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Abstract: In this paper, we consider the influence of a divergence of polarization of a quantum signal
transmitted through an optical fiber channel on the quantum bit error rate of the subcarrier wave
quantum key distribution protocol. Firstly, we investigate the dependence of the optical power of
the signal on the modulation indices’ difference after the second phase modulation of the signal.
Then we consider the Liouville equation with regard to relaxation in order to develop expressions of
the dynamics of the Stokes parameters. As a result, we propose a model that describes quantum bit
error rate for the subcarrier wave quantum key distribution depending on the characteristics of the
optical fiber. Finally, we propose several methods for minimizing quantum bit error rate.
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1. Introduction

Nowadays, the majority of quantum key distribution systems (QKD) are implemented by utilizing
weak coherent states. Examples are point-to-point [1,2] and twin-field systems with three parties [3–6].
Further examples are systems based on phase modulated multi-frequency states known as subcarrier
wave QKD (SCW QKD) [7,8]. In addition, the state preparation approach utilized in SCW QKD can
also be applied to a twin-field QKD system [9]. Different protocols can be implemented by using
phase-modulated weak coherent states, including widely-used BB84-like protocol [10,11] (four phase
states equally distributed in the phase plane with phase difference between neighboring state as ±π

2 ),
and the B92 protocol [12] (two phase states with phase difference ±π). The first SCW QKD setup has
been proposed by the group of Merolla [13,14]; it implements B92 protocol with phase modulation.
Thereafter, the implementation of BB84-like protocol has been demonstrated for the SCW scheme by
the same group using amplitude modulation [15]. The replacement of phase modulation by amplitude
modulation was necessary for decoding all states at the receiver’s side. In the last decade, the latter
approach was expanded to the subcarrier multiplexing technique, which allows the authors of [16]
to increase the key generation rate in several times. Another variation of the system was proposed
in [17]. The authors show the possibility of implementing a strong reference technique by monitoring
the intensity of the carrier wave. A version of the BB84-like protocol with phase modulation has
recently been demonstrated by several authors of this work in [7–9,18]. Proposed in the latter papers
approach allows to decode only one state in each «basis» (the word basis only means two states with
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the phase difference ±π). Moreover, recently it was shown that SCW QKD systems can utilize homo-
or heterodyne detection schemes for continuous variable protocols [19].

Modulated multi-mode states are prepared by single frequency-mode coherent states,
generated with laser beam, modulated by an electro-optical modulator. Detailed explanation of
phase modulation’s quantum regime is given in [20], and the structure of phase modulated states
is shown in Equation (1). Briefly, information coding is made by choice of the modulation signal
phase (made by the sender) and decoding is based on the fact that detection event should only be in
case of matching second modulation signal. The second modulation process is similar to interference.
Our study describes the process of second modulation in the case of modulation indices mismatch
resulting from difference in the orientation of signal polarization at the fist and the second modulations
(in general effective indices of modulation depend on polarization); divergence of the orientation of
signal polarization is introduced by propagation through optical fiber (OF). It also should be noted
that since the construction of the experimental setups for discrete variable and continuous variable
SCW QKD systems are quite similar, except for the detection method. Proposed analysis is suitable for
both discrete and continuous types of variables (where the second modulation takes place).

The dielectric permittivity tensor in general is complex and anisotropic [21–24]. The real and
the imaginary parts of the tensor determine birefringence and dichroism in the OF respectively;
both phenomena also depend on the signal frequency. Changes in dielectric permittivity tensor of
the OF may be caused by inhomogenities and impurities in the structure of the fiber or by physical
impact on OF (bends and torsions) or by external impacts (temperature fluctuations, vibrations,
magnetic fields, etc.). The above-mentioned phenomena affect the polarization state of the signal.
Polarization mode dispersion and polarization dependent losses [25–30] in the OF are well studied,
analysis can be made in linear quantum [31,32], linear classical [33–35], and nonlinear regimes [36–38].
It should be noted that quantum approach may reveal new features or even predict new quantum
effects. However, the most important is its applicability in case of non-classical light (single photons,
squeezed light, etc.). In this paper we use the approach that describes non-unitary dynamics of
arbitrary quantum states developed in [39]. This model is applied to the case of multimode phase
modulated weak coherent states in linear quantum regime; linearity requires the fact that states with
low intensity are used.

