ) = (3.1, 0.9) hence Xc = 0.51 (blue curve);
(q, δ) = (2.7, 0.7) hence Xc = 0.69 (red curve); (q, δ) = (2.5, 0.6) hence Xc = 0.78 (black curve);
and (q, δ) = (2.1, 0.4) hence Xc = 0.96 (gray curve).
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We verify that pq,δ(X) is single-valued for q ≥ δ and multi-valued otherwise.
Let us now consider the case p1 ≡ p2 ≡ · · · ≡ p(W−1) ≡ p and pW = 1− (W − 1)p hence

Sq,δ(p) = (W − 1)p
[

lnq

(
1
p

)]δ

+ (1− (W − 1)p)
[

lnq

(
1

1− (W − 1)p

)]δ

, (46)

where p ∈
[
0, 1

W−1

]
. This expression will help us to study the concavity/convexity of the entropy for

increasing values of W. See Figures 10 and 11.

Sq

Sd Sd

Sq

BG

(b)

q = 0.4 δ = 2q = 0.8

q = 2.5

q = 1.8

(c)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p

S
q

,δ
(p
)

Figure 10. Concavity/convexity regions for Sq,δ (46) (a) W = 2. (b) W = 3. The green (pink) region
represents all points whose entropy (41) is concave (convex). The black region represents all points whose
entropy is neither concave nor convex, having two local maxima ( inflexion) points and another local
minimum (maximum) in between. The points of transition at δ = 2 are: qc = 1/2 (both W = 2 and
W = 3) (pink ↔ black); qc = 4/3 (W = 2) and qc ∼ 0.98 (W = 3) (black ↔ green) and qc = 2 (both
cases) (black↔ purple). At q = 1, we have the transition from non concave to concave at δc = 1 + ln 2
(W = 2) and for W = 3, we have δc < 1 + ln 3. The blue dashed horizontal line represents Sδ, while
the red dashed vertical line represents all Sq entropies, and the red point is the BG entropy. (c) Four
cases (W = 2) for δ = 2 with the respective colors: q = 0.4 and q = 1.8 (convex and concave regions
respectively); q = 0.8 (black region) and q = 2.5 (purple region) (non concave and non convex regions).

The black region is clearly reduced for W = 3 (see Figure 10b), but the purple region at,
for example, δ = 3.8 and q = 2.15, invades the concave region. It is not excluded that the purple region
gradually expands with W in such way that it approaches the black region.

We noticed that an inadvertence occurred in [14]. Indeed, it was therein indicated that, for all
entropies Sδ, it would be δc(W) = 1 + ln W, but this is not exactly so in some cases. As we verify
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in what follows, we always have δc ∈ (ln W, 1 + ln W]. Therefore, the formula in [14] constitutes an
upper bound of δc.

Figure 11. Plot for Sq,δ with W = 3, q = 1 and δ = 1 + ln 3. We clearly observe that δc = 1 + ln W is
not valid here, because in this value, the entropy is not concave, much less the values close to this.

The probability is limited by p ≥ 1
W−1 . Numerically, we analyze the plot 1/ ln W × δc − ln W. If it

was δc = 1 + ln W for all entropies Sδ, we should obtain δc − ln W = 1 for all values of W, which is not
the case.

The interpretation of δc is given by the transition green ↔ black; no transition black ↔ pink
appears to exist.

We notice in Figures 10–13 that the divergence of δc in the limit W → ∞ means that Sδ is concave
in the thermodynamic limit for any positive δ.

0 0.10.05
0

0.012

0.004

0.008

1/ln W

δ
c
-
ln
W

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

1/ln W

δ
c
-
ln
W

Figure 12. Plot for 1/ ln W × δc − ln W with Wmax = 9× 106. Here, δc ∈ (ln W, 1 + ln W]. In the inset,
we indicate the behavior of that function closer to origin.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.85

0.90

0.95

1.00

1/lnW

(δ
c
-
1)
/ln
W

Figure 13. Plot for 1/ ln W × (δc − 1)/ ln W with Wmax = 9× 106. The regression by excluding the
W = 2 and W = 3 points yields an 8th degree polynomial of x ≡ 1/ ln W, namely f (x) ≈ 1 −
0.794252x− 6.20252x2 + 60.9556x3 − 223.39x4 + 466.1x5 − 588.297x6 + 420.626x7 − 130.677x8. It means
that, when W → ∞ we have x → 0, thus lim

x→0
f (x) = 1, therefore δc ∼ 1 + ln W which diverges

at infinity.

