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Abstract: As training Deep Neural Networks (DNNs) becomes more expensive, the interest in
protecting the ownership of the models with watermarking techniques increases. Uchida et al.
proposed a digital watermarking algorithm that embeds the secret message into the model coefficients.
However, despite its appeal, in this paper, we show that its efficacy can be compromised by the
optimization algorithm being used. In particular, we found through a theoretical analysis that, as
opposed to Stochastic Gradient Descent (SGD), the update direction given by Adam optimization
strongly depends on the sign of a combination of columns of the projection matrix used for
watermarking. Consequently, as observed in the empirical results, this makes the coefficients move
in unison giving rise to heavily spiked weight distributions that can be easily detected by adversaries.
As a way to solve this problem, we propose a new method called Block-Orthonormal Projections
(BOP) that allows one to combine watermarking with Adam optimization with a minor impact on
the detectability of the watermark and an increased robustness.

Keywords: watermarking; deep neural networks; optimization algorithms; Adam; stochastic gradient
descent; detectability

1. Introduction

Deep learning has substantially impacted technology over the last years, becoming an important
center of attention for researchers all over the world. Such a great impact stems from the versatility it
offers as well as the excellent results that DNNs achieve on multiple tasks, like image classification or
speech recognition, which often reach and even surpass human-level performance [1,2].

However, far from being a simple task, the design of new DNNs is generally expensive not only
in terms of human effort and time needed to build effective model architectures but mostly because
of the large volume of suitable data that must be gathered and the vast amount of computational
resources and power used for training. Consequently, businesses owning costly models are interested
in protecting them from any illicit use, and this growing need has recently led researchers to a common
concern on how to embed watermarks on DNNs. As a result, several frameworks for protecting
the intellectual property of neural networks were proposed in the literature, and can be classified
as black-box or white-box approaches. The first kind of methods (i.e., black-box) do not need to
access model parameters for detecting the presence of watermarks. Instead, key inputs are introduced
as special triggers to identify the original network, either by the use of the so-called adversarial
examples [3] or backdoor poisoning [4].

White-box approaches, in contrast, directly affect the model parameters in order to embed
watermarks. One of the most significant white-box contributions was proposed by Uchida et al. in [5,6],
the algorithm under study in this paper. This watermarking framework employs a regularization term
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that defines a cost function for embedding the secret message. This regularizer, which transforms
weights into bits by means of a projection matrix in a similar way to spread–spectrum techniques used
in watermarking [7], is added to the main loss function and can be applied either at the beginning of
the training phase (i.e., from scratch) or during fine-tuning steps.

On the other hand, when training a DNN, there are several optimization algorithms to choose from.
With their pros and cons, some of the most popular are the classic Stochastic Gradient Descent (SGD) [8]
and Adaptive Moment Estimation (Adam) [9]. We found that, in order to perform watermarking
following the approach in [5,6], it is necessary to pay close attention to the optimization algorithm
being used. In this paper, we prove that Adam, although being an appealing algorithm for lots of
applications—especially because of its efficiency and training speed—poses a big problem when
implementing this watermarking method.

As any other watermarking algorithm, it is important to meet some minimal requirements
regarding fidelity, robustness, payload, efficiency, and undetectability [5,6,10]. This latter property
involves the need for concealing any clue that would let unauthorized parties know if a watermark
was embedded, along with its further consequences. In other words, from a steganographic point of
view, watermarks should be embedded into the DNN without leaving any detectable footprint.

We show that, unlike SGD, Adam significantly alters the distribution of the coefficients at the
embedding layer in a very specific way and, thus, it compromises the undetectability of the watermark.
In particular, when using Adam, the histogram of the weights at the embedding layer shows that these
coefficients tend to group together at both sides of zero, originating two visible spikes that grow in
magnitude with the number of iterations, so that the initial distribution ends up changing completely.
As we will see later, the update direction given by Adam depends on the projection matrix used for
watermarking; specifically, it is based on the sign function, responsible for the symmetric two-spiked
shape that emerges. This behavior is somewhat surprising, as with a pseudorandom projection matrix,
one might expect that the weights evolve with random speeds; in contrast, the weights tend to move
in unison in a way that is reminiscent of ants after they have established a solid path from the nest
to a food source. Then, the statistical dependence of the weights with the projection matrix is weak,
and this is mainly due to the information collapse induced by the sign function; this loss is invested in
making the weights more conspicuous and, therefore, the watermark more easily detectable. As we
will confirm, the sign phenomenon does not occur in other algorithms like SGD. The appearance of the
sign was already pointed out and studied—without considering watermarking applications—by the
authors in [11], who explained the adverse effects of Adam on generalization [12] as a consequence of
this aspect. However, instead of delving into the general performance of the optimization algorithm
itself, we show that the sign function which is involved in Adam’s update direction is detrimental
for watermarking purposes, so we highlight the need for being careful with the selection of the
optimization algorithm in these cases.

In this paper, we carry out a theoretical and experimental analysis and compare the results
using Adam and SGD optimization. The analysis can be extended to other optimization algorithms.
As a way to measure the similarity between the original weight distribution and the resulting one
after the watermark embedding, we will use the Kullback–Leibler divergence (KLD) [13]. We will
show that, as expected, when we use Adam, the KLD between both distributions is considerably
larger than when we use SGD, thus confirming that, as opposed to SGD, Adam modifies the original
distribution to a great extent. Furthermore, in order to perform this kind of watermarking and, at the
same time, enjoy the advantages that Adam optimization provides, we propose a new method called
Block-Orthonormal Projections (BOP), which uses a secret transformation matrix in order to reduce
the detectability of the watermark generated by Adam. As we will see, BOP allows us to considerably
reduce the KLD to small values which are comparable to those obtained with SGD. Therefore, we show
that BOP allows us to preserve the original shape of the weight distribution.

In summary, this work makes the following two-fold contribution:
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• We provide mathematical and experimental evidence for SGD and Adam to show that: (1) in
contrast to SGD, the changes in the distribution of weights caused by Adam can be easily detected
when embedding watermarks following the approach in [5,6] and, hence, (2) the use of Adam
considerably increases the detectability of the watermark. For the purpose of carrying out this
analysis, we use FFDNet [14]—a DNN that performs image denoising tasks—as the host network.

• We introduce a novel method based on orthogonal projections to solve the detectability problem
that arises when watermarking a DNN which is being optimized with Adam. A side effect of this
novel method is an increased robustness against weight pruning.

The remainder of this paper is organized as follows: Section 1 introduces the notation and Section 2
explains the frameworks and algorithms used in this study—host network, optimization algorithms,
and watermarking method—in more detail. Section 3 presents the mathematical core that allows us to
model the observed effects on the histograms of weights once the embedding process has finished.
Then, in Section 4, we introduce BOP as a solution for using Adam and watermarking simultaneously,
Section 5 presents the information-theoretic measures that we will implement, and Section 6 shows the
experimental results. Finally, we point out some concluding remarks in Section 7. Two appendices give
additional details on mathematical derivations (Appendix A) and the validity of certain assumptions
(Appendix B).

Notation

In this paper, we use the following notation. Matrices and vectors are denoted by upper-case
and lower-case boldface characters, respectively, while random variables and their realizations are
respectively represented by upper-case and lower-case characters.

For matrix and vector operations, we proceed as follows. As an example, let A be a matrix.
Then, its transpose is denoted by AT . Moreover, we use Tr[A] to represent the trace of A and (A)i,j to
denote the (i, j)th element of A. IN refers to the N × N identity matrix. We use column vectors unless
otherwise stated. In addition, we use 0 to denote a column vector of zeros and 1 for a column vector
of ones. Let w be a column vector of length N; then, ∇w is the gradient operator with respect to w
that is:

∇w
.
=

(
∂

∂w1
, · · · ,

∂

∂wN

)T

We use the operator ◦ to denote the Hadamard (i.e., sample-wise) product and⊗ for the Kronecker
product. Finally, E{·} and Var{·} denote the mathematical expectation and the variance, respectively.

2. Preliminaries

2.1. Host Network: FFDNet

The rapid development of Deep Learning over the last few years has led to new advances in the
field of image restoration [15]. Several Convolutional Neural Networks (CNNs) have been designed
to replace classical methods and, often, they offer new competitive advantages. This is the case of
FFDNet [14], which performs image denoising tasks and is used in our work as the exemplary host
network that is watermarked by means of the algorithm proposed in [5,6].

Image denoising is the task of removing noise from a given image. Let y be the input noisy
image, x the clean image, and n the noise, which is usually modeled as zero-mean Additive White
Gaussian Noise (AWGN), then we have y = x + n and we wish to obtain an estimate x̂ of the clean
image. As opposed to other CNNs for image denoising, FFDNet works on downsampled sub-images,
and it is able to adapt to several noise levels using only a single network. For that purpose, a noise
level map M is included also as an input, so that the function FFDNet aims to learn can be expressed
as: x̂ = F (y, M; w), where w represents the parameters of the network. Furthermore, FFDNet can
handle spatially variant noise and offers competitive inference speed without sacrificing denoising
performance [14].
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Figure 1 shows the architecture of FFDNet. As we can see, it is composed of a downscaling operation
on the input images, a nonlinear mapping consisting of Convolutional Layers, Batch Normalization
steps [16], and ReLU activation functions; and, finally, an upscaling process to generate denoised images
with the original size. Let {(yi, xi)} be L noisy-clean image pairs from the training dataset, the denoising
cost function is:

f0(w) =
1

2L

L

∑
i=1
||F (yi, Mi; w)− xi||2 (1)

Figure 1. Architecture of the host network FFDNet.

FFDNet can be used for grayscale or color images. Table 1 shows the main differences between
both configurations. As we can see, the total number of convolutional layers can be set to 15 or 12 for
grayscale or RGB denoising, respectively. The number of feature maps and the size of the receptive
field also differ, but this is not the case of the kernel size, which is kept to 3× 3 for either grayscale
or RGB. In this paper, we implement the RGB version of FFDNet and proceed as follows: (1) train
FFDNet from scratch using Adam optimization without embedding any watermark and (2) fine-tune
the network to embed the desired watermark, using both Adam and SGD to compare the results.

Table 1. FFDNet configurations for grayscale and RGB image denoising.

Grayscale RGB

Conv layers 15 12
Feature maps per layer 64 96

Receptive field 62× 62 50× 50

2.2. Optimization Algorithms

The training of a DNN is an iterative process that makes it possible for the model to learn
how to perform a given task. This is certainly the most challenging optimization problem when
implementing deep learning models from scratch. In order to increase the efficiency of the training
process, researchers have developed several optimization techniques in the last years, each of them
with its own advantages and drawbacks [17].

An optimization algorithm determines the weight update rule that must be applied at every
iteration. The goal is usually to minimize a cost function—also known as loss function—which
generally compares predictions with expected values and computes an error metric that evaluates the
performance of the network. The learning rate µ—or step size—is the hyperparameter that controls
how much the weights can change after each iteration of the optimization algorithm.

In the following sections, we briefly review the mechanics of two widely known optimization
algorithms: SGD and Adam.

2.2.1. SGD Optimization

SGD [8] is a classic optimization algorithm based on gradient descent and one of the most used.
However, unlike standard gradient descent techniques that use all the training samples to compute the
gradient of the cost function, SGD uses a small number of samples from the dataset—a minibatch—and
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then takes the average over these samples to get an estimate of the gradient, ∇w f (w). Then, the update
rule is given by:

w(k) = w(k−1) − µ∇w f (w(k−1)), k ≥ 1 (2)

where w(k) is the weight vector at iteration k and w(0) is its initial value.