Lindblad master-equation is the most general type of equations that can describe
temporal evolution of an arbitrary quantum system that interacts with the environment.
Considered master-equation can be applied to any class of problems. The special case of Lindblad
master-equation in Markov-Born approximation [40] is the quantum Liouville equation; it it suitable
for further consideration in the paper description of quantum non-unitary evolution of quantum states
in OF channels. Physical properties of quantum states dynamics in OF can be easily connected with
their information properties by convenient representation of the Liouville equation.

This paper is organized as follows. Expression of quantum bit error rate is derived in Section 2;
effects of modulation indices mismatch is considered in the Section 2.1, polarization dynamics of
quantum signal propagated through optical fiber is considered in Section 2.2, Section 2.3 combines
results of previous ones. Numerical simulations and analysis of the dependencies are presented in
Section 3. The discussion and recommendations presented in Section 4 conclude the paper.

2. Materials and Methods

2.1. Effects of Modulation Indices Mismatch

As it was stated earlier, this section will be based on the main approaches developed in [7,20].
It should be noted that we investigate an idealized model of phase modulation. In this model we
disregard single photon detector dark counts, synchronization, and filtration systems imperfections.
Thus, we simplify the model and hence we explicitly consider the influence of only optical fiber
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characteristics on the developed quantum bit error rate (QBER); it is obvious that additional
imperfections introduce higher error rates.

Electro-optical phase modulator reallocates the energy between the interacting modes in such a
way that a multimode state after the modulator can be expressed as

|ψ (φA)〉 =
S⊗

j=−S

∣∣αj
〉

j =
S⊗

j=−S

∣∣∣α0dS
0j(M)e−iφA j

〉
j

(1)

where φA is the phase of radio-frequency modulating signal, αj is the amplitude of a coherent state
at each mode after modulation, α0 is the initial amplitude of single-mode coherent state that enters
modulator, dS

0j is the Wigner d-function commonly used throughout quantum angular momentum
theory. Its argument is dependent on modulation index m as follows (approximately, taking into
account large S):

M =
m
S

(2)

After the signal is transmitted through the fiber and then modulated for the second time the
multimode state has the form:

|ψB (φA, φB)〉 =
S⊗

j=−S

∣∣∣∣√η(L)α0e−i(θ0+θ1 j)dS
0j
(

M′
)〉

j
(3)

where η(L) is optical system transmission coefficient dependent on the length of optical fiber, θ0 is
phase obtained by transmission, θ1 is common phase, introduced by modulator (later on we disregard
this phase). A new d-function argument is defined by the following relation considering the perfect
case [41]:

cos
(

M′
)
= cos2(M)− sin2(M) cos (φA − φB) (4)

If φA − φB = 0 then the d-function argument is doubled M′ = 2M. Meanwhile if φA − φB = π

then the d-function argument turns zero M′ = 0. This case of dS
0j(0) = δ0j corresponds to total energy

allocation back to central mode leaving vacuum states on the side bands. It looks like some kind of
interference. In general the expression stated above can be rewritten as follows:

cos
(

M′
)
= cos(M) cos(Mσ)− sin(M) sin(Mσ) cos (φA − φB) (5)

where σ corresponds to the mismatch coefficient of d-function arguments and hence of modulation
indices (due to their proportionality).

As it can be seen from the above, the signal’s mean photon number that is incident on the single
photon detector for the time ∆T can be obtained as a sum of mean photon number of each spectral
component. We want to acknowledge that spectral filtration is needed in order to select the signal of
interest on the side bands (central frequency does not contain any phase information). Thus, the optical
power of signal is proportional to the following expression:

nph (φA, φB) = ∑
j 6=0

∣∣∣∣√η(L)α0e−iθ0 jdS
0j
(

M′
)∣∣∣∣2 = µ0η(L)

(
1−

∣∣∣dS
00
(

M′
)∣∣∣2) (6)

