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Abstract: In this work, we start from a phenomenological Hamiltonian built from two known systems:
the Hamiltonian of a pumped optomechanical system and the Jaynes-Cummings Hamiltonian.
Using algebraic techniques we construct an approximate time evolution operator Û(t) for the forced
optomechanical system (as a product of exponentials) and take the JC Hamiltonian as an interaction.
We transform the later with Û(t) to obtain a generalized interaction picture Hamiltonian which can
be linearized and whose time evolution operator is written in a product form. The analytic results are
compared with purely numerical calculations using the full Hamiltonian and the agreement between
them is remarkable.
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1. Introduction

Combining two or more physical systems in the theoretical framework of hybrid quantum systems
has provided novel quantum technologies. Individually, quantum systems like qubits, trapped ions,
quantum harmonic oscillators, or, for example, the Jaynes-Cummings model (JCM), offer a wide range
of applications on their own, to name a few. In fact, the JCM, although it is not conceived as a hybrid
model, contains two systems that define the radiation-matter interaction in its simplest form [1–3].
This model has been the subject of extensive theoretical and experimental research due to its intrinsic
relevance in quantum optics, the JCM has been generalized in several forms, for example, assuming that
the interaction between the atom and the field is nonlinear in the field variables [4–10], incorporating
a group of two-level atoms interacting with the field, the so-called Tavis-Cummings model [11],
or incorporating simultaneously a nonlinear coupling between the atom and the field and a nonlinear
Kerr-like medium [12–14]. On the other hand, one of the ingredients of the JCM, the two-level system
(TLS) has been realized in superconducting (SC) circuits that offer scalability and flexibility, but a
short coherence time, while atoms or spins have rather long coherence times, a consequence of weak
coupling to external fields and limited scalability. This has generated an ingenious idea, which takes
advantage of each of the systems separately to combine them in hybrid models [15–17].

Another system that is close to the conception of a hybrid system is a optomechanical cavity.
This system offers a route to determine and control the quantum state of macroscopic objects. Quantum
optomechanics provides motion and force detection near the fundamental limit imposed by quantum
mechanics [18–20]. The most conventional optical cavity is the Fabry-Perot cavity, where one end
mirror is fixed and the other is harmonically bound and allowed to oscillate under the action of
radiation pressure from the intracavity light field of frequency ωL. Interest has arisen in recent
decades in the motion of mechanical oscillators coupled to oscillation modes in a cavity [21–23],
some recent applications of this type of resonators include—the LIGO project that uses gravitational
wave interferometers whose optical path is modified by radiation pressure [24], the cooling of
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mechanical resonators for the study of the transition between quantum and classical behavior [25,26]
and the amplification and measurement of nanometric scale forces [27,28]. The strong coupling regime
provides a quantum interface allowing the coherent transfer of quantum states between the mechanical
oscillator and the atoms. Controlled storage of quantum information will require electromagnetically
induced transparency (EIT). This technique is widely used to control the absorption of weak light
pulses or single photons in atomic ensembles and high finesse cavities. The EIT from a single atom in
free space was reported in Reference [29]. There, the authors observed the direct extinction of a weak
probe field and electromagnetically induced transparency from a single Barium ion.

About ten years ago, atom-photon interfaces were proposed as essential building blocks in
quantum networks [30,31]. Here, photons are adopted as messengers due to their robustness in
preserving quantum information during propagation, while atoms are suited to store the information
in stationary nodes. The efficient transfer of quantum information between atoms and photons is
essential and requires controlled photon absorption and emission with a very high probability.

Furthermore, although the coupling of an oscillating mirror to an atom or ion is not done directly,
this can be made possible by a common coupling by adding the mode of a cavity [19,32]. In this sense,
in Reference [33] the authors studied the transmission of a probe field through a hybrid optomechanical
system consisting of a cavity and a mechanical oscillator with a TLS, and the strong coupling regime
of a mechanical oscillator and a single atom [34]. At this point, the individual evolution of each
subsystem offers a possibility of obtaining, under certain conditions, the exact evolution of the hybrid
system, that is, if we know the evolution operator of each hybrid component, using the Wie-Norman
theorem [35] it is possible to obtain, on the one hand, the exact or approximate solution of the dynamics
of the physical observables, and on the other, the Wigner function that allows elucidating the quantum
behavior of the system.