2.2.2. Adam Optimization

Adam [9] is a popular optimization algorithm that combines the ideas of AdaGrad [18] and
RMSProp [19]. Some of the advantages of Adam include, among others, the fact of being easy to
implement and computationally efficient, as well as being fast and suitable for complex settings with
noisy and sparse gradients.

Just like SGD, Adam estimates the gradient from the samples of a minibatch, but, as opposed to
SGD, it uses estimates of the first and second moments of the gradients to compute individual adaptive
learning rates for each parameter in the network. In order to do that, exponential moving averages of
the gradient and the squared gradient are calculated using two hyperparameters to control the decay
rate, β1 and β2, respectively. Let m(0) = 0 and v(0) = 0 be the initial values for the first and second
moment vectors, respectively, then the steps of this algorithm at the kth iteration are the following [9]:

ĝ(k) = ∇w f (w(k−1)) (3)

m(k) = β1m(k−1) + (1− β1)ĝ(k) (4)

v(k) = β2v(k−1) + (1− β2)(ĝ(k) ◦ ĝ(k)) (5)

m̂(k) =
m(k)

(1− βk
1)

(6)

v̂(k) =
v(k)

(1− βk
2)

(7)

w(k)
j = w(k−1)

j − µ
m̂(k)

j√
v̂(k)j + ε

, j = 1, · · · , N. (8)

where w(k)
j , m̂(k)

j , v̂(k)j are the jth element of w(k), m̂(k), v̂(k), respectively, f (w) is the cost function and
ε is a very small number that avoids diving by zero. The default set-up for the hyperparameters is [9]:
β1 = 0.9, β2 = 0.999 and ε = 1 · 10−8.

2.3. Digital Watermarking Algorithm

In this paper, we analyze the digital watermarking algorithm proposed in [5,6]. As we mentioned
previously, we employ the fine-tune-to-embed approach; therefore, the embedding function is applied
only during some additional epochs after convergence is achieved for the original task—in this case,
image denoising—.

2.3.1. Embedding Elements

We wish to embed a T-bit sequence, b ∈ {0, 1}T , into a certain layer l of the host DNN. For this
specific layer, let (S, S), I and F represent the size of the convolution filter, the depth of input to the
convolutional layer and the number of filters in that layer, respectively. Then, the weights can be
represented by a tensor Wl with dimensions S× S× I × F and then rearranged to form a vector wl of
length N = S2 IF.

One important point here is that, instead of directly using the weight vector wl , the authors
in [5,6] suggest including an initial transformation of these coefficients. In order to reflect this, we must
calculate the mean of Wl over the F kernels. As a result, we obtain a new flattened vector ŵl with M
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elements, where M = S2 I. This transformation can also be formulated if we introduce a new matrix Θ

of size N ×M:
Θ

.
= IM ⊗ h

so that ŵl = ΘTwl . Here, h is a column vector of length F with all of its elements set to 1/F,
i.e., hTh = 1/F.

In order to move to the T-dimensional space, the authors in [5,6] introduce a secret projection
matrix Φ. The size of this projection matrix—also referred to as regularizer parameter in [5,6]—is M× T
so that each column corresponds to a particular projection vector φ(i), i = 1, · · · , T.

For the purpose of the subsequent theoretical analysis, we pair up matrices Φ and Θ and, therefore,
we ascribe the initial transformation to the projection matrix, preserving the notation with the original
weight vector wl . To that end, we define a new N × T projection matrix:

Φ̂ = ΘΦ (9)

so that now the projection vectors can be expressed as φ̂
(i)

= Θφ(i).

2.3.2. Embedding Process

Now that we have introduced the basic elements, the embedding procedure can be described as
follows [5,6]. Let w be a vector containing all the parameters of the network, then the watermarking
regularizer, fwatermark(wl), is added to the global cost function f (w):

f (w) = f0(w) + λ fwatermark(wl)

where f0(w) is the original cost function and λ is the regularization parameter. The regularizer term is
a composition of two functions: cross-entropy and the sigmoid,

fwatermark(wl)
.
= −

T

∑
i=1

(bi log(yi) + (1− bi) log(1− yi)) (10)

with yi = 1/
(

1 + exp(−(φ̂(i)
)Twl)

)
. In order to minimize (10), yi will approximate to the value of

bi. Therefore, the sigmoid function will force each projection (φ̂
(i)
)Twl , i = 1, · · · , T, to progressively

move towards +∞ and −∞ depending on whether bi = 1 or bi = 0, respectively. For successfully
embedding the secret message, it is generally enough to guarantee that each projection lies on the
proper side of the horizontal axis. When this happens, we reach a Bit Error Rate (BER) of 0 and all the
projected weights are aligned with their corresponding bits, that is, they are positive when the bit is
1 and, conversely, negative when the bit is 0.

2.3.3. Detectability Issues

In this paper, we employ the Random technique proposed by the authors, in which the values of
the projection matrix Φ—before applying the transformation in (9)—are independent samples from a
standard normal distribution N (0, 1). Their results [5,6] show that this Random approach is the most
appealing design method for Φ because, as they indicate, it does not significantly alter the distribution
of weights at the embedding layer. However, there are some detectability issues here that should
be considered.

On the one hand, the authors in [20] show that the standard deviation of the distribution of
weights grows with the length of the embedded message. This information can be used by adversaries
for detecting the watermark and even overwriting it.

On the other hand, one of the main conclusions of our work is that the presence or absence of
alterations to the shape of the weight distributions is a consequence of the optimization algorithm used
during the watermark embedding. In particular, the authors in [5,6] employ SGD with momentum in
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their experiments and the distributions of weights remain unchanged, yet the use of Adam would
significantly alter the shape of the distributions even though we apply the same Random technique.
In this paper, we will show that the results in [5,6] regarding the undetectability of the watermark do
not hold when we use Adam optimization.

As an example to visualize this peculiar behavior shown by Adam when we employ the
watermarking algorithm proposed in [5,6], we plot in Figure 2 the resulting histograms when T = 256
and λ = 1; specifically, the histograms of the weights before and after the embedding (corresponding
to k = 32,140) and the histogram of the weight variations, respectively. As we can see, the distribution
of the original weights has significantly changed, turning into a two-spiked shape that could be easily
detected by an adversary. The complete set of histograms will be later shown in Section 6.

(a) (b) (c)

Figure 2. Histograms from the embedding layer l = 2 (T = 256, λ = 1 and k = 32,140). (a) histogram of
w(0); (b) histogram of w(k); (c) histogram of ∆w = w(k) −w(0).

2.3.4. Gaussian and Orthogonal Projection Vectors

In addition to the Random technique suggested by the authors of this watermarking
algorithm—whose projection vectors will be referred to as Gaussian projection vectors in this
paper—we will also implement orthonormal projectors. In order to build these kinds of projectors,
we first generate the projection matrix following the Random technique; that is, samples are drawn
from a standard normal distribution N (0, 1). Then, from the Singular Value Decomposition of this
projection matrix, we obtain an orthonormal basis for the column space so that we have ΦTΦ = IT .
Notice that once we apply the initial transformation (i.e., Φ̂ = ΘΦ) the resulting projection vectors φ̂

(i),
i = 1, · · · , T, will still preserve the orthogonality between them, although they will not be normalized:

(Φ̂)TΦ̂ = (ΘΦ)TΘΦ = ΦTΘTΘΦ = ΦT(IM ⊗ hT)(IM ⊗ h)Φ =
1
F

ΦTΦ =
1
F

IT

Therefore, these kinds of projectors will be referred to as orthogonal. As we will see later from
KLD results and histograms, implementing orthogonal projectors may help us to better preserve both
the original shape of the weight distribution and the denoising performance.

3. Theoretical Analysis

From now on, we will omit the sub-index l for the sake of clarity although we are always
addressing the coefficients of the embedding layer. The experiments clearly illustrate that the use of
Adam optimization together with the watermarking algorithm proposed in [5,6] originates noticeable
changes in the distribution of weights, as we see in Figure 2. In the following analysis, we delve into
the reasons why this happens. To that end, we aim to get a theoretical expression of ∆w = w(k) −w(0).
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This will allow us to prove and understand the nature of the observed behavior of the weights when
watermark embedding is carried out. We start off by defining vector ϕ̂ and matrix Ψ̂:

ϕ̂
.
=

T

∑
i=1

φ̂
(i) (11)

Ψ̂
.
=

T

∑
i=1

φ̂
(i)
(φ̂

(i)
)T (12)

Notice that Ψ̂ = Ψ̂
T . In addition, for the case of orthogonal projectors, the following properties

can be straightforwardly proven:

Ψ̂ϕ̂ =
1
F

ϕ̂ (13)

Ψ̂Ψ̂ =
1
F

Ψ̂ (14)

These properties will come in handy later on in several theoretical derivations.
Firstly, in order to simplify the analysis and understand more clearly how the watermarking cost

function impacts on the movement of the weights when using both SGD and Adam optimization,
we will just consider the presence of the regularization term, that is, we will not include the
denoising cost function for now. The influence of the denoising part will be studied in Section 3.3.
Therefore, given our embedding cost function in (10) and assuming for simplicity (and without loss of
generality) that all embedded symbols are +1, we have:

f̃ (w)
.
= λ fwatermark(w|b = 1) = λ

T

∑
i=1

log(1 + exp(−(φ̂(i)
)Tw))

If we compute the gradient of this function, we obtain:

∇w f̃ (w) = −λ
T

∑
i=1

φ̂
(i) 1

1 + exp
(
(φ̂

(i)
)Tw

) (15)

In order to simplify the subsequent analysis, we introduce a series of assumptions which are
based on empirical observations or hypotheses that will be duly verified.

By construction, it is possible to show that the mean of (φ̂
(i)
)Tw(0) is zero and its variance

is (N/F2)Var{w(0)} for Gaussian projectors and (1/F)Var{w(0)} for orthogonal projectors (see
Appendix A.1). Since the variance of the weights at the initial iteration is generally very small—in
our experiments, it is 0.0012—it can be considered that the variance of (φ̂(i)

)Tw(0) will also be small
enough so that we can assume |(φ̂(i)

)Tw| � 1 for all i = 1, · · · , T. Although this assumption might not
be strictly true for all k—especially once we have crossed the linear region of the sigmoid function—it

is reasonably good and it allows us to use a first-order Taylor expansion for
(

1 + exp
(
(φ̂

(i)
)Tw

))−1

around (φ̂
(i)
)Tw = 0: (

1 + exp
(
(φ̂

(i)
)Tw

))−1
≈ 1

2
− (φ̂

(i)
)Tw

4
(16)

Plugging (16) into (15) and using the definitions given above, we can write:

∇w f̃ (w) ≈ −λ

2
ϕ̂+

λ

4
Ψ̂w (17)
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We introduce now one important hypothesis in this theoretical analysis to handle the previous
equation: we assume that w(k) grows approximately affinely with k:

w(k) ≈ w(0) + k · µ · η (18)

where η is a vector that contains the slopes for each weight, and it is to be determined in the following
sections. We hypothesize this affine-like growth for the weights and, later, we will verify that this
is consistent with the rest of the theory and the experiments (see Appendix B.1 for more details).
Therefore, we can write the weight variations as:

∆w = w(k) −w(0) ≈ k · µ · η (19)

3.1. Analysis for SGD

We first analyze the behavior of SGD optimization when we implement digital watermarking as
proposed in [5,6]. Recall the SGD update rule in (2). If we use the approximation for the gradient in
(17) and the affine growth hypothesis for the weights introduced in (18), we have:

∇w f̃ (w) ≈ −λ

2
ϕ̂+

λ

4
Ψ̂(w(0) + kµη) (20)

To simplify the analysis, we consider from now on that w(0) ≈ 0. We confirm the validity of this
assumption in Appendix B.2. Then, we can write:

η = −∇w f̃ (w) ≈ λ

2
ϕ̂− λkµ

4
Ψ̂η (21)

If we consider orthogonal projectors, we can arrive at a more explicit expression for η. In particular,
if we multiply (21) by Ψ̂ and use the properties (13) and (14), we obtain:

Ψ̂η =
2λ

4F− λkµ
ϕ̂ (22)

Then, substituting (22) into (21), we can get a more concise expression for η:

η ≈ λ

2

(
1− λkµ

4F− λkµ

)
ϕ̂ (23)

Thus, if F is large compared to λkµ—this certainly holds for our experimental set-up,
cf. Section 6.1—η will be approximately proportional to ϕ̂. Then, the coefficients will follow an
affine-like growth as we hypothesized in (18) (see Appendix B.1 for the empirical confirmation of this
hypothesis). Now, the weight variations can be expressed as:

∆w ≈ k · µ · η =
λkµ

2

(
1− λkµ

4F− λkµ

)
ϕ̂ (24)

As we can see, when we use SGD, ∆w will approximately follow a zero-mean Gaussian distribution,
as induced by [9]. Because of this, and unlike Adam (as we will see later), the weights will evolve with
random speeds when we embed watermarks using SGD optimization. Therefore, the impact on the
original shape of the weight distribution will be small. However, the variance of the weight distribution
may change considerably as stated in [20]. Since we have Var{ϕ̂} = T/(FN) for orthogonal projectors,
the variance of ∆w can be computed as:

Var{∆w} =
[

λkµ
(2F− λkµ)

(4F− λkµ)

]2 T
FN
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Thus, considering that w(0) and ∆w are uncorrelated—we check this statement in Section 6.2.2—we
arrive at the following expression for the variance of the weights at the kth iteration:

Var{w(k)} = Var{w(0)}+
[

λkµ
(2F− λkµ)

(4F− λkµ)

]2 T
FN

(25)

As we can see from (25), when implementing the digital watermarking algorithm in [5,6] with
SGD optimization and orthogonal projectors, the variance of the resulting weight distribution might
change considerably. In order to preserve the original weight distribution when using SGD, it is
important to take care with the values of T, F and N, especially. In addition, the standard deviation
of the weights will (approximately) increase linearly with the number of iterations so it may be also
important to limit the value of k. This is in line with the expected behavior: the weights will move
away from their original value and they will be further if we perform more iterations.

Because the analysis for Gaussian projectors becomes considerably difficult, in this paper, we just
address the study of SGD with orthogonal projectors. A more comprehensive analysis for Gaussian
projectors that can be linked to the results obtained in [20] is left for future research. Regardless of
this, the whole analysis for both kinds of projection vectors will be developed in the next section for
Adam optimization.

3.2. Analysis for Adam

In the next sections, we will delve into the theory behind Adam optimization for DNN
watermarking. In particular, we will obtain an expression for the mean and the variance of the
gradient and then, as we did with SGD, we will analyze the update term to get an expression of the
weight variations.

3.2.1. Mean of the Gradient

We are interested in computing the mean of the gradient that is used in Adam. Considering f̃ (w)

as the global cost function, then, from (4), we can rewrite the mean at the kth iteration as:

m(k) = (1− β1)
k

∑
i=1

βk−i
1 ∇w f̃ (w(i)) (26)

We use the gradient in (17) and do some derivations to find an explicit expression for
m̂(k) = m(k)/(1− βk

1) under the hypothesis in (18). Finally, we arrive at the following expression
for the bias-corrected mean gradient when k is sufficiently large (see Appendix A.2 for all the
mathematical details):

m̂(k) ≈ −λ

2
ϕ̂+

λ

4
· Ψ̂(w(0) + kµη)

=
λ

2
(m0 + µ · k ·m1), k� β1

1− β1
(27)

where m0
.
= −ϕ̂+ 1

2 Ψ̂w(0) and m1
.
= 1

2 Ψ̂η. As we see from (27), the mean of the gradient also grows
affinely with k.

3.2.2. Variance of the Gradient

Let g(w)
.
= ∇w f̃ (w) ◦∇w f̃ (w). The approximation in (17) for the jth element of this vector

g(w), denoted by gj(w), is the following:
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gj(w) ≈ λ2

4

T

∑
m=1

T

∑
l=1

φ̂
(m)
j φ̂

(l)
j

(
1− (φ̂

(m)
)Tw +

1
4
(φ̂

(m)
)TwwTφ̂

(l)
)

=
λ2

4

(
aj − bT

j w +
1
4

cT
j wwTcj

)
where:

aj
.
= ϕ̂2

j (28)

cj
.
=

T

∑
m=1

φ̂
(m)
j φ̂

(m) (29)

bj
.
= ϕ̂j · cj (30)

Following the hypothesis in (18), we can write:

gj(w(k)) ≈ λ2

4

(
aj − bT

j w(0) +
1
4

cT
j w(0)(w(0))Tcj − kµbT

j η+
1
2

kµcT
j w(0)ηTcj +

1
4

k2µ2cT
j ηηTcj

)
In summary, for this affine-like growth, the square gradient vector can be written as:

gj(w(k)) ≈ λ2

4
(pj + qjkµ + rjk2µ2) (31)

for some vectors p, q, r whose jth component can be defined as:

pj
.
= aj − bT

j w(0) +
1
4

cT
j w(0)(w(0))Tcj (32)

qj
.
= −bT

j η+
1
2

cT
j w(0)ηTcj

rj
.
=

1
4

cT
j ηηTcj (33)

Now, from (5), we can rewrite the variance of the gradient that is used in Adam as:

v(k)j = (1− β2)
k

∑
i=1

βk−i
2 gj(w(i)) (34)

The bias-corrected term v̂(k)j is obtained after dividing v(k)j by (1− βk
2). Applied to the special case

of (31), this yields (see Appendix A.3):

v̂(k)j =
λ2

4

(
pj −

β2

1− β2
µqj +

β2 + β2
2

(1− β2)2 µ2rj

)

+
λ2

4(1− βk
2)

k
(

µqj −
2β2

1− β2
µ2rj

)
+

λ2

4(1− βk
2)

k2µ2rj

3.2.3. Update Term

Because µ is usually very small—we use µ = 1 · 10−6 in our experiments—we can assume that kµ

will be small enough to obtain an approximation of the update used in Adam. Recall that, for the jth

weight, this is u(k)
j

.
= m̂(k)

j /
(√

v̂(k)j + ε

)
, implying that w(k)

j = w(k−1)
j − µu(k)

j . Let:

sj
.
=

(
pj −

β2

1− β2
µqj +

β2 + β2
2

(1− β2)2 µ2rj

)
(35)
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Then, assuming that µk� 1, we can make a zero-order approximation of the update term, i.e.,:

u(k)
j =

m̂(k)
j√

v̂(k)j + ε
≈

m0,j
√sj

, µk� 1 (36)

This approximation is accurate enough for the set of experiments we perform. In particular,
for the orthogonal case, we could deal with kmax = 625,000 and still get a correlation coefficient of
0.9900 between (λ2/4)sj and v̂(kmax)

j . In our experiments, we actually reach a BER of zero for values of
k quite below kmax (cf. Section 6.2).

From (36), we observe that the updated jth coefficient approximately follows the hypothesized
growth, i.e., w(k) = w(0) + k · µ · η, where ηj = −m0,j/

√sj. Notice that, as expected, the update does
not depend on λ, following Adam’s property that the update is invariant to rescaling the gradients [9].
Finding a more explicit expression runs into the problem that η depends on s, which in turn is a
function of η through (32) and (33). The following subsections are devoted to solving this problem by
conjecturing a form for η and refining it.

To simplify the analysis, we consider from now on that w(0) ≈ 0 since most of the values of
the weights at the initial iteration are very small (see Figure 2a). We will verify the accuracy of this
approximation in Appendix B.2.

3.2.4. Rationale for the Sign Function

Recall the expression (23) that we obtained for η when analyzing SGD, where we found η to be
approximately proportional to ϕ̂. Now, for Adam, we take this as a starting point, so we conjecture
first that η = γ · ϕ̂, for some real positive γ. Here, we consider orthogonal projection vectors and use
the property introduced in (13) and the following:

cT
j ϕ̂ =

ϕ̂j

F

In this particular case, we have the following identities:

m0,j ≈ −ϕ̂j

pj ≈ aj = ϕ̂2
j

qj ≈ −γ

F
ϕ̂2

j

rj =
γ2

4F2 ϕ̂2
j

Substituting these values into (35), we find that

√
sj = sgn(ϕ̂j) · ϕ̂j ·

√
1 + (γ/F)µβ2/(1− β2) + (γ2/(4F2))µ2(β2 + β2

2)/(1− β2)2

When we divide m0,j by √sj, we obtain:

u(k)
j ≈

−sgn(ϕ̂j)√
1 + (γ/F)µβ2/(1− β2) + (γ2/(4F2))µ2(β2 + β2

2)/(1− β2)2
(37)

It is then clear that η cannot be written in the form η = γ · ϕ̂, as was conjectured at the beginning
of this section.
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3.2.5. A Theoretical Expression for ∆w

Although the conjectured form for η in Section 3.2.4 does not hold, the appearance of the sign
function in (37) gives a key clue for an alternative approach, since the sign seems to reveal the reason
behind the two-spiked histograms like the one shown in Figure 2c.

Therefore, let us write ηj to explicitly contain the sign of ϕj and allow γj to take different
(non-negative) values with j to reflect the varying magnitude (recall that even in Section 3.2.4 the
conjectured value could be written as ηj = γ|ϕj| · sgn(ϕj)). Let γ be the column vector containing γj,
j = 1, · · · , N, then η = γ ◦ sgn(ϕ̂). Since cT

j (γ ◦ sgn(ϕ̂)) = γT(cj ◦ sgn(ϕ̂)), we can write:

m0,j ≈ −ϕ̂j

pj ≈ aj = ϕ̂2
j

qj ≈ −bT
j η = −ϕ̂jγ

T(cj ◦ sgn(ϕ̂))

rj =
1
4

[
γT(cj ◦ sgn(ϕ̂))

]2

Now,

u(k)
j ≈

−ϕ̂j√
ϕ̂2

j + µϕ̂jγT
(
cj ◦ sgn(ϕ̂)

) β2
(1−β2)

+ µ2

4
[
γT(cj ◦ sgn(ϕ̂))

]2 β2+β2
2

(1−β2)2

In addition, thus, in order to meet the condition ηj = γj · sgn(ϕ̂j), the following nonlinear equation
should be solved for all γj, j = 1, · · · , N :

γj =
|ϕ̂j|√

ϕ̂2
j + µϕ̂jγT

(
cj ◦ sgn(ϕ̂)

) β2
(1−β2)

+ µ2

4
[
γT(cj ◦ sgn(ϕ̂)

]2 β2+β2
2

(1−β2)2

(38)

This equation can be solved with a fixed-point iteration method [21]. To that end, we should
initialize γ and then iterate the following: (1) compute the right-hand side of (38), and (2) use it to
update γ on the left-hand side. This process will converge to the solution of (38). Even though this
method can be implemented to give the specific values for each γj, we are more interested in obtaining
a statistical characterization rather than a deterministic one. As we will see, the statistical approach
offers a deeper explanation for the two-spiked distribution of ∆w which we ultimately seek.