5.2. Borges–Roditi Entropy SBR
q,q′

Borges and Roditi [15] extended the entropy Sq as follows:

SBR
q,q′ =

∑W
i=1 pq

i −∑W
i=1 pq′

i
q′ − q

, ((q, q′) ∈ R2) , (47)

with SBR
q,1 = SBR

1,q = Sq, where BR stands for Borges–Roditi; notice that SBR
q,q′ = SBR

q′ ,q .
Extremization with usual constraints, and using (29), we have:

Xj =
1

q′ − q

(
qpq−1

j − q′pq′−1
j

)
. (48)

For q, q′ < 1, p monotonically decreases to zero when X increases to infinity. For q, q′ > 1, p is
multivalued, hence physically inadmissible. For q < 1, q′ > 1 (hence, for q > 1, q′ < 1 ), p is
single-valued and exhibits a cutoff at Xc. See Figure 14 for typical examples.
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p0.2,0.5(X)

p0.4,0.7(X)

p0.6,0.8(X)

p0.8,0.9(X)

(a)
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0.00

0.05

0.10

0.15

0.20

0.25
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q
,q
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X
)

p1.4,0.9(X)

p1.8,0.9(X)

p2.8,0.9(X)

p4.8,0.9(X)Xc = 0.7

Xc = 1.44

Xc = 3.03 Xc = 5.42

(b)
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0.0

0.1

0.2

0.3
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0.5

0.6

X

p
q

,q
'(
X
)

Figure 14. Eight illustrative Borges–Roditi probability distributions. (a) (q, q′) = (0.2, 0.5) (red curve);
(q, q′) = (0.4, 0.7) (black curve); (q, q′) = (0.6, 0.8) (blue curve), and (q, q′) = (0.8, 0.9) (gray curve).
(b) (q, q′, Xc) = (1.4, 0.9, 5.42) (red curve), (q, q′, Xc) = (1.8, 0.9, 3.03) (black curve), (q, q′, Xc) =

(2.8, 0.9, 1.44) (blue curve), and (q, q′, Xc) = (4.8, 0.9, 0.7) (gray curve).

Let us focus now on the concavity of SBR
q,q′ . By considering the same case that led to Equation (46),

we obtain here

Sq,q′(p) =
1

q′ − q

[
(W − 1)pq + (1− (W − 1)p)q − (W − 1)pq′ − (1− (W − 1)p)q′

]
. (49)

The purple region undergoes a slight change whether we compare the Figure 15a (W = 2) and
Figure 15b (W = 3), although it appears that the rectangular purple region at W = 3 does not increase
for W > 3. Indeed, if it did that, it would affect the BG and Sq entropies whose convexity/concavity
are known. With respect to the black region, the fact of that region shrinks from W = 2 to W = 3
suggests that it possibly disappears in W → ∞.
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BG

(a)

S
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Sq

(b)
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K
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q' = -0.6
q = 2(c)

q' = -0.1

q' = 2.1

q' = 0.9
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0.0
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0.6

0.8
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1.2
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p

S
q
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'(
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)

Figure 15. Concavity/convexity for SBR
q,q′ (49) with (a) W = 2 and (b) W = 3. The green (pink) region

represents all points whose entropy (49) is concave (convex). The black (purple) region represents
all points whose entropy is neither concave nor convex, having two local maxima (inflexion) points
and another local minimum (maximum) in between. The red dashed vertical lines represent all Sq

entropies and the red point is the BG entropy, while the light (dark) blue lines represents all Shafee
SS

q (Kaniadakis SK
κ ) entropies [29,30]. (c) Four illustrative cases (W = 2) with q = 2 and its respective

colors: q′ = −0.6 and q′ = 0.9 (pink and green regions respectively ); q = −0.1 (black region) and
q = 2.1 (purple region).

5.3. Sq,q′

On the basis of some algebraic properties, Sq has been generalized in [16,31,32]:

Sq,q′ =
W

∑
i=1

pi lnq,q′
1
pi

(50)

with

lnq,q′ z ≡
1

1− q′
[
exp

(1− q′

1− q
(z1−q − 1)

)
− 1
]

. (51)

We verify that lnq,1 = ln1,q = lnq, hence Sq,1 = S1,q = Sq. with Sq,1 = S1,q = Sq. Clearly, we can
reformulate (51) in terms of lnq such that

lnq,q′ z =
1

1− q′
[
exp

(
(1− q′) lnq z

)
− 1
]

. (52)
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The reformulated version of the extremized entropy Sq,q′ is written as

Xj = exp

(
(1− q′) lnq

1
pj

) 1
1− q′

−
(

1
pj

)1−q
− 1

1− q′
(53)

The cutoff equation Xc(q, q′) is given by

Xc(q, q′) =
1

1− q′

[
e−

1−q′
1−q − 1

]
, q > 1. (54)

For q > 1 and 0 < q′ < 1, p is single-valued and exhibits a cutoff at Xc (see Figure 16). For q, q′ < 1,
p is multi-valued, hence, it is inadequate for physical purposes. For 0 < q < 1 and q′ > 1, p exhibits
clearly a cutoff.

p1.2,0.8(X)

p1.3,0.9(X)

p1.4,1.1(X)

p1.5,1.3(X)

Xc = 1.50

Xc = 2.21

Xc = 3.96

Xc = 8.59

(a)

0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

X

p
q

,q
'(
X
)

p0.3,1.3(X)

p0.5,1.5(X)

p0.7,2.0(X)

p0.8,2.5(X)

(b)

Xc = 0.67

Xc = 1.0 Xc = 2.0
Xc = 3.33

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.1

0.2

0.3

0.4

0.5

X

p
q
,q
'(
X
)