In this work we consider a hybrid optomechanical system composed of a cavity, a mechanical
oscillator and a two level atom inside the cavity. The cavity mode is coupled to a TLS and together they
are coupled to the vibrational modes of the mirror. Moreover, the optomechanical cavity is pumped
by an external laser of frequency ωL and amplitude Ω. Consequently, since we know the evolution
operators of both subsystems, the JCM and optomechanical cavity, we construct an approximate time
evolution operator for the hybrid system and evaluate the temporal evolution of several observables
like the number of photons, and phonons. The paper is organized as follows: In Section 2 we present
the basic theory to obtain a time evolution operator for a tripartite system composed of a forced
optomechanical Hamiltonian a one mode cavity and a two level atom inside the cavity. In Section 3 we
write the observables of interest in a generalized interaction picture and in Section 4 we present our
numerical results and conclusions.

2. Theory

We begin by considering a hybrid optomechanical system whose Hamiltonian is

Ĥ
h̄

=
Ĥ0

h̄
+

ωa

2
σ̂z + λ(âσ̂+ + â†σ̂−), (1)

with h̄ωa the energy difference between the ground and the excited atomic states, λ the coupling
constant between the field and the two level atom and Ĥ0 describing the simplest pumped
optomechanical system given by [36–39]

Ĥ0

h̄
=

Ĥo

h̄
+ Ω cos(ωLt)(â + â†), (2)

where
Ĥo

h̄
= ωcn̂ + ωmN̂ − Gn̂(b̂ + b̂†). (3)
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Here ωc, ωm are the field and the mechanical oscillator frequencies, n̂ = â† â, N̂ = b̂† b̂ are the number
operators for the field and the mechanical oscillator and G is the coupling constant between the
field and the mechanical oscillator given by: G = ωc

L (h̄/2mωm)
1/2, with L the equilibrium cavity

length, Ω is related to the input laser power, ωL is the frequency of the driving field, â, (â†) are the
annihilation (creation) field operators. The Hamiltonian given by (1), has already been used in models
where hybridization plays a major role, for example: division of the optical and mechanical fluctuation
spectra [40], photon blockade and antibunching [33,41] and in state transfer and entanglement in
trapped ions [32].

We have developed a useful approach to find an approximate time evolution operator for the
Hamiltonian Ĥ0 when the system does not interact with the environment [42]. Here we use a similar
approach to obtain the time evolution operator of the hybrid system described by the Hamiltonian
given in (1). The first thing to take into account is that the time evolution operator associated with Ĥ0

is given by:

Û0(t) = eδ+ 1
2 |β|2 eα1n̂eα2 N̂e(α3+|α4|2/2)n̂2

D̂b̂(α4n̂)D̂â(β), (4)

where D̂Â(α) = eαÂ†−α∗ Â is the Glauber displacement operator. This expression for the time evolution
operator is valid whenever G/ωm � 1 a condition usually satisfied in the quantum optical regime
and used in several experimental systems, see for instance Reference [19]. The functions αi, β and δ are
given explicitly by

α1 = −iωct,

α2 = −iωmt,

α3 = −
(

G
ωm

)2 [
−iωmt +

(
1− e−iωmt

)]
,

α4 = − G
ωm

(1− eiωmt).

(5)

and

β̇ = −iΩ cos(ωLt)eiωct,

γ̇ = −iΩ cos(ωLt)e−iωct,

δ̇ = βγ̇,

(6)

as can be seen in Equations (A2) and (A9) in the Appendix A.
Here, it is important to note that in contrast to the Fock states, the coherent states are the quantum

states whose statistical behavior most resemble the classical one, this has generated considerable
interest in using micro-mirrors for the generation of coherent mechanical states or even superposition
of them if such micro-mirrors can be cooled to their quantum ground states [43–48].

Once we have obtained the time evolution operator corresponding to the Hamiltonian Ĥ0 we
transform the interaction to get the approximate interaction Hamiltonian

Ĥ(1)
I =

h̄ωa

2
σ̂z + h̄λ

[
(â + β)σ̂+e−iωct + (â† + β∗)σ̂−eiωct

]
, (7)

where we have maintained the same level of approximation as the one used to get Equation (A7) that
is, we neglect terms proportional to G/ωm and (G/ωm)2 as compared to one. The time evolution
operator in the interaction picture satisfies the equation

ih̄
∂Û(1)

I
∂t

= Ĥ(1)
I Û(1)

I , Û(1)
I (0) = 1. (8)
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It is convenient now to write the interaction Hamiltonian as a the sum of a Hamiltonian containing the
set {σ̂+, σ̂−, σ̂z} and another with {âσ̂+, â†σ̂−}.