We thus aim at finding the pdf of Γ, now considered as a random variable for which γj,
j = 1, · · · , N are nothing but realizations. Once again, Equation (38) can be solved iteratively
(e.g., with Markov-chain Monte Carlo methods [22]) to yield the equilibrium distribution for Γ.
Instead, we can resort to the results in Section 6 where we conclude that the pdf of Γ is strongly
concentrated around its mode. With this observation, it is possible to consider that γT(cj ◦ sgn(ϕ̂))
approximately corresponds to realizations of Γ · (cT

j sgn(ϕ̂)).

In order to simplify the analysis even further, we are interested in decomposing cT
j sgn(ϕ̂) using its

statistical projection onto ϕ̂j, i.e., cT
j sgn(ϕ̂) = α · ϕ̂j + zj. Here, α is a real multiplier and zj is zero-mean

noise uncorrelated with ϕ̂j. More generally, if we define matrix C .
= [c0, · · · , cN ], then we seek to

write CTsgn(ϕ̂) = α · ϕ̂+ z. We do the analysis for the cases of Gaussian projectors and orthogonal
projectors separately (refer to Appendix A.4 for the derivations). For the Gaussian case, we get:

α =
1

FT

√
2

πT

(
FT2 + (N + F)T − F

)
(39)

Var(zj) = − 2
πF3T2

(
FT4 + 4FT3 + (N + F)T2 − 4FT + F

)
+

T
F3 (N + F(T + 1)) (40)
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On the other hand, for the orthogonal projectors, we get instead:

α =

√
2N

πTF
(41)

Var(zj) =

(
1− 2

π

)
T

FN
(42)

Recall that, by construction, ϕ̂ can be seen as a random vector. In fact, we have ϕ̂∼ N (0, I · T/F2)

for Gaussian projection vectors, and ϕ̂ approximately follows N (0, I · T/(FN)) for orthogonal
projectors. Let Ξ, Z be random variables with the distribution of a single element of ϕ̂ and z,
respectively, then qj and rj can be seen as realizations of (approximately): Q = −ΓΞ(αΞ + Z) and

R = Γ2

4 (αΞ + Z)2, so a stochastic version of (38) is:

Γ =
|Ξ|√

Ξ2 + ΓµΞ (αΞ + Z) β2
(1−β2)

+ Γ2µ2

4 (αΞ + Z)2 β2+β2
2

(1−β2)2

Squaring both sides, we find that, for a given realization (ξ, z) of (Ξ, Z), Γ must take the positive
value γ that satisfies the following fourth degree equation:

β2 + β2
2

(1− β2)2
µ2

4
(αξ + z)2 γ4 +

β2

1− β2
µξ (αξ + z) γ3 + ξ2γ2 − ξ2 = 0 (43)

From (43), it is easy to generate samples γ of Γ and, accordingly, samples of ∆w, by recalling that:

∆w ≈ k · µ · γ · sgn(ξ) (44)

We note that, for the particular case when β2 is very close to 1, β2+β2
2

(1−β2)2 ≈ 2
(

β2
1−β2

)2
. This simplification

allows us to approximate (43) as

γ2
(

γµ

2
· β2

1− β2
(αξ + z) + ξ

)2
− ξ2 ≈ 0 (45)

which leads to the following fixed-point equation:

γ ≈ ξ
γµ
2 ·

β2
1−β2

(αξ + z) + ξ
(46)

When the noise term z is very small compared to αξ (which occurs with a fairly large probability,
especially for the case of orthogonal projectors), then the solution to (46), denoted by γs, will be
independent of the value of ξ. This will cause the probability of Γ to be concentrated around γs, and in
turn this will make the pdf ∆w have two spikes centered at ±kµγs. We will see these spikes appearing
time and again in the experiments carried out with Adam (Section 6).

3.3. The Denoising Term

Thus far, we have considered only that our cost function is f̃ (w) = λ fwatermark(w); however,
as we know, there is an additional term, the original denoising function, so our real cost function is:
f (w) = f0(w) + f̃ (w).

The gradients corresponding to this function, f0(w), will try to pull the weight vector towards
the original optimal w(0) in a relatively hard to model way. In order to analyze this behavior, we can
approximate the gradient of the denoising function at the kth iteration with respect to the jth coefficient
as a sum of a constant term, dj, and a noisy one, ñ(k)

j , which follows a zero-mean Gaussian distribution
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and is associated with the use of different training batches on each step. We will refer to this noise as
batching noise. Thus, for each coefficient j, we can write:

∂ f0(w(k))

∂wj
≈ dj + ñ(k)

j (47)

Like we did in the previous section, we can formulate a stochastic version of (47). To that end,
we notice that the constant term of this gradient, dj, can take different values with j, as well as the
variance of the batching noise, hj that is, ñj is drawn from N (0, hj). Therefore, in order to reflect the
variability of these terms along the j-elements, we introduce two random variables with the distribution
of the mean gradient and the variance of the batching noise, D and H, respectively, for which dj and hj
are realizations. The pdf of these distributions will be obtained empirically in Section 6.2. Then, we can
see ñ(k)

j as a realization of Ñ ∼ N (0, H).

3.3.1. SGD

Similarly to Section 3.2.5, let Ξ be a random variable with the distribution of ϕ̂. Let (ξ, δ, ñ) be
a realization of (Ξ, D, Ñ), respectively, then for SGD using orthogonal projectors we can compute
samples of ∆w adding both functions, i.e., denoising and watermarking:

∆w ≈ kµ(δ + ñ) +
λkµ

2

(
1− λkµ

4F− λkµ

)
ξ (48)

3.3.2. Adam

The variance of the batching noise computed by Adam will be approximately given by the random
variable V, whose realizations can be expressed as vj =

1−β2
1−βk

2
∑k

i=1 β
(k−i)
2 (ñ(i)

j )2. Notice that, for each

realization of V, as the sum takes places over i, we must work with a fixed value hj for the variance
of the batching noise. Then, with this variance, we generate k samples of Ñ to be used in the sum
that produces vj. With this characterization, we can easily analyze how the denoising cost function
shapes the distribution of the weight variations. Notice that this analysis could be adapted for any
host network. Let δ and ν be realizations of D and V, respectively, then, we can generate samples of
∆w without including the gradients from the watermarking function as:

∆w ≈ k · µ · δ√
δ2 + ν

Moreover, in order to get a more accurate description of the problem, we can combine both
functions: denoising and watermarking. The analysis becomes somewhat complicated, but, as we will
check in Section 6, the distributions resulting from this analysis do capture better the shapes observed
in the empirical ones. See Appendix A.5 for the results of this analysis.

4. Block-Orthonormal Projections (BOP)

Here, we discuss BOP, the solution we propose to solve the detectability problem posed by Adam
optimization when implementing the watermarking algorithm proposed in [5,6]. In order to hide the
noticeable weight variations that appear when we use Adam—as seen in Figure 2—we introduce a
prior transformation using a secret N × N matrix X (the details for its construction are given below).
The procedure we follow has three steps per each iteration of Adam.

Firstly, we project the weights and gradients from the embedding layer using X:

y = Xw

∇y f (y) = X∇w f (w)
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Then, we run Adam optimization on the projected weights, y, using the projected gradients,
∇y f (y), as well, i.e., steps (3)–(8) are taken using y and ∇y f (y(k−1)) instead of w and ∇w f (w(k−1)),
respectively. The key of BOP relies on the following: if we execute Adam on y instead of w, we
can break the natural bond created by Adam between sgn(ϕ̂) and w—as we saw in the previous
sections—responsible for the ant-like behavior of the weights and, consequently, the appearance of
side spikes in their histograms. These undesired effects disappear when we de-project y using X−1 to
get back to the weight vector w:

w = X−1y

In order to reduce the computational complexity and the memory requirements of this
method—recall that N is generally a very large number and we must project and de-project the
weights on each iteration—we consider X to be a block diagonal matrix with B identical N

B ×
N
B blocks.

In this way, we only have to build and work with a single block XB, for which we can choose the
size by simply adjusting the value of B. The values of this block are drawn from a standard normal
distribution. In addition, XB is built as an orthonormal matrix so that X−1

B = XT
B. Let y(i) and w(i) be

the ith block of y and w, respectively, both of them of length N
B ; therefore, we just compute:

y(i) = XBw(i)

∇y(i) f (y(i)) = XB∇w(i) f (w(i))

After executing Adam, we can get back to w(i):

w(i) = XT
By(i)

As we will see in Section 6.2.4, BOP does not significantly alter the original distribution of weights,
as opposed to standard Adam. This makes it possible to enjoy the advantages of Adam optimization
when we implement the watermarking algorithm in [5,6] with a minimal increase in the detectability
of the watermark. In addition, this has an advantage in terms of robustness: if the adversary is not able
to infer which layer is watermarked, then he/she will have to exert his/her attack (e.g., noise addition,
weight pruning) on every layer thus producing a larger impact on the performance of the network as
measured by the original cost function. We will discuss this fact in the experimental section.

5. Information-Theoretic Measures

As already discussed, one of the potential weaknesses of any neural network watermarking
algorithm is the detectability of the watermark. An adversary that detects the presence of a watermark
on a certain subset of the weights can initiate an attack to remove or alter the watermark. For this
reason, it is important that the weights statistically suffer the least modification possible while of course
being able to convey the desired hidden message. To measure this statistical closeness, we propose
using the KLD [13] between the distributions of weights before and after the watermark embedding.
Let P and Q be two discrete probability distributions defined on the same alphabet X ; then, the KLD
from Q to P is (notice that it is not symmetric):

KLD(P||Q)
.
= ∑

x∈X
P(x) log

(
P(x)
Q(x)

)
The KLD is always non-negative. The more similar the distributions P and Q are, the smaller the

divergence. In the extreme case of two identical distributions, the divergence is zero.
It is interesting to note that the KLD has been proposed for similar problems in forensics, including

steganographic security [23], distinguishability between forensic operators [24], or more general source
identification problems [25].
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In our case, the two compared distributions are those of w(0) and w(k), for k just producing
convergence with no decoding errors. Since the KLD is not symmetric, it remains to assign those
distributions to P and Q so that the measure is as informative as possible. In particular, we are
interested in properly accounting for the possible lateral spikes in the pdf of w(k). As those spikes often
appear where the pdf of w(0) is small if not negligible, this suggests assigning the latter pdf to Q and
the former to P. However, this choice creates a problem in practice, as for some x ∈ X , the empirical
probabilities are such that P(x) 6= 0 and Q(x) = 0, potentially leading to an infinite divergence.
To circumvent this issue related to insufficient sampling, we use an analytical approximation to Q
with infinite support, after noticing that the empirical distribution of w(0) with 1000 discrete bins
(see Figure 2a) can be approximated by a zero-mean Generalized Gaussian Distribution (GGD) with
shape parameter β = 0.64 and scale parameter α = 0.01, (for notational coherence with the literature, α

is used in this section to denote a different quantity than in the rest of the paper.) for which the latter
controls the spread of the distribution. As a reference, the KLD between the empirical distribution
of w(0) and its GGD best-fit is 0.0177, which is smaller than any of the KLDs that we find in Table 2.
In order to compute the KLD in our experiments, we use this infinite-support symmetric distribution
for Q and the empirical one of w(k) for P after quantizing both to 1000 discrete bins.