Figure 16. Eight illustrative probability distributions pq,q′ (X). (a) (q, q′, Xc) = (1.5, 1.3, 1.5) (gray curve),
(q, q′, Xc) = (1.4, 1.1, 2.21) (blue curve), (q, q′, Xc) = (1.3, 0.9, 3.96) (black curve), and (q, q′, Xc) =

(1.2, 0.8, 8.59) (red curve). (b) (q, q′, Xc) = (0.8, 2.5, 0.67) (gray curve), (q, q′, Xc) = (0.7, 2.0, 1.0)
(blue curve), (q, q′, Xc) = (0.5, 1.5, 2.06) (black curve), and (q, q′, Xc) = (0.3, 1.3, 3.33) (red curve).

Analogously to (46), we write the Equation (50) as

Sq,q′(p) = (W − 1)p lnq,q′

(
1
p

)
+ (1− (W − 1)p) lnq,q′

(
1

1− (W − 1)p

)
. (55)
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In Figure 17a,b, we observe that the purple region appears to remain the same for all W ≥ 2.
In contrast, the black region for W = 3 is slightly smaller than that for W = 2, which suggests that,
in W → ∞, such a region might disappear. We checked for large values of W, and this scenario is
confirmed. This happens in two different ways: the black region close to the BG point gradually
disappears, being replaced by the pink (convex) region, and the black region in the negative part of q′

also disappears, being replaced by the green (concave) region.

BG

Sq

(a)

Sq

Sq

BG

(b)

Sq

(c)

q  = 0.5

q' = 0.5 

q  = 0.5

q' = 1.5

q  = 0.5

q' = 0.87

q  = -3

q' = 1.9 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p

S
q

,q
'(
p
)

Figure 17. Concavity/convexity for Sq,q′ (55) with (a) W = 2 and (b) W = 3. The green (pink) region
represents all points whose entropy (55) is concave (convex). The black (purple) region represents all
points whose entropy is neither concave nor convex, having two local maxima (inflexion) points and
another local minimum (maximum) in between. The red dashed vertical line represents all Sq entropies
and the red point is the BG entropy. (c) Four cases (W = 2) with the respective colors: with q = 0.5,
q′ = 0.5 and q′ = 1.5 (pink and green regions) and q′ = 0.87 (black region), and (q′, q) = (1.9,−3)
(purple region).

6. Conclusions

In summary, we have explored here various mathematical properties related to extensions of
q-exponentials and q-entropies, including some double-index nonadditive entropies.

In the case of crossover statistics (Equation (7)), there are multiple changes in the slopes of
the corresponding log-log plots. The values of the abscissa at which the relevant quantities make
crossovers between two successive regimes are characterized by xc, analytically calculated in all cases,
as illustrated in Figures 1 and 2.

When we consider linear combinations of normalized q-exponentials, we may focus on the
influence of the qk’s and of the βk’s in Equation (18). For a single value of βk and various values for the
qk’s, the result might be close to one of the q-exponentials, whereas if we adopt a single value of qk
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and various values for the βk’s, the outcome might be sensibly different from all the q-exponentials,
as illustrated in Figures 3–5.

With respect to the linear combination of q-entropies, it is generically impossible to have the
probability distribution pj in Equation (30) as an explicit function of Xj. Notice, however, that we do
have Xj as an explicit function of pj. This is in contrast with the case where we have linear combinations
of the normalized q-exponentials. The final results for these two types of linear combinations clearly
differ, as first shown in [24]. Let us emphasize that, consistently, the operations of linearly combining
and entropic extremization do not commute.

In addition to that, for the linear combination of two nonadditive entropies (case M = 2), as well
as for the three double-index nonadditive entropies (namely, Sq,δ, SBR

q,q′ and Sq,q′ ), we have studied
their convexity/concavity in the indices-space. The results depend naturally on the total number of
states (W). The limit W → ∞ is particularly interesting, since it corresponds to the thermodynamical
limit. We verify that, in the case of a linear combination of two q-entropies (M = 2), the concave
region remains one and the same for all values of W. Indeed, the value of W only affects the size of
the convex region, as illustrated in Figure 8. It seems plausible that, in the W → ∞ limit, the only
possibilities which remain are either concave or convex. In what concerns Sq,δ, SBR

q,q′ and Sq,q′ , regions in
the indices-space exist, for a given value of W, where the entropy is concave, or convex, or none of
them, as illustrated in Figures 10, 15 and 17. For all these three entropies, the region which is neither
concave nor convex does not disappear even for W → ∞. In particular, we have studied in detail the
case of Sδ (q = 1 and δ > 0), and have obtained that convexity never emerges, ∀δ, ∀W. A critical value
δc(W) exists such that Sδ is concave for δ < δc(W) and neither concave nor convex for δ > δc(W);
moreover, in the W → ∞ limit, we verify that δc(W) ∼ ln W. The results displayed in the present
paper could hopefully guide the use of entropies differing from Sq for large classes of natural, artificial
and social complex systems.
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