Ĥ(1)
I = Ĥ(1)

1 + Ĥ(1)
2 , Û(1)

I = Û(1)
1 Û(1)

2 , (9)

with

Ĥ(1)
1 =

h̄ωa

2
σ̂z + h̄λ

(
βe−iωctσ̂+ + β∗eiωctσ̂−

)
,

Ĥ(1)
2 = h̄λ

(
âσ̂+e−iωct + â†σ̂−eiωct

)
.

(10)

The Hamiltonian Ĥ(1)
1 is a linear combination of operators that form a Lie algebra, then we can

apply the Wei-Norman Theorem and write the corresponding time-evolution operator as a product of
exponentials [35]

Û(1)
1 = eαz σ̂z eα+ σ̂+ eα− σ̂− . (11)

While for Û(1)
2 we have the equation:

ih̄
∂Û(1)

2
∂t

=
[
Û(1)†

1 Ĥ(1)
2 Û(1)

1

]
Û(1)

2 , (12)

transforming the interaction we get:[
Û(1)†

1 Ĥ(1)
2 Û(1)

1

]
' h̄λ

(
âσ̂+e−iωct−2αz + â†σ̂−eiωct+2αz

)
, (13)

where we have used the fact that the atom-field coupling λ � ωa and ωa ' ωc so that the
RWA is appropriate. Notice that this interaction Hamiltonian has a similar structure as that of
Jaynes-Cummings (JC) interaction, and it is important to highlight that the total number of excitations
remains constant under this interaction.

Substituting Equation (11) into Schrödinger’s equation we obtain the following set of ordinary,
nonlinear, coupled differential equations for the functions αi

α̇z = −i
(ωa

2
− 2λβ∗e2αz+iωctα+

)
,

α̇+ = −iλ
(

βe−2αz−iωct + 2β∗α2
+e2αz+iωct

)
,

α̇− = −iλβ∗e2αz+iωct,

(14)

which we solved with Mathematica. Now we introduce the operators [9,49,50]:

ĉ =
1√
M̂

âσ̂+, ĉ† = â†σ̂−
1√
M̂

, (15)

with M̂ = n̂ + 1
2 (1 + σ̂z) the total number of excitations in a given ladder. The basis states for the

JC Hamiltonian are {|n, e〉, |n + 1, g〉} (M = n + 1) corresponding to a state where the atom is in its
excited state and the field has n photons and a state where the atom is in its ground state and the field
has n + 1 photons. The state |0, g〉 (M = 0) where the atom is in its ground state and the field in the
vacuum state does not couple with any state. The action of these operators upon the basis states is:

ĉ|n, e〉 = 0, ĉ|n + 1, g〉 = |n, e〉,
ĉ†|n, e〉 = |n + 1, g〉, ĉ†|n + 1, g〉 = 0,

M̂|n, e〉 = (n + 1)|n, e〉, M̂|n + 1, g〉 = (n + 1)|n + 1, g〉.
(16)
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From the above expressions we obtain the commutation relations

[ĉ, ĉ†] = σ̂z, [σ̂z, ĉ] = 2ĉ, [σ̂z, ĉ†] = −2ĉ†, (17)

and ĉ2, ĉ†2 acting upon any basis state is zero. The interaction Hamiltonian can be written in terms of
the operators ĉ, ĉ† as: [

Û(1)†
1 Ĥ(1)

2 Û(1)
1

]
= h̄λ

√
n + 1

(
ĉe−iωct−2αz + ĉ†eiωct+2αz

)
, (18)

then we have

ih̄
∂Û(1)

2
∂t

= h̄λ
√

n + 1
(

ĉe−iωct−2αz + ĉ†eiωct+2αz
)

Û(1)
2 , (19)

whose solution has the form (invoking again the Wei-Norman Theorem)

Û(1)
2 = eε1 ĉ†

eε2 ĉeε3σ̂z , (20)

with complex, time dependent functions εi such that

ε̇1 = −iλ
√

n + 1
(

eiωct+2αz − ε2
1e−iωct−2αz

)
,

ε̇2 = −iλ
√

n + 1(1 + 2ε1ε2)e−iωct−2αz ,

ε̇3 = −iλ
√

n + 1ε1e−iωct−2αz ,

(21)

and with the initial condition ε1(0) = ε2(0) = ε3(0) = 0.
Finally, taking into account the above relationships and in particular (4), (11) and (20), the full

time evolution operator for the hybrid system is:

Û(t) = Û0(t)Û
(1)
1 (t)Û(1)

2 (t), (22)

where each term has been written as a product of exponentials and can be applied easily to any
given initial state so that the construction of the evolved wavefunction is relatively straightforward.
This result is our main contribution. It is valid whenever the coupling between the field and the
mechanical oscillator satisfies G/ωm � 1 and when the atom-field coupling satisfies λ/ωa � 1.
With the set of parameters we used in this work, namely G/ωc = 3× 10−4, λ/ωc = 1.25× 10−2 we
can expect that the evolution operator can be safely applied to propagate the system up to times of the
order of 104Tc with Tc = 2π/ωc. It is a major challenge to obtain analytic expressions for the evolution
of forced optomechanical systems even when the system is not an open quantum system.

3. Evaluation of Observables

Let us consider an initial state given by |Ψ(0)〉 = |n〉 ⊗ |e〉 ⊗ |Γ〉 corresponding to cavity with n
photons, a two level atom in its excited state and a mechanical oscillator in a coherent state Γ. Applying
the operator Û(1)

I = Û(1)
1 Û(1)

2 to the initial state we get:

Û(1)
2 |n, e〉 ⊗ |Γ〉 =eε3

[
|n, e〉+ ε1|n + 1, g〉

]
⊗ |Γ〉,

Û(1)
1

[
Û(1)

2 |n, e〉 ⊗ |Γ〉
]
=eε3

[
eαz(1 + α+α−)|n, e〉+ α−e−αz |n, g〉

]
⊗ |Γ〉

+ eε3 ε1

[
e−αz |n + 1, g〉+ α+eαz |n + 1, e〉

]
⊗ |Γ〉,

(23)
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due to the forcing term in the Hamiltonian the total number of excitations is no longer constant;
in contrast with the JC Hamiltonian. This state can be written as:

Û(1)
I |n, e〉 ⊗ |Γ〉 =

[
c1(t)|n, e〉+ c2(t)|n, g〉+ c3(t)|n + 1, g〉+ c4(t)|n + 1, e〉

]
⊗ |Γ〉. (24)

If instead of a number state for the field we have a coherent state |α〉, we get

|Ψ(t)〉I =Û(1)
I |α, e〉 ⊗ |Γ〉,

=
∞

∑
n=0

cn

[
c1(t)|n, e〉+ c2(t)|n, g〉+ c3(t)|n + 1, g〉+ c4(t)|n + 1, e〉

]
⊗ |Γ〉,

(25)

where cn = exp[− 1
2 |α|2]αn/

√
n!. The time evolution operator Û0 does not involve the atomic degrees

of freedom, then we can use Equation (25) to evaluate the atomic evolution. For instance, the probability
to find the atom in its excited state at time t is given by

Pe(α, t) = |〈e|Ψ(t)〉I |2 =

∣∣∣∣∣ ∞

∑
n=0

cn [c1(t)|n〉+ c4(t)|n + 1〉]
∣∣∣∣∣
2

, (26)

In Figure 1 we show the probability for the atom to be in its excited state for the hybrid pumped
system (red) and for the JC Hmiltonian (blue). The initial state of the cavity is a coherent state with an
average number of photons n̄ = 4 and atom-cavity coupling constant λ/ωc = 0.0125, the pumping
amplitude is Ω/ωc = 0.01 and the atomic frequency is ωa/ωc = 0.95. In both cases we can see the
usual pattern of quantum collapse and revivals present in the JCM, however the length of the collapse
and the definition of the revivals is not the same. In the hybrid pumped case, the time between the
collapse and the first revival is longer than in the JC case; the definition of the revival is more definite
in the pumped case than in the JC case and the probability to find the atom in its excited state is larger
for the pumped case.

0 1500 3000

ωct

0.25

0.50

0.75

1.00

P
e
(α
,t

)

Hybrid forced system JC model

Figure 1. Probability to find the atom in its excited state Pe(α, t) with α = 2, ωa/ωc = 0.95,
ωL/ωc = 0.5, λ/ωc = 0.0125, Ω/ωc = 0.01. In red we show the case for a forced system, in blue the
Jaynes-Cummings model (JCM) result.