Table 2. PSNR (dB) results with noise level σ = 25, number of iterations k needed to converge, KLD and
SIKLD between the distributions of w(k) and w(0).

SGD Adam BOP

Gaussian Orth. Gaussian Orth. Gaussian Orth.

λ 5 20 0.05 1 0.5 10 0.05 1 0.5 10
CBSD68 30.76 31.09 31.18 31.17 31.21 31.16 31.20 31.16 31.19 31.15
Kodak24 31.66 32.03 32.13 32.10 32.15 32.10 32.15 32.08 32.14 32.09

k 42,780 98,510 43,590 32,140 27,110 57,230 40,880 14,840 33,180 7150
KLD 0.0477 0.0238 0.1149 0.2779 0.0281 0.8118 0.0463 0.0443 0.0227 0.0253

SIKLD 0.0468 0.0206 0.0879 0.2112 0.0280 0.4707 0.0449 0.0266 0.0197 0.0226

The use of the KLD is adequate to measure the detectability in those cases where the adversary
has access to information about the ’expected’ distribution of the weights. For instance, when only
one layer is modified, the expected distribution can be inferred from the weights of other layers.
However, this may be still too optimistic in terms of adversarial success, as while the expected shape
may be preserved—and thus, inferred—across layers, the scale (directly affecting the variance) may be
not so. For instance, if the original weights were expected to be zero-mean Gaussian and they still are
after watermarking, the KLD (which depends on the ratio of the respective variances) may be quite
large, but the adversary will not be able to determine if watermarking took place if he/she does not
know what the variance should be and only measures divergence with respect to a Gaussian. To reflect
this uncertainty, quite realistic in practical situations, we minimize the KLD with respect to the scale
parameter α. This puts the adversary in a scenario where only the shape is used for detectability.
Thus, let Qα correspond to a GGD with scale parameter α, then we define the Scale Invariant KLD
(SIKLD) as:

SIKLD .
= min

α
KLD(P||Qα) = min

α
∑

x∈X
P(x) log

(
P(x)

Qα(x)

)

6. Experiments and Results

In this section, we show the experimental results and we compare them to the theory that we
have developed. We use MATLAB R2018b to implement the expressions obtained in Section 3 and
represent the theoretical histograms. As we will see, both theory and experiments match reasonably
well. In particular, for Adam optimization, we are able to reproduce the same position of the side
spikes seen in the empirical histograms of ∆w, as well as some effects which are attributable to the
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influence of the denoising cost function. We will also verify the BOP method proposed in Section 4.
In addition, the KLD will be computed to give a more precise measure of the similarity between the
distributions of w(k) (i.e., after the embedding) and w(0), when using SGD, Adam and BOP.

6.1. Experimental Set-Up

We employ the fine-tune-to-embed approach described in [5,6]. This means that the training
process is divided into two phases, as we explained earlier: (1) training the host network from scratch,
and (2) fine-tuning steps for embedding the watermark.

6.1.1. Training the Host Network

In order to perform the initial training of the host network FFDNet, we use the open-source
implementation for PyTorch provided in [26]. We employ the FFDNet architecture for color images,
which has a depth of 12 convolutional layers and 96 feature maps per layer. The training details are
the same as in [26] and also the used datasets: Waterloo Exploration Database [27] for training and
Kodak24 [28] for validation. We implement the cost function introduced in (1) and train 80 epochs
with the milestones described in [26] on a GPU NVIDIA Titan Xp. We use Adam as the optimization
algorithm with its hyperparameters set to their default values. After training the network, we test it on
the CBSD68 [29] and Kodak24 datasets.

6.1.2. Watermark Embedding

Once we have trained and tested our host network, we embed our T-bit watermark, b = 1,
T = 256, into the convolutional layer l = 2 of FFDNet. In the next section, we present the results for
both SGD and Adam optimization algorithms. The size of the convolutional filter is 3× 3 and the
depth of input is I = 96, as well as the number of filters in the layer, F = 96. Therefore, we have:
M = 96 · 3 · 3 = 864, and N = MF = 82,944. In addition, the learning rate µ is set to 10−6 during
these fine-tuning steps and, also, we do not perform weight orthogonalization as we did during the
initial training.

In addition, we use the following values for the regularizer parameter. When we use SGD we
set λ = 5 and λ = 20 for Gaussian and orthogonal projectors, respectively. In addition, for Adam
optimization, we use different values of λ for each configuration to better reflect the influence of
the denoising function. In particular, we set λ = 0.05 and λ = 1 when we use Gaussian projectors,
and λ = 0.5 and λ = 10 when we employ orthogonal projectors. We finish our embedding process
when we reach a BER of zero, that is, when all the projected weights are positive—recall that all the
embedded bits are set to +1—, i.e., (φ̂(m)

)Tw > 0, for all m = 1, · · · , T. Notice that these values of λ

were selected with the goal of reaching a BER of zero in a relatively fast way and, as it can be seen,
they are not straightforwardly comparable for Gaussian and orthogonal projectors. Finally, to check
the validity of our proposed method BOP, we use the same values of λ as with Adam optimization,
and set the number of blocks B to 12.

6.2. Experimental Results

Here, we present the experimental results. After the main training of the host network and before
the watermark embedding, we obtain a PSNR of 31.18 dB and 32.13 dB on the CBSD68 and Kodak24
datasets, respectively, for a noise level of 25. These results are very close to those reported in [26].
Compare these values to those in Table 2, where we show the PSNR (dB) results on the CBSD68 and
Kodak24 datasets for the same noise level after the watermark embedding was performed. As we
see, when we embed the watermark using SGD with Gaussian projectors, the denoising performance
drops about 0.45 dB, while, if we employ orthogonal projectors, the performance drops only 0.1 dB.
Thus, employing orthogonal projectors with SGD optimization might be beneficial to better preserve
the denoising performance. For Adam optimization and BOP, the original performance does not
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significantly drop and it even increases when using orthogonal projectors. Consequently, in order to
keep a good performance after the watermark embedding, Adam would be preferable to SGD were it
not for the conspicuousness of the weights. Our proposed method BOP is a good solution to bring the
detectability of Adam down to similar levels as SGD and still enjoy the rest of advantages.

Table 2 also presents the number of iterations required for obtaining a BER of zero and the KLD
and Scale Invariant KLD (SIKLD) between the distributions of w(k) and w(0) for each configuration.

6.2.1. Empirical Denoising Gradients

In order to analyze the influence of the denoising function, we need to get the empirical
distributions of the mean denoising gradient and the variance of the batching noise. To that end,
we proceed as follows: firstly, we extract the denoising gradients from the embedding layer l = 2
and we average them for each coefficient over the number of iterations k to get the distribution of the
mean. Then, the batching noise can be easily computed if, for each coefficient, we subtract the mean
value from its corresponding denoising gradient value at each iteration. By computing the variance of
this noise for each individual weight, we can estimate the overall distribution of the variance of the
batching noise. Figure 3 shows the empirical distribution of the mean denoising gradient, D, and the
variance of the batching noise, H.

(a) (b)

Figure 3. Empirical histograms from the denoising gradients (a) distribution of the mean denoising
gradient, D; (b) distribution of the variance of the batching noise, H.

6.2.2. SGD

We embed our watermark using SGD and its corresponding set-up, as we detailed in Section 6.1.2.
We show the resulting histograms of w(k) and ∆w in Figure 4. As we can see, SGD does not significantly
alter the original distribution of weights shown in Figure 2a. This is also reflected in the SIKLD, which is
very small, especially when we use orthogonal projectors (see Table 2).

Now, we check the theory we developed for SGD in Section 3.1. Recall that out theoretical analysis
just covers the case of orthogonal projectors. Using (24), we can generate samples of ∆w without
including the effect of the denoising cost function. The resulting histogram is shown in Figure 5a.
Notice that the unusual appearance of this histogram can be attributed to the effects of applying the
initial transformation explained in Section 2.3.1. In particular, each value of ϕ repeats F times to form
vector ϕ̂; hence, the discrete values in the y-axis of the histogram shown in Figure 5a. However, we see
that the range of values of this theoretical histogram fits quite well the empirical one (Figure 4c).
In order to get a more accurate representation, we can generate samples of ∆w according to (48),
so that we add the effect of noise coming from the denoising cost function. As we see in Figure 5b,
the resulting histogram is now very similar to the one in Figure 4c.

In addition, we confirm that (25) can be used to compute the variance of the distribution of w(k)

when we implement orthogonal projectors. Firstly, we check the hypothesis that we made regarding
the uncorrelatedness between w(0) and ∆w. For our particular case of λ = 20, the correlation coefficient
between w(0) and ∆w is 2.539 · 10−4, a very small value that confirms our assumption. Using (25), we
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have that the variance of the empirical distribution of w(k)—red histogram in Figure 4c—is 1.192 · 10−3

while the theoretical variance is 1.193 · 10−3. As we see, these values are almost identical.

(a) (b) (c)
Figure 4. Empirical histograms after the watermark embedding using SGD. (a) histogram of w(k),
Gaussian, λ = 5, and orthogonal projectors, λ = 20; (b) histogram of ∆w, Gaussian, λ = 5;
(c) histogram of ∆w, orthogonal, λ = 20.

(a) (b)
Figure 5. Theoretical histograms of ∆w for SGD, orthogonal projectors, λ = 20. (a) only watermarking
function, Equation (24); (b) including denoising and watermarking functions, Equation (48).

6.2.3. Adam

In the following experiments, we employ Adam optimization for the watermark embedding
and use the same settings as in Section 6.1.2. The resulting histograms of w(k) and ∆w are shown in
Figures 6 and 7, respectively. As it can be observed, the shape of the weight distribution changes to a
great extent for λ = 1 and λ = 10. For smaller values of λ, since the influence of the watermarking cost
function is weaker, we can avoid having a significant alteration to the original distribution shape. This is
also reflected on their SIKLD values in Table 2: as λ increases the SIKLD also increases considerably.
However, notice that, whatever the value of λ is, the histograms of weight variations always present
the characteristic side spikes. These footprints left by Adam can increase the detectability of the
watermark. In addition, when λ is small, we can observe in these histograms the influence of the
denoising cost function: it causes the appearance of a central peak with values that spread till the
location of both side spikes.

Figure 8 represents the pdf of Γ obtained from (43). Notice that, as we stated in Section 3.2.5,
the pdf is concentrated around its mode. Figure 9 shows the histograms of ∆w obtained from (44)
when only the watermarking loss f̃ (w) is optimized and the denoising component is set to zero.
Compare these histograms to those in Figure 7: the theory developed in Section 3.2 is able to explain
the two-spiked distributions of ∆w. Notice that these theoretical expressions provide a good enough
approximation since they allow us to predict the position of the side spikes. We show in Table 3 the
values of these positions obtained from both theoretical (Figure 9) and empirical (Figure 7) results.
As we can see, these side spikes are placed in almost identical positions by both theory and experiments,
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hence, we can confirm that the sign phenomenon in Adam is responsible for this ant-like behavior
shown by the weights at the embedding layer.

Table 3. Position of both side spikes in the histograms of ∆w obtained from theoretical and empirical results.

λ Theoretical Empirical

Gaussian

0.05 −0.04243 −0.04278
0.04239 0.04276

1 −0.03129 −0.03119
0.03126 0.03125

Orthogonal

0.5 −0.02710 −0.02710
0.02710 0.02709

10 −0.05720 −0.05717
0.05720 0.05718

Finally, in order to reflect the influence of the denoising function and obtain more realistic
histograms, we can solve the fourth-degree Equation (A11) and, then, generate samples of ∆w
according to (A12). The resulting histograms are shown in Figure 10 and are now quite similar
to those in Figure 7. As it can be seen, we can emulate the central peak and the dispersion of the values
of the side spikes in the histograms and, thus, we can confirm that these effects are attributable to the
influence of the denoising cost function.