And now let us investigate the expressions stated earlier with regard to several approximations.
Firstly, standard fiber elecro-optical modulators are used for the SCW QKD; so the following
approximations are valid in the limit S → ∞ and (from Equation (2)) M → 0. Consequently,
the following approximations may be introduced:

cos (M′) ≈ 1− (M′)2

2

cos(M) cos(Mσ) ≈ 1−
(
1 + σ2) (M)2

2
sin(M) sin(Mσ) ≈ σM2

(7)
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Therefore, the Equation (4) is altered as:(
M′
)2

= M2
(

1 + 2σ cos (φA − φB) + σ2
)

(8)

Since M
m = M′

m′ (from Equation (2)) the above equation can also be written as follows:(
m′
)2

= m2
(

1 + 2σ cos (φA − φB) + σ2
)

(9)

Secondly, for the SCW QKD the approximation of a small modulation index, i.e., m < 1 is valid.
Then the mean photon number can be estimated as:

µ = µ0η

(
1−

∣∣∣dS
00
(

M′
)∣∣∣2) ≈ µ0

(
1− J2

0 (m)
)
≈ µ0m2

2
(10)

As a consequence we express the optical power dependent on the difference between phases and
amplitudes of modulation radio signals (defining mismatch of modulation indices) as follows:

Pdet (φA, φB) = µη(L)
(

1 + 2σ cos (φA − φB) + σ2
)

(11)

2.2. Analysis of the Polarization Dynamics

We would like to investigate the Liouville equation as in [39] that describes non-unitary dynamics
of quantum state ρ̂0 with regard to chosen polarization basis (H, V):{

∂ρ̂(t)
∂t = −i[Ĥ, ρ̂(t)] + Γ̂ρ̂(t)

ρ̂(t)|t=0 = ρ̂0
(12)

where Hamiltonian is as follows:
Ĥ = ∑

i∈H,V
ωi

(
â†

i âi +
1
2

)
(13)

where ωi is the optical signal frequency (with respect to basis), âi (â†
i ) is the annihilation (creation)

operator of a polarization mode. The relaxation superoperator that describes the thermalization process
acting on the state’s density operator is as follows:

Γ̂ρ̂ = ∑
i∈H,V

−γi
2

(
(nT + 1)

(
â†

i âi ρ̂ + ρ̂â†
i âi − 2âi ρ̂â†

i

)
+ nT

(
âi â†

i ρ̂ + ρ̂âi â†
i − 2â†

i ρ̂âi

))
(14)

where γi is the thermalization rate (with respect to basis), nT is the mean number of thermal photons,
which equals

nT =
1

e
h̄ω
kT − 1

(15)

where h̄ is reduced Planck’s constant, k is Boltzmann’s constant, T is environmental temperature
(here we assume that both polarization modes have almost the same value of nT since it is small,
e.g., nT ≈ 10−13 for 1.55 µm and 300 K).

We introduce the Stokes parameters in order to estimate the degree of polarization of a weak
coherent state (considering a single mode) after being transmitted through optical fiber. The Stokes
parameters can be expressed as mean values of the following operators [42]:

Ŝ0 = â†
H âH + â†

V âV
Ŝ1 = â†

H âH − â†
V âV

Ŝ2 = â†
H âV + â†

V âH
Ŝ3 = −i

(
â†

H âV − â†
V âH

) (16)

Then we may act by any of the stated above operators on the Equation (12) and apply the
trace operation:
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Tr(Ŝ
∂ρ̂(t)

∂t
) = −i Tr(Ŝ[Ĥ, ρ̂(t)]) + Tr(ŜΓ̂ρ̂(t)) (17)

Thus, after some algebraic actions, we obtain a system of equations describing the dynamics of
the Stokes parameters (here we assume that the bandwidth of the signal spectrum is rather narrow,
comparable to several GHz, and, as a consequence, optical fiber characteristics are almost equal to its
different frequency components):

∂S0
∂t = − (γH+γV)

2 S0 − (γH−γV)
2 S1 + nT (γH + γV)

∂S1
∂t = − (γH−γV)

2 S0 − (γH+γV)
2 S1 + nT (γH − γV)

∂S2
∂t = − (γH+γV)

2 S2 − (ωH−ωV)
2 S3

∂S3
∂t = (ωH−ωV)

2 S2 − (γH+γV)
2 S3

(18)