Let us consider now the average value of the photon number operator; it is given by:

〈n̂(t)〉 = 〈Ψ(t0)|Û(1)†
I Û†

0 n̂Û0Û(1)
I |Ψ(t0)〉

= I〈Ψ(t)|n̂I(t)|Ψ(t)〉I ,
(27)
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with n̂I(t) the photon number operator in the interaction picture. Taking the explicit form of the
operator Û0 (see Equation (4)) we obtain

n̂I(t) = n̂ + β∗ â + βâ† + |β|2, (28)

and |Ψ(t)〉I given by Equation (25). For the phonon number operator we get

N̂I(t) = N̂ +
(

α4b̂† + α∗4 b̂
)

n̂I(t) + |α4|2n̂2
I (t), (29)

and we see that the phonon number operator depends on the number of photons present in the cavity.
Since the pumping term modifies the photon number, then it will also modify the phonon number
evolution. We can now evaluate observables like the photon and phonon dispersion. We present our
numerical results in the following section.

4. Numerical Results, Unitary Evolution

In order to test the validity of our approximations, we also made a purely numerical calculation of
the average value of the photon, phonon number operators and the Wigner function using Python [51].
In Figure 2 we show the numerical and the analytical results for the temporal evolution of the average
photon number and the average phonon number for Hamiltonian parameters specified in the caption.
The initial state of the system is |Ψ(0)〉 = |α〉 ⊗ |Γ〉 ⊗ |e〉 corresponding to an atom in its excited state,
the cavity field in a coherent state with α = 2 and the mechanical oscillator in a coherent state with
Γ = 1. The average phonon number oscillates with frequency ωm from its initial value of one to
approximately 0.7 so that the mechanical oscillator is cool down. This can be understood since photons
impinging at a frequency red-detuned from the cavity resonance will preferentially scatter upward in
energy in order to enter the cavity resonance, absorbing a phonon from the oscillator. On the other
hand, the average photon number shows much faster oscillations with frequency ωc which are due to
the exchange between the cavity field and the two-level atom, we can see at longer times the quantum
collapse and revivals familiar with the Jaynes-Cummings model (see also Figure 3 right panel).

0 250 500

ωct

4.0

4.2

4.4

4.6

〈n̂
(t

)〉

numerical analytical

0 1000 2000

ωct

0.7

0.8

0.9

1.0

〈N̂
(t

)〉

Figure 2. Temporal evolution of the average photon number (left) and temporal evolution of the
average phonon number (right). Analytical results in dark-blue, numerical results in light-blue.
Hamiltonian parameters α = 2, ωa/ωc = 0.95, ωL/ωc = 0.5, ωm/ωc = 0.016, G/ωc = 0.00032,
λ/ωc = 0.0125, Ω/ωc = 0.01.

The evolution is done for the interval 0 ≤ ωct ≤ 500 for the photons and 0 ≤ ωct ≤ 2000 for
the phonons. We can see an excellent agreement between the analytic and the numerical calculations.
For the photons we used an initial coherent state with α = 2 and for the phonons a coherent state with
Γ = 1. Notice that the pumping frequency is far from the resonance cavity frequency ωc.

In Figure 3 we show the temporal evolution of the photon number operator with initial condition
α = 2 corresponding to 〈n̂〉 = |α|2 = 4 (left) and the probability to find the atom in its excited state
(right). We see an exchange of excitations between the atom and the field, at the beginning of the
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evolution the probability for the atom to remain in its excited state Pe(α, t) decreases to about 0.5
and at the same time the average number of photons increases to about 4.5, notice also the rapid
oscillations with small amplitude around an average value for the number operator, these are due to
the forcing term. After some time, Pe(α, t) attains a constant value around 0.75 and the average photon
number oscillates around 4.3 until ωct ' 1000 where the first revival occurs. The overall behavior of
the average photon number can be guessed from Pe(α, t).