(a) (b)
Figure 6. Empirical histograms of w(k) after the watermark embedding using Adam. (a) Gaussian,
λ = 0.05 and λ = 1; (b) orthogonal, λ = 0.5 and λ = 10.

(a) (b) (c) (d)
Figure 7. Empirical histograms of ∆w after the watermark embedding using Adam. (a) Gaussian,
λ = 0.05; (b) Gaussian, λ = 1; (c) orthogonal, λ = 0.5; (d) orthogonal, λ = 10.
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Figure 8. Pdf of Γ, Gaussian projectors.

(a) (b) (c) (d)
Figure 9. Theoretical histograms of ∆w for Adam with only watermarking function using Equations (43)
and (44). (a) Gaussian, λ = 0.05; (b) Gaussian, λ = 1; (c) orthogonal, λ = 0.5; (d) orthogonal, λ = 10.

(a) (b) (c) (d)
Figure 10. Theoretical histograms of ∆w for Adam with denoising and watermarking functions using
Equations (A11) and (A12). (a) Gaussian, λ = 0.05; (b) Gaussian, λ = 1; (c) orthogonal, λ = 0.5;
(d) orthogonal, λ = 10.

6.2.4. BOP

Here, we represent the empirical histograms when we implement our method BOP. Figures 11 and 12
show the histograms of w(k) and ∆w, respectively. As we see from these histograms and the KLD and
SIKLD values in Table 2, this method allows us to remove the side spikes of the histograms and much
better preserve the original shape of the weight distribution. As a result, the detectability of the watermark
due to Adam optimization is strongly reduced.

(a) (b)
Figure 11. Empirical histograms of w(k) after the watermark embedding using Adam. (a) Gaussian,
λ = 0.05 and λ = 1; (b) orthogonal, λ = 0.5 and λ = 10.
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(a) (b) (c) (d)
Figure 12. Empirical histograms of ∆w after the watermark embedding using Adam. (a) Gaussian,
λ = 0.05; (b) Gaussian, λ = 1; (c) orthogonal, λ = 0.5; (d) orthogonal, λ = 10.

A positive side effect of the undetectability of the watermark is that the robustness is increased
because an adversary will not know which layer must be modified in order to alter the embedded
watermark. This is illustrated in Figure 13 where we compare the robustness of standard Adam with
that of BOP against weight pruning. The network is trained long enough for both Adam and BOP
to guarantee a similar BER vs. pruning rate, as shown in Figure 13a. Then, the PSNR obtained after
training and pruning is shown in Figure 13b for the Kodak24 dataset which illustrates the following
facts: (1) BOP produces a network that is more robust to pruning in terms of PSNR, which can be
valuable towards model compression; for instance, for a pruning rate of 0.35 (that has no impact on
the BER of the hidden information), BOP degrades the original PSNR by about 1 dB, whereas Adam
would produce a degradation of more than 3 dB. (2) This robustness might be detrimental in case
it is an attacker who does the pruning in an attempt to degrade the watermark; for instance, for a
pruning rate of 0.82, the BER for both Adam and BOP rises to 0.02 (see Figure 13a). For this pruning
rate, the PSNR of BOP is around 25 dB while Adam gives slightly less than 24 dB. Then, in the case of
BOP, the adversary would be able to produce a network that performs closer to the original in terms
of PSNR—notice, however, that the degradation in both cases is quite severe, so this heavy pruning
would render a denoiser with little practical use —. (3) In any case, the previous comparison would
assume that the adversary knows the layer that contains the watermark; as we have properly justified,
this is reasonable for Adam but not so for BOP. If the adversary does not know the layer that must be
pruned, then, to achieve the same target BER, he/she must prune all the layers. In this case, for the
same pruning rate of 0.82 that causes the BER to increase to 0.02, the PSNR drops to less than 18 dB.

Similar conclusions can be extracted from Figure 13c that shows the PSNR vs. pruning rate for
the CBSD68 dataset. These experiments clearly show the higher robustness brought about by the
undetectability of BOP, as it prevents attacks targeted to a specific layer.
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(a) (b)

(c)

Figure 13. (a) BER vs. pruning rate for Adam and BOP (pruning all layers or only the watermarked
one does not have any impact on BER); (b) PSNR vs. pruning rate for Adam and BOP for the Kodak24
dataset; (c) PSNR vs. pruning rate for Adam and BOP for the CBSD68 dataset.

7. Conclusions

Throughout this paper, we have shown the importance of being careful with the optimization
algorithm when we embed watermarks following the approach in [5,6]. The choice of certain
optimization algorithms whose update direction is given by the sign function can originate footprints
in the distributions of weights that are easily detectable by adversaries, thus compromising the efficacy
of the watermarking algorithm.

In particular, we studied the mechanisms behind SGD and Adam optimization and found that the
sign phenomenon that occurs in Adam is detrimental for watermarking, since it causes the appearance
of two salient side spikes on the histograms of weights. As opposed to Adam, the sign function does
not appear when we use SGD. Therefore, SGD does not significantly alter the original shape of the
distribution of weights although, as we showed in the theoretical analysis, it slightly increases its
variance. The analysis in this paper can be extended to other optimization algorithms.

In addition, we introduced orthogonal projectors and observed that, compared to the Gaussian case,
they generally preserve the original performance and weight distribution better. However, a deeper
analysis on this subject is left for further research.

Finally, we presented a novel method that uses orthogonal block projections to address the use
of Adam optimization together with the watermarking algorithm under study. As we checked in the
empirical section, this method allows us to solve the detectability problem posed by Adam and still
enjoy the rest of advantages of this optimization algorithm.
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Appendix A. Mathematical Derivations

Appendix A.1. Projected Weights at k = 0

We want to compute the mean and the variance of Φ̂
Tw(0). It is easy to see that the mean is zero

for any (φ̂
(i)
)Tw(0), i = 1, · · · , T because E{φ̂(i)

j } = 0.
Now, in order to obtain an expression for the variance, we may compute the expectation of the

trace of the covariance matrix of Φ̂
Tw(0) divided by T. Therefore, if we use the properties of the trace,

we have:

Var{Φ̂Tw(0)} =
1
T

E
{

Tr
[
Φ̂

Tw(0)(w(0))TΦ̂
]}

=
1
T

E
{

Tr
[
w(0)(w(0))TΦ̂Φ̂

T
]}

=
1
T ∑

i,j
E
{
(w(0)(w(0))T)i,j(Φ̂Φ̂

T
)i,j

}
We can write:

E
{
(w(0)(w(0))T)i,j(Φ̂Φ̂

T
)i,j

}
= E{w(0)

i w(0)
j }E

{
T

∑
m=1

φ̂
(m)
i φ̂

(m)
j

}
(A1)

It is straightforward to see that, for the off-diagonal terms, i.e., i 6= j, the expectation in (A1) is
zero. For the N diagonal terms, i.e., i = j, we have instead:

E
{(

w(0)
i

)2
}

E

{
T

∑
m=1

(φ̂
(m)
i )2

}
= T ·Var{w(0)}Var{φ̂(m)}

where Var{φ̂(m)} is the variance of any projection vector φ̂
(m) , m = 1, · · · , T. When we use

Gaussian projectors, we have Var{φ̂(m)} = 1/F2 and when we use orthogonal projectors, we have
Var{φ̂(m)} = 1/(FN). Therefore, the variance for Gaussian projectors is

Var{Φ̂Tw(0)} = N
F2 Var{w(0)}

while for orthogonal projector is

Var{Φ̂Tw(0)} = 1
F

Var{w(0)}
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Appendix A.2. Adam: Mean of the Gradient

In order to find an expression for the mean of the gradient, we substitute (17) into (26) and obtain:

m(k) = −λ

2
· ϕ̂ · (1− β1)

k

∑
i=1

βk−i
1 +

λ

4
· Ψ̂ · (1− β1)

k

∑
i=1

βk−i
1 w(i)

= −λ

2
· ϕ̂ · (1− βk

1) +
λ

4
· Ψ̂ · (1− β1)

k

∑
i=1

βk−i
1 w(i)

The bias-corrected mean gradient is:

m̂(k) =
m(k)

1− βk
1
= −λ

2
ϕ̂+

λ

4
· Ψ̂ · 1− β1

1− βk
1

k

∑
i=1

βk−i
1 w(i)

The main difficulty in finding an explicit expression for m̂(k) is the last sum which requires a
closed-form expression for w(i), for all i = 0, · · · , k, which in turn depends on the Adam adaptation.
This easily leads to a difference equation whose solution is cumbersome. Alternatively, we start by
conjecturing the affine-growth in (18) and write:

1− β1

1− βk
1

k

∑
i=1

βk−i
1 w(i) =

1− β1

1− βk
1

k

∑
i=1

βk−i
1 (w(0) + i · µη)

= w(0) + µη
1− β1

1− βk
1

k

∑
i=1

i · βk−i
1

= w(0) + µη

(
k

1− βk
1
− β1

1− β1

)

Therefore, under the affine-growth hypothesis, we can write:

m̂(k) = −λ

2
ϕ̂+

λ

4
· Ψ̂
(

w(0) + µη

(
k

1− βk
1
− β1

1− β1

))

and arrive at the expression in (27).

Appendix A.3. Adam: Variance of the Gradient

To get an expression for the variance of the gradient, we plug (31) into (34) and write:

v(k)j =
λ2

4
(1− β2)

k

∑
i=1

βk−i
2 (pj + qjµi + rjµ

2i2)

=
λ2

4
(1− β2)pj

k

∑
i=1

βk−i
2 +

λ2

4
(1− β2)qjµ

k

∑
i=1

iβk−i
2 +

λ2

4
(1− β2)rjµ

2
k

∑
i=1

i2βk−i
2

=
λ2

4
(1− βk

2)

(
pj −

β2

1− β2
µqj +

β2 + β2
2

(1− β2)2 µ2rj

)
+

λ2

4
k
(

µqj −
2β2

1− β2
µ2rj

)
+

λ2

4
k2µ2rj

Appendix A.4. Adam: A Projection-Based Decomposition of cT
j sgn(ϕ̂)

We want to write cT
j sgn(ϕ̂) = α · ϕ̂j + zj. To find α, we compute the cross-correlation with ϕ̂,

i.e., E{ϕ̂TCTsgn(ϕ̂)} = αE{||ϕ̂||2}. Then, z is simply CTsgn(ϕ̂)− α · ϕ̂. In the following, we show
separately the derivations for the Gaussian and orthogonal projectors.
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Appendix A.4.1. Decomposition for Gaussian Projectors

Recall that the projection vectors have i.i.d. components drawn from a N (0, 1) distribution.
Since the quantity of interest E{ϕ̂TCTsgn(ϕ̂)} is a scalar, we will use the trace to manipulate the
involved matrices, as follows:

E{ϕ̂TCTsgn(ϕ̂)} = Tr
[
E{ϕ̂TCTsgn(ϕ̂)}

]
= E

{
Tr[CTsgn(ϕ̂)ϕ̂T ]

}
= ∑

i,j
E
{ (

C ◦ (sgn(ϕ̂)ϕ̂T)
)

i,j

}
= ∑

i,j

T

∑
m=1

T

∑
n=1

E{φ̂(m)
i sgn(ϕ̂i)φ̂

(m)
j φ̂

(n)
j }

where φ̂
(m)
i = θiφ

(m), m = 1, · · · , T, i = 1, · · · , N, and θi is the ith row of matrix Θ. In order to compute
the previous expectation, we need to consider separately the diagonal terms and the off-diagonal ones.