2.3. QBER Model

It should be noted that the choice of polarization basis (H, V) is determined in such a way that one
of the basis vectors is parallel to the OF dichroism axis (i.e., making relaxation superoperator diagonal).
However, modulators may be aligned in the other basis (H′, V′), we assume both of them are aligned
by the H′ direction. Then initial Jones vector of the state at the entrance to the first modulator is in the
basis (H′, V′) and takes the form (

αH′ = 1
αV′ = 0

)
(19)

We can establish the relation between two vectors:(
αH
αV

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
αH′ = 1
αV′ = 0

)
=

(
cos(θ)
sin(θ)

)
(20)

where θ is the angle between (H
′
, V
′
) and (H, V) bases.

The system of dynamic equations introduced in the previous section takes into account various
physical phenomena. It is also necessary to determine the amount of optical power corresponding to
each polarization mode. We want to acknowledge that the term (ωH−ωV)

2 stands for birefringence of
OF. This parameter in general depends not only on physical characteristics of OF, but also on stress
caused by curls, bends, torsions, etc. Thus, this parameter may vary significantly. In order to take this
fact into account we assume that the system may contain a set of wave plates before the receiver’s
block to balance out and hence disregard the birefringence. We can express assumptions stated above
simply as (ωH−ωV)

2 = 0 and S3(0) = S3(t) = 0. Hence, there is a two-dimensional solution in the
(S1, S2) plain. Then optical power corresponding to each polarization mode can be defined as

PH =
(S0 + S1)

2
, PV =

(S0 − S1)

2
(21)

We substitute the terms defined in (21) into the system (18) to find the solution:

PH(t, µ) = PH(0, µ)e−γH t + nT
2
(
1− e−γH t)

PV(t, µ) = PV(0, µ)e−γV t + nT
2
(
1− e−γV t) (22)

with
PH(0, µ) = µ |αH |2 , PV(0, µ) = µ |αV |2 (23)

where µ is the mean photon number of the sidebands, αH and αV are Jones vector components in the
corresponding basis. It should be taken into account that expressions in the Equation (22) have the
form of power, not amplitude, while performing the reverse bases transform:
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PH′(t, µ) = PH(t, µ) cos2(θ) + PV(t, µ) sin2(θ) +
√

PH(t, µ)PV(t, µ) sin(2θ)

PV′(t, µ) = PV(t, µ) cos2(θ) + PH(t, µ) sin2(θ)−
√

PH(t, µ)PV(t, µ) sin(2θ)
(24)

Here we define the following domain 0 ≤ θ ≤ π
2 . Initial state is aligned by H′ then it is modulated

by mH′ . However, due to propagation there might be non-zero PV′(t, µ) component that should be
modulated second time with different modulation index mV′ (that depends on signal polarization).
Thus we introduce σ =

mV′
mH′

. The second modulation leads to the increase or reduction in mean
photon number depending on modulation signal phase difference as well as on the modulation
indices difference, according to the Equation (11). There are four possible cases (it is implied that the
equipment possesses no imperfections, in order for us to estimate the contribution from polarization
divergence only):

1. Polarization of signal coincides with orientation of effective modulation, phase difference equals
zero: µ→ 4µ,

2. Polarization of signal coincides with orientation of effective modulation, phase difference equals
π: µ→ 0,

3. Polarization of signal does not coincide with orientation of effective modulation, phase difference
equals zero: µ→ µ(1 + σ)2,

4. Polarization of signal does not coincide with orientation of effective modulation, phase difference
equals π: µ→ µ(1− σ)2.

It is important to comment on the modulation of thermal light that appears in the fiber. We assume
that there is no thermal light at the first modulation (t ≈ 0). Thus, the second modulation only
reallocates the energy of the thermal photons as if it is only the first modulation. In other words,
the second modulation does not affect the mean value of thermal light photons in the spectrum.