0 700 1400

ωct

4.0

4.2

4.4

4.6

〈n̂
(t

)〉

numerical analytical

0 700 1400

ωct

0.50

0.75

1.00

P
e
(α
,t

)

Figure 3. Temporal evolution of the average photon number (left) and probability to find the atom in its
excited state (right) with Hamiltonian parameters α = 2, ωa/ωc = 0.95, ωL/ωc = 0.5, ωm/ωc = 0.016,
G/ωc = 0.00032, λ/ωc = 0.0125, Ω/ωc = 0.01. We present numerical (light-blue) and analytical
(dark-blue) calculations

In Figure 4 we show the temporal evolution of the average phonon number for different
amplitudes of the cavity field and Hamiltonian parameters given in the caption. The initial state
of the atom is the excited state. In blue we show the case when the initial state of the field is a coherent
state with α = 2 and 〈n̂(0)〉 = |α|2 = 4 and in green we plot the case when the initial state of the
field is a coherent state with α = 3, 〈n̂(0)〉 = 9. In both cases the initial state of the mechanical
oscillator is a coherent state with Γ = 2, 〈N̂(0)〉 = 4. We have used a pump frequency near resonance
ωL = 0.9ωc. As mentioned before, since we are dealing with red detuning we expect power flow
from the mechanical mode to the optical mode [52]. We see that 〈N(t)〉 evolves periodically with the
frequency of the mechanical oscillator, it decreases from its initial value and after a period it returns
to it. We see from Equation (29) that the average phonon number depends upon the function α4 and
the average photon number. The former is a function of the coupling constant G and the frequency
of the mechanical oscillator, the later is a function of the field’s frequency through the function β

(see Appendix A).

0 700 1400

ωct

2.8

3.2

3.6

4.0

〈N̂
(t

)〉

numerical

analytical

numerical

analytical

Figure 4. Temporal evolution of the average phonon number with Hamiltonian parameters
ωa/ωc = 0.95, ωL/ωc = 0.9, ωm/ωc = 0.016, G/ωc = 0.00032, λ/ωc = 0.0125, Ω/ωc = 0.01 and
{α, Γ} = {2, 2} (blue), and {α, Γ} = {3, 2} (green).
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Notice that the decrease is larger for the case when the average number of photons is larger so
that one can manipulate the number of phonons by means of the interaction time, the amplitude of the
cavity field and the frequency of the forcing term. We also show in this plot the results obtained with
a purely numerical calculation and we can see a very good agreement between them.

We now present the temporal evolution of the Mandel Q parameter defined as:

Q(t) =
〈n̂2(t)〉 − 〈n̂(t)〉2

〈n̂(t)〉 − 1, (30)

for a state with Q in the range −1 ≤ Q < 0 the statistics is sub-Poissonian, and if Q > 0,
super-Poissonian. For a coherent state Q = 0. In Figure 5 we plot the temporal evolution of the
Q function for an initial coherent state |α〉 with |α| = 2. It starts at zero as corresponds to a coherent
state, as time evolves it oscillates around zero alternating between positive and negative values,
that is between super and sub-Poissonian statistics this happens in the same temporal region where
the exchange of excitations between the field and the atom is most important. After some time it
oscillates above zero with a small amplitude (when the probability to find the atom in its excited state
is constant) and remains with a super-Poissonian statistics until the revival time (see Figure 3) when
the oscillations around zero repeat themselves. Finally, to glimpse the non-classical features of the
system the Wigner function plays an important role. In Figure 6 we plot the Wigner function for both
the field and the mechanical oscillator at time ωct = 100. In the figure we vary the strength of the
atom-cavity coupling λ and keep fixed the coupling between the mechanical oscillator and the cavity
field G as specified in the figure. In the left column we present the Wigner function evaluated at time
ωct = 100 for a Jaynes-Cummings model (G/ωc = 0) and λ/ωc = 0.05, it shows the generation of
multi-component Schrödinger cats; we found that for λ/ωc ≤ 0.02 distribution is a Gaussian function
and for λ/ωc > 0.02 it displays the non classical behavior corresponding to a multi component
Schrödinger cat. We see in the figure that for the hybrid system (G/ωc 6= 0) the behavior of the Wigner
function differs significantly. The coupling between the mechanical oscillator and the cavity field is so
relevant that even for a small value of G/ωc the distribution is smeared in a ring. For larger values of
λ/ωc and the same value of G/ωc, we see that the Wigner function for the field takes negative values
(shown in blue) and the non classicality of the system increases with the strength of the coupling λ/ωc.
The Wigner function for the pumped optomechanical system shows squeezing and a small negativity
independently of λ/ωc.