We start with the off-diagonal elements (i.e., i 6= j). Here, we also need to distinguish the following
cases:

⌊
i
F

⌋
6=
⌊

j
F

⌋
, satisfied by N(N − F) elements, and

⌊
i
F

⌋
=
⌊

j
F

⌋
, which applies for the remaining

N(F− 1) off-diagonal terms. Therefore, in the first subcase, we have that θi 6= θj, so φ̂
(m)
i 6= φ̂

(m)
j and:

T

∑
m=1

T

∑
n=1

E{φ̂(m)
i sgn(ϕ̂i)φ̂

(m)
j φ̂

(n)
j } =

T

∑
m=1

E{φ̂(m)
i sgn(ϕ̂i)}E{(φ̂

(m)
j )2} (A2)

In order to compute the expectation E{φ̂(m)
i sgn(ϕ̂i)} in (A2), we write:

ϕ̂i = φ̂
(m)
i +

T

∑
l=1

i 6=m

φ̂
(l)
i

= φ̂
(m)
i + ni

where ni can be seen as a realization of an i.i.d. Gaussian distribution with zero-mean and variance
(T− 1)/F2. Assume without loss of generality that φ̂

(m)
i > 0. Then, the probability that sgn(ϕ̂i) = −1 is

p .
= Q

(
φ̂
(m)
i F/

√
T − 1

)
, (Q(x) .

= 1√
2π

∫ ∞
x e−x2/2dx.) and φ̂

(m)
i sgn(ϕ̂i) will take the value −φ̂

(m)
i with

probability p, and φ̂
(m)
i with probability 1− p. Then, the distribution of φ̂

(m)
i sgn(ϕ̂i) will correspond

to that of a random variable Y constructed as follows: letting X ∼ N (0, 1/F2), we define Y as
Y .

= |X| ·
(
1− 2Q(|X|F/

√
T − 1)

)
. Then,

E{Y} = F√
2π

∫ ∞

0
2x
(

1− 2Q
(

xF√
T − 1

))
e−x2F2/2dx

It can be shown that this integral gives [30]:

E{Y} = 1
F

√
2

πT
.
= µY (A3)

Therefore, when i 6= j and
⌊

i
F

⌋
6=
⌊

j
F

⌋
, we can compute (A2) as:

T

∑
m=1

E{φ̂(m)
i sgn(ϕ̂i)}E{(φ̂

(m)
j )2} = T

F2 µY
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When i 6= j and
⌊

i
F

⌋
=
⌊

j
F

⌋
, we have that θi = θj, so φ̂

(m)
i = φ̂

(m)
j . Thus:

T

∑
m=1

T

∑
n=1

E{(φ̂(m)
i )2φ̂

(n)
i sgn(ϕ̂i)} =

T

∑
m=1

E{(φ̂(m)
i )3sgn(ϕ̂i)}+

T

∑
m=1

T

∑
n=1

n 6=m

E{(φ̂(m)
i )2φ̂

(n)
i sgn(ϕ̂i)}

= TξY′ + T(T − 1)E{(φ̂(m)
i )2φ̂

(n)
i sgn(ϕ̂i)} (A4)

where ξY′ can be computed as the mean of Y′ defined in a similar way as above, i.e.,: let X ∼
N (0, 1/F2), we define Y′ as Y′ .

= |X|3 ·
(
1− 2Q(|X|F/

√
T − 1)

)
. Then:

ξY′
.
= E{Y′} = F√

2π

∫ ∞

0
2x3

(
1− 2Q

(
xF√
T − 1

))
e−x2F2/2dx

Using Mathematica, it is found that:

ξY′ =

√
2

πT
3T − 1

TF3 =
(3T − 1)

TF2 µY (A5)

Unfortunately, the double integral required to compute the expectation in (A4) does not seem
to admit a closed-form solution. On the other hand, its numerical computation through Monte
Carlo integration is rather straightforward. Let X, Y ∼ N (0, 1/F2) and Z ∼ N (0, T−2

F2 ), all mutually
independent, then the desired expectation is E{XY2sgn(X + Y + Z)} .

= κ(T), where, with κ(T), we
stress the fact that the integral depends on T alone. The result is represented in Figure A1. It is possible
to show that, as T → ∞, κ(T)→ µY

F2 .

Figure A1. F2 · κ(T)/µY vs. T

Then, for moderately large T, the sum in (A4) is approximately µY(T2 + 2T − 1)/F2.
For the i = j case (i.e., diagonal terms), we obtain the same result as (A4). Therefore, when computing

∑i,j E{
(
C ◦ (sgn(ϕ̂)ϕ̂T)

)
i,j}, there are N(N − F) terms with value µYT/F2, and NF terms with

approximate value µY(T2 + 2T− 1)/F2, hence:

E{ϕ̂TCTsgn(ϕ̂)} ≈ NµY
F2 (NT + F(T2 + T − 1))
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In addition, E{||ϕ̂||2}} = E{ϕ̂Tϕ̂} = E{ϕTΘTΘϕ} = MT
F = NT

F2 , so we have:

α =
E{ϕ̂TCTsgn(ϕ̂)}

E{||ϕ̂||2}} ≈ F2NµY(NT + F(T2 + T − 1))
F2NT

=
µY
T

(
FT2 + (N + F)T − F

)
(A6)

We are interested now in measuring the variance of zj, j = 1, · · · , N, which, by construction,
we assume to be i.i.d. First, we note that the covariance matrix is:

CTsgn(ϕ̂)sgn(ϕ̂T)C− α2ϕ̂ϕ̂T

Then, the variance of zj will be the expectation of the trace of this matrix divided by N. The second
term is immediate to compute, as E{Tr[ϕ̂ϕ̂T ]} = NT/F2, so we focus next on Tr[CTsgn(ϕ̂)sgn(ϕ̂T)C] =

Tr[CCTsgn(ϕ̂)sgn(ϕ̂T)]. Again, we can write:

E{Tr[CCTsgn(ϕ̂)sgn(ϕ̂T)]} = E

{
∑
i,j
(CCT)i,j

(
sgn(ϕ̂)sgn(ϕ̂T)

)
i,j

}

Note that:

CCT =
T

∑
m=1

T

∑
l=1

φ̂
(m)

(φ̂
(m)

)Tφ̂
(l)
(φ̂

(l)
)T

=
T

∑
m=1

T

∑
l=1

(
N

∑
n=1

φ̂
(m)
n φ̂

(l)
n

)
φ̂
(m)

(φ̂
(l)
)T

Then,

E{(CCT)i,j

(
sgn(ϕ̂)sgn(ϕ̂T)

)
i,j
} =

T

∑
m=1

T

∑
l=1

N

∑
n=1

E
{

φ̂
(m)
n φ̂

(l)
n φ̂

(m)
i φ̂

(l)
j sgn(ϕ̂i)sgn(ϕ̂j)

}
(A7)

We analyze first the off-diagonal terms, i.e., i 6= j, when
⌊

i
F

⌋
6=
⌊

j
F

⌋
, and consider separately the

cases where m 6= l and m = l. For the first case, the right-hand side of (A7) can be written as:

T

∑
m=1

T

∑
l=1

l 6=m

N

∑
n=1

b n
F c 6=b i

F c 6=
⌊

j
F

⌋E
{

φ̂
(m)
n

}
E
{

φ̂
(l)
n

}
E
{

φ̂
(m)
i sgn(ϕ̂i)

}
E
{

φ̂
(l)
j sgn(ϕ̂j)

}

+ F
T

∑
m=1

T

∑
l=1

l 6=m

E
{
(φ̂

(m)
i )2φ̂

(l)
i sgn(ϕ̂i)

}
E
{

φ̂
(l)
j sgn(ϕ̂j)

}

+ F
T

∑
m=1

T

∑
l=1

l 6=m

E
{
(φ̂

(l)
j )2φ̂

(m)
j sgn(ϕ̂j)

}
E
{

φ̂
(m)
i sgn(ϕ̂i)

}

= 2F
T

∑
m=1

T

∑
l=1

l 6=m

E
{
(φ̂

(m)
i )2φ̂

(l)
i sgn(ϕ̂i)

}
E
{

φ̂
(m)
i sgn(ϕ̂i)

}

=
2µ2

Y
F

T(T − 1)
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When
⌊

i
F

⌋
6=
⌊

j
F

⌋
and m = l, the right-hand side of (A7) can be written as:

T

∑
m=1

N

∑
n=1

b n
F c 6=b i

F c 6=
⌊

j
F

⌋E
{
(φ̂

(m)
n )2

}
E
{

φ̂
(m)
i sgn(ϕ̂i)

}
E
{

φ̂
(m)
j sgn(ϕ̂j)

}

+ F
T

∑
m=1

E
{
(φ̂

(m)
i )3sgn(ϕ̂i)

}
E
{

φ̂
(m)
j sgn(ϕ̂j)

}
+ F

T

∑
m=1

E
{
(φ̂

(m)
j )3sgn(ϕ̂j)

}
E
{

φ̂
(m)
i sgn(ϕ̂i)

}
=

1
F2

(
T(N − 2F)µ2

Y + 2Fµ2
Y(3T − 1)

)
Now, we consider the rest of elements which satisfy that

⌊
i
F

⌋
=
⌊

j
F

⌋
, which are the N diagonal

terms and the remaining N(F− 1) off-diagonal ones. The right-hand side of (A7) is:

T

∑
m=1

T

∑
l=1

N

∑
n=1

E{φ̂(m)
n φ̂

(l)
n φ̂

(m)
i φ̂

(l)
i } = F

T

∑
m=1

T

∑
l=1

l 6=m

E
{
(φ̂

(m)
i )2

}
E
{
(φ̂

(l)
i )2

}

+
T

∑
m=1

N

∑
n=1

b n
F c 6=b i

F c

E
{
(φ̂

(m)
n )2

}
E
{
(φ̂

(m)
i )2

}
+ F

T

∑
m=1

E
{
(φ̂

(m)
i )4

}

=
1
F4 (FT(T − 1) + T(N − F) + 3FT)

where, for the last summand, we have used the fact that, for a zero-mean Gaussian random variable X
with variance σ2, E{X4} = 3σ4. Then, the sum in (A7) is:

T

∑
m=1

T

∑
l=1

N

∑
n=1

E
{

φ̂
(m)
n φ̂

(l)
n φ̂

(m)
i φ̂

(l)
j sgn(ϕ̂i)sgn(ϕ̂j)

}
= N(N − F)

[
2µ2

Y
F

T(T − 1) +
1
F2

(
T(N − 2F)µ2

Y + 2Fµ2
Y(3T − 1)

)]
+

N
F3 (FT(T − 1) + T(N − F) + 3FT)

and the resulting variance of zj is:

Var{zj} = (N − F)

(
2µ2

Y
F

T(T − 1) +
µ2

Y
F2 T(N − 2F) +

2µ2
Y

F
(3T − 1)

)

+
1
F3 (FT(T − 1) + T(N − F) + 3FT)− T

F2 µ2
Y

(
N +

F
T
(T2 + T − 1)]

)2

= −
µ2

Y
FT

(
FT4 + 4FT3 + (N + F)T2 − 4FT + F

)
+

T
F3 (N + F(T + 1)) (A8)

Appendix A.4.2. Decomposition for Orthogonal Projectors

Now, for orthogonal projectors, we take a different route. Again, we define matrix C .
= [c0, · · · , cN],

and we note that C = Ψ̂
T
= Ψ̂. Recall also properties (13) and (14). We can collect all products cT

j sgn(ϕ̂),

j = 1, · · · , N in a vector obtained as CTsgn(ϕ̂) = Ψ̂sgn(ϕ̂).
We are interested in computing the cross-product of this vector and ϕ̂. Then, we can write:

ϕ̂TΨ̂sgn(ϕ̂) =
1
F

ϕ̂Tsgn(ϕ̂)

Assuming i.i.d. components in ϕ̂, this implies that, for the orthogonal projectors, the
cross-correlation of cT

j sgn(ϕ̂) and ϕ̂ j is the same as 1
F sgn( ϕ̂ j) and ϕ̂ j . We can then compute
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E{ ϕ̂ jsgn( ϕ̂ j)} = E{| ϕ̂ j |}. Modeling ϕ̂ j as N (0, T/(FN)), we find that E{| ϕ̂ j |} =
√

2T
πFN .