Taking into account all the previous reasoning, one may derive a final expression for QBER (that is
the ratio of undesirable detection events when the phase difference equals π to the total amount of
detection events; detection events rates are proportional to optical power of the signal in Mandel linear
approximation [21], that can be applied taking into account µ < 1 and additioanl losses):

Q(t) =
PH′(t, 0) + PV′

(
t, µ(1− σ)2)

PH′(t, 0) + PV′ (t, µ(1− σ)2) + PH′(t, 4µ) + PV′ (t, µ(1 + σ)2)
(25)

We also want to explicitly show the relation between time-dependent losses and
OF-length-dependent losses:

e−
(γH+γV)t

2 = 10
αL
10 (26)

where α is specific loss coefficient (dB/km), L = ct
β is the distance that optical signal passes in the OF,

c is the speed of light, β is propagation constant. We want to define relative loss difference for two
polarization modes for the purpose of accurate OF dichroism description:

∆ =
γH − γV

γH
(27)

Then we get:
γH = −2αc

β(2−∆)10 ln(10)
γV = γH (1− ∆)

(28)

3. Results

We want to examine Equation (25) for the typical values of the single mode OF characteristics.
We choose the standard telecommunication OF suitable for transmission of a signal with wavelength
1550 nm (like SMF-28). Then α = −0.2 dB/km, c = 3 · 105 km/s, β = 1.5. We do not assume ∆
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as it will be considered as a further parameter (this parameter can be determined with standard
polarimetric measurements). According to Equation (28) for these parameters we get γH = 1829 Hz.
For temperature of 300 K and wavelength 1550 nm we estimate nT = 10−13. Parameter θ can be
determined with standard polarimetric measurements based on the system’s construction. Thus, it is
not a typical parameter and its value may be arbitrary. Parameter σ is determined with standard
polarimetric measurements as well for a particular electro-optical modulator or is defined in a technical
passport. We acknowledge that the value of this parameter may vary significantly as it is dependent
on the type of nonlinear crystal used in particular modulator and modulator design in general. As a
result, for some modulators the value of the modulation indices ratio may be close to one, for others
close to zero.

Equation (25) seems to be a bit complicated for direct analysis. Thus, we would like to introduce
approximated expression (second order of t) for Equation (25) as follows:

Qapp(t) =
t2

64µ2(1− σ)2

(
γH (1− ∆) nT cot (θ) + µγH∆(1− σ)2 sin(2θ) + γHnT tan (θ)

)
(29)

This approximation works well (relative divergence is less than few percents) up to around 150 km
(recalculating propagation time into length of the OF by L = ct

β ). We estimate the maximal contribution
to the QBER at 150 km by choosing appropriate θ that maximizes the value for different ∆. The obtained
dependence is shown in Figure 1. Contribution of dichroism was found to be weak; even for extreme
values of ∆ it is no more than 3%. Typical values of ∆ are about ±0.1 then the maximal expected
contribution will be no greater than tenth percents. Despite that in case of fine tuning of the system
(e.g., 1–1.5% QBER) even the small contribution is worth being concerned. Obviously in general the
contribution of imperfect devices will be more tangible. Imperfect spectral filtration provides constant
contribution to the QBER and detector’s dark count become crucial at high distances. Typical tolerable
QBER for SCW QKD systems is about 5–7%. The upper bound for QBER is in general defined by
hardware and software characteristics, hence it may vary.

Figure 1. Dependence of approximate maximal value of quantum bit error rate (QBER) on ∆ that
characterized dichroism at 150 km OF length for several values of σ. For even smaller values of σ

dependence does not sufficiently increase QBER contribution. Typical values of ∆ are about ±0.1 so we
may conclude that the considered effect is weak.
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4. Discussion

Based on the quantum theory of electro-optical modulator and the quantim theory of open
systems we developed a model that describes the influence of polarization divergence of a signal
propagating through an OF on QBER for SCW QKD.

It was shown that the polarization divergence can be viewed as two separate effects. The first one
is due to birefringence and it can be compensated for by waveplates. However, there is also a second
dichroism-related effect that cannot be compensated for in any way. It was explicitly demonstrated that
QBER is dependent on ∆ that indicates dichroism. Fortunately, analysis reveals that dichroism-related
contribution for QBER is rather weak. It should be stated that the development of this model was
motivated mostly by the necessity of minimizing QBER for the purpose of the increase of the efficiency
of SCW QKD protocol performance. Even a few percent of the considered contribution to QBER is
worthy of concern.