Furthermore, E{||ϕ̂||2} = E{ϕ̂Tϕ̂} = E{ϕT ΘT Θϕ} = T
F .

The existence of a positive cross-correlation suggests writing 1
F sgn(ϕ̂j) = αϕ̂j + ñj, with α a

suitable positive constant and ñ a zero-mean noise vector uncorrelated with ϕ̂. Taking the cross-product
and the expectation:

1
F

E{ϕ̂Tsgn(ϕ̂)} = N
F

E{|ϕ̂j|} = αE{||ϕ̂||2}+ E{ϕ̂Tñ} = αE{||ϕ̂||2}

Therefore, we find that:

α =
N · E{|ϕ̂j|}
F · E{||ϕ̂||2} =

√
2N

πTF
(A9)

Now, it is easy to measure the second order moment of ñj since:

E{ñ2
j } = E{( 1

F
sgn(ϕ̂j)− αϕ̂j)

2}

=
1
F2 + α2E{ϕ̂2

j } −
2α

F
E{ϕ̂jsgn(ϕ̂j)}

=
1
F2

(
1− 2

π

)
With the above characterization, we can see that:

CTsgn(ϕ̂) = FαΨ̂ϕ̂+ FΨ̂ñ

= αϕ̂+ z

Therefore, we have:

Tr[E{zzT}] = F2 · Tr[E{Ψ̂ññTΨ̂}] = F · E{Tr[ññTΨ̂]} = F · E
{

∑
i,j
(ññT)i,j(ψ̂)i,j

}

Then,

E
{
(ññT)i,j(ψ̂)i,j

}
= E

{
ñiñj

}
E

{
T

∑
m=1

φ̂
(m)
i φ̂

(m)
j

}

When
⌊

i
F

⌋
6=

⌊
j
F

⌋
, the expectation above is zero. For the NF remaining terms, that is,

when
⌊

i
F

⌋
=
⌊

j
F

⌋
, we have ñi = ñj and φ̂

(m)
i = φ̂

(m)
j . Thus:

E{ñ2
j }

T

∑
m=1

E
{
(φ̂

(m)
j )2

}
=

1
F2

(
1− 2

π

)
T

NF
=

T
NF3

(
1− 2

π

)
Finally, we can compute the variance of zj as follows:

Var{zj} =
1
N

Tr[E{zzT}] =
(

1− 2
π

)
T

FN
(A10)

Appendix A.5. Adam: Analysis with Denoising and Watermarking

Here, we join the denoising and watermarking cost functions and follow a similar approach to
that in Section 3.2.5. Let c be a random vector of length N, now we should build a random projection
matrix, Φ̂ = ΘΦ—with Gaussian or orthogonal projectors—, as a basis to generate samples of Ξ
from (11) and to build c following (29).

We also consider that η = ηd + ηwm is a random vector of length N, where ηd and ηwm represent
the denoising and watermarking update terms, respectively. The components of ηd can be computed
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from realizations of D and V like in Section 3.3 that is, ηd = δ/(
√

δ2 + ν). On the other hand, ηwm has
the same definition than in Section 3.2.5.

Let Ω be a random variable with the same distribution as cTηd and let M0, P, Q and R be random
variables for which m0,j, pj, qj are rj are realizations, respectively. Then, we have:

M0 = −λ

2
Ξ− D

P = Ξ2

Q = −ΞΩ− ΓΞ(αΞ + Z)

R =
1
4

(
Ω2 + 2Γ(αΞ + Z)Ω + Γ2(αΞ + Z)2

)
Additionally, let S be a random variable for which sj is a realization. Now, it must include the

contribution due to the denoising cost function so that:

S =
λ2

4

(
P− β2

1− β2
µQ +

β2 + β2
2

(1− β2)2 µ2R

)
+ D2 + V

=
λ2

4

[
Ξ2 +

β2

1− β2
µ (ΞΩ + ΓΞ(αΞ + Z))

+
β2 + β2

2
(1− β2)2

µ2

4

(
Ω2 + 2Γ(αΞ + Z)Ω + Γ2(αΞ + Z)2

) ]
+ D2 + V

Therefore, for a given realization (ξ, z, δ, ν) of (Ξ, Z, D, V), we must solve the following fourth
degree equation to get samples of Γ (notice that, in order to generate samples, we must previously
build the random vectors ηd and c):

A1γ4 + A2γ3 + A3γ2 + A4γ + A5 = 0 (A11)

where:

A1
.
=

λ2

4
(β2 + β2

2)

(1− β2)2
µ2

4
(αξ + z)2

A2 = A21 + A22 with A21 and A22 given by:

A21
.
=

λ2

4
β2

(1− β2)
µξ(αξ + z)

A22
.
=

λ2

8
β2 + β2

2
(1− β2)2 µ2(αξ + z)

(
Ω +

δ√
δ2 + ν

sgn(ξ)(αξ + z)
)

A3 = A31 + A32 + A33 + A34 with the following definitions:

A31
.
=

λ2

4
ξ2

A32
.
=

λ2

4
β2

1− β2
µξ

(
Ω + 2

δ√
δ2 + ν

sgn(ξ)(αξ + z)
)

A33
.
=

λ2

16
β2 + β2

2
(1− β2)2 µ2

(
Ω2 +

δ2

δ2 + ν
(αξ + z)2 + 4

δ√
δ2 + ν

sgn(ξ)(αξ + z)Ω
)

A34
.
= δ2 + ν
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A4 = A41 + A42 + A43 + A44 where:

A41
.
=

λ2

2
δ√

δ2 + ν
sgn(ξ)ξ2

A42
.
=

λ2

4
β2

1− β2
µ

δ√
δ2 + ν

ξ

(
2sgn(ξ)Ω +

δ√
δ2 + ν

(αξ + z)
)

A43
.
=

λ2

8
β2 + β2

2
(1− β2)2 µ2 δ√

δ2 + ν
Ω
(

δ√
δ2 + ν

(αξ + z) + sgn(ξ)Ω
)

A44
.
= 2

δ√
δ2 + ν

sgn(ξ)(δ2 + ν)

Finally, A5 = A51 + A52 + A53 + A54 with:

A51
.
=

λ2

4
ξ2
(

δ2

δ2 + ν
− 1
)

A52
.
=

λ2

4
β2

1− β2
µ

δ2

δ2 + ν
ξΩ

A53
.
=

λ2

16
β2 + β2

2
(1− β2)2 µ2 δ2

δ2 + ν
Ω2

A54
.
= λδξ

Finally, we can generate samples of ∆w as:

∆w ≈ k · µ ·
(

δ√
δ2 + ν

+ γ · sgn(ξ)
)

(A12)

Appendix B. Verification of Assumptions

Appendix B.1. Affine Growth Hypothesis for the Weights

In order to check the affine growth hypothesis that we introduced in (18), we extract the weight
values from the embedding layer on each iteration. Figures A2 and A3 show the evolution with k
of four randomly selected weights when we respectively use: (i) SGD with orthogonal projectors,
and (ii) Adam with Gaussian projectors. As is evident, the hypothesis holds quite accurately for these
particular examples.

For a more general approach encompassing all weights, we carry out lineal regression on the
evolution of each individual weight with k. Then, for each j ∈ {1, · · · , N}, we measure the correlation
coefficient, ρj, between the observed values—the experimental weight values—and the predictor
values. Figure A4 represents the Empirical Cumulative Distribution Function (ECDF) of ρj when using
SGD with orthogonal projectors and Adam with both Gaussian and orthogonal projectors. We can
state that, when we use Gaussian projectors with Adam optimization, for 90% of the weights at the
embedding layer ρj > 0.9410 and for 80% of them ρj > 0.9970. Moreover, the affine hypothesis is even
stronger when using orthogonal projectors, both with SGD or Adam optimization, since for 95% of the
weights at the embedding layer ρj > 0.9975.

Because these percentages show a high-linear behavior, we can confirm the validity of the affine
hypothesis for the weights that is key to our theoretical analysis.
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Figure A2. Evolution with k of four randomly selected weights. SGD optimization with orthogonal
projectors, λ = 20, T = 256.

Figure A3. Evolution with k of four randomly selected weights. Adam optimization with Gaussian
projectors, λ = 1, T = 256.

(a) (b)
Figure A4. ECDF of the correlation coefficient ρ between the observed values of the weights over k and
their predicted affine evolution. (a) SGD with orthogonal projectors, λ = 20; (b) Adam with Gaussian,
λ = 1 and orthogonal projectors, λ = 10.

Appendix B.2. Negligibility of Weights at k = 0

We first check the validity of the approximation w(0) ≈ 0 introduced in the analysis for SGD
optimization. From (23), we can get η from the parameter settings detailed in Section 6.1 for the
orthogonal case. We compute the gradient g∇

.
= ∇w f (w) following (20) and also its approximation

g′∇
.
= −(λ/2)ϕ̂+ (λkµ/4)Ψ̂η. In order to prove that w(0) ≈ 0, we can show that the preserved term,

that is, the approximation g′, is much larger than the discarded term g∇− g′∇ = (λ/4)Ψ̂w(0), using the
Normalized Mean Squared Error (NMSE). Let x be a N-length vector and x′ its approximation, then the
corresponding NMSE is defined as NMSE = ||x− x′||2/||x′||2. Using this definition on g∇ and g′∇,
we get an NMSE of 3.6464 · 10−6, a very small value that supports our assumption w(0) ≈ 0.
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Now, we check the same approximation for the Adam analysis. From (43), we can generate
samples of γ using the parameter settings in Section 6.1. Let us recall the following definitions:

m0 = −ϕ̂+
1
2

Ψ̂w(0)

pj = aj − bT
j w(0) +

1
4

cT
j w(0)(w(0))Tcj

qj = −bT
j η+

1
2

cT
j w(0)ηTcj

for j = 1, · · · , N. Additionally, we define their corresponding approximations as:

m′0 = −ϕ̂

p′j = aj

q′j = −bT
j η

For Gaussian projectors, we get a NMSE of 3.9803 · 10−3, 5.2153 · 10−3 and 1.7148 · 10−3, for the
approximations made for m0, p and q, respectively. For orthogonal projectors, we get a NMSE of
3.6093 · 10−6, 5.1049 · 10−6 and 1.8010 · 10−6, for the approximations made for vectors m0, p and q,
respectively. As we see, these are small enough values to consider that our hypothesis w(0) ≈ 0 is
reasonable for the analysis in Section 3.2.
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