The simplest way of minimizing QBER resulting from polarization divergence is the utilization
of electro-optical modulators whose modulation efficiency is not dependent on polarization of the
optical signal. In addition, there is still birefringence that should be taken into account. Thus, it is
necessary to compensate for this negative effect. It can be performed with the help of active [43] or
passive [8] additional subsystems of compensation of polarization distortion. However, the additional
optical parts of the scheme provide higher losses at the receivers (Bob) block and hence decrease the
performance of the system.

All things considered, the above work may be summarized by the fairly simple conclusion that
utilization of polarization-independent schemes is necessary for the maintenance of sustainable SCW
QKD system operation. Based on the results of our study, the authors may recommend utilizing
electro-optical phase modulators whose modulation efficiency is not dependent on polarization of
the modulated optical signal or additional subsystems of compensation of polarization distortion;
however, the former is slightly preferable.
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24. Agranovič, V.M.; Ginzburg, V.L. Kristallooptika s Učetom Prostranstvennoj Dispersii i Teorija Eksitonov; Nauka:

Moscow, Russia, 1965.
25. Gisin, N.; Huttner, B. Combined effects of polarization mode dispersion and polarization dependent losses

in optical fibers. Opt. Commun. 1997, 142, 119–125. [CrossRef]

http://dx.doi.org/10.1103/PhysRevX.9.021046
http://dx.doi.org/10.1038/s41566-019-0377-7
http://dx.doi.org/10.1364/OE.26.011292
http://www.ncbi.nlm.nih.gov/pubmed/29716053
http://dx.doi.org/10.1364/OE.24.002619
http://www.ncbi.nlm.nih.gov/pubmed/26906834
http://dx.doi.org/10.1364/OE.27.036551
http://www.ncbi.nlm.nih.gov/pubmed/31873431
http://dx.doi.org/10.1007/BF00191318
http://dx.doi.org/10.1103/PhysRevLett.68.3121
http://www.ncbi.nlm.nih.gov/pubmed/10045619
http://dx.doi.org/10.1103/PhysRevLett.82.1656
http://dx.doi.org/10.1103/PhysRevA.60.1899
http://dx.doi.org/10.1364/OE.20.016358
http://dx.doi.org/10.1109/LPT.2005.851050
http://dx.doi.org/10.1364/JOT.84.000362
http://dx.doi.org/10.1038/s41598-020-66948-0
http://dx.doi.org/10.1364/JOSAB.34.001177
http://dx.doi.org/10.1016/S0030-4018(97)00236-8


Entropy 2020, 22, 1393 10 of 10

26. Dong, H.; Shum, P.; Yan, M.; Zhou, J.; Ning, G.; Gong, Y.; Wu, C. Measurement of Mueller matrix for
an optical fiber system with birefringence and polarization-dependent loss or gain. Opt. Commun. 2007,
274, 116–123. [CrossRef]

27. Palmieri, L. Polarization properties of spun single-mode fibers. J. Light. Technol. 2006, 24, 4075–4088.
[CrossRef]

28. Rashleigh, S.; Ulrich, R. Polarization mode dispersion in single-mode fibers. Opt. Lett. 1978, 3, 60–62.
[CrossRef] [PubMed]

29. Poole, C.D.; Winters, J.H.; Nagel, J.A. Dynamical equation for polarization dispersion. Opt. Lett. 1991,
16, 372–374. [CrossRef] [PubMed]

30. Nolan, D.A.; Chen, X.; Li, M.J. Fibers with low polarization-mode dispersion. J. Light. Technol. 2004,
22, 1066–1077. [CrossRef]

31. Kozubov, A.; Gaidash, A.; Miroshnichenko, G. Quantum model of decoherence in the polarization domain
for the fiber channel. Phys. Rev. A 2019, 99, 053842. [CrossRef]

32. Rivas, Á.; Luis, A. SU (2)-invariant depolarization of quantum states of light. Phys. Rev. A 2013, 88, 052120.
[CrossRef]

33. Lee, J.S. Analysis of the polarization-mode-dispersion vector distribution for linearly birefringent optical
fibers. IEEE Photonics Technol. Lett. 2007, 19, 972–974.
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