0 700 1400

ωct

−0.1

0.0

0.1

Q
(t

)

numerical analytical

Figure 5. Temporal evolution of the Mandel parameter Q(t) with Hamiltonian parameters
ωa/ωc = 0.95, ωL/ωc = 0.5, ωm/ωc = 0.016, G/ωc = 0.00032, λ/ωc = 0.0125, Ω/ωc = 0.01 and
α = 2.
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Figure 6. Plot of the Wigner function for a field coherent state (first row) and for a vacuum state of the
mechanical oscillator (second row) both evaluated at time ωct = 100.

5. Conclusions

In this work we have presented an approximate method to construct the time evolution operator
for a hybrid system composed of a forced optomechamical system and a two-level atom inside the
cavity, the atom interacts only with the cavity field by means of a Jaynes-Cummings interaction.
In order to solve the problem we split the Hamiltonian as the sum of a forced optomechanical
Hamiltonian and that of the free atom with the JC interaction. The time evolution operator for
the forced optomechanical Hamiltonian is approximated as a product of exponentials [42] and it is
then used to take the JC interaction into a generalized interaction picture. As a result we obtained
cumbersome expressions for the transformed operators which we approximated by neglecting terms
of the order G/ωm and (G/ωm)2 as compared to one. Within this approximation the interaction
picture Hamiltonian becomes that of a free two level atom and a displaced JC interaction whose exact
time evolution operator we constructed using the Wei-Norman Theorem. Once we have the full time
evolution operator we can obtain the average value of any observable, as an example we evaluated the
temporal evolution of the average photon and phonon number operators, the probability to find the
atom in its excited state, the Mandel parameter for the cavity field and the Wigner function. We used as
initial state |Ψ(0)〉 = |α〉 ⊗ |e〉 ⊗ |Γ〉 where |α〉 is the ket corresponding to the cavity field in a coherent
state α, |e〉 is that corresponding to the atom in its excited state and |Γ〉 is the ket for the mechanical
oscillator in a coherent state Γ. The average number of photons is a function of the pumping amplitude
Ω and the pump frequency ωL, when ωL ' ωc there is a periodic growth in the number of photons
and the amplitude of this growth is proportional to Ω. The average number of phonons is a periodic
function of time which depends also on the optomechanical coupling G/ωm and on the number of
photons present in the cavity. For red detuning there is a power flow from the mechanical mode to the
optical mode and the cooling of the mechanical mode is more important as the number of photons
increases. Since the evolution of the phonon number is periodic one can select an interaction time
such that the number of phonons be at a minimum. We also evaluated the Mandel parameter for the
cavity field and we found that it alternates between sub-Poissonian and super-Poissonian statistics
in the region of time where there is an important exchange of excitations between the atom and the
cavity field. We stress the fact that our approximations are done in the interaction Hamiltonian where
we have neglected terms proportional to G/ωm and (G/ωm)2 with respect to one. The excellent
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agreement between the analytic and the numerical results obtained using the full Hamiltonian as given
in (1) indicate the validity of our approximations.
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Appendix A. The Wei–Norman Approach

Here we describe the method we used to obtain the time evolution operator for the forced
optomechanical system. The first thing to notice is that the set of operators appearing in Ĥo is closed
under commutation

n̂ N̂ n̂b̂ n̂b̂† n̂2

n̂ 0 0 0 0 0

N̂ 0 0 −n̂b̂ n̂b̂† 0

n̂b̂ 0 n̂b̂ 0 n̂2 0

n̂b̂† 0 −n̂b̂† −n̂2 0 0

n̂2 0 0 0 0 0

In this table, we had to incorporate the operator n̂2 that arises from the commutator between n̂b̂ and
n̂b̂†. The time evolution operator corresponding to the Hamiltonian Ĥo can then be written exactly as
a product of exponentials [35,46],

Ûo(t) = eα1n̂eα2 N̂e(α3+|α4|2/2)n̂2
D̂b̂(α4n̂). (A1)

The time-dependent functions αi are obtained after substitution of Equation (A1) into Schrödinger’s
equation. As a result we get:

α1 = −iωct,

α2 = −iωmt,

α3 = −
(

G
ωm

)2 [
−iωmt +

(
1− e−iωmt

)]
,

α4 = − G
ωm

(1− eiωmt).

(A2)

Once we know the exact time evolution operator for the optomechanical system, we transform the
forcing term to obtain an interaction picture Hamiltonian

Ĥ(0)
I = h̄Ω cos(ωLt)

[
Ûo(t)†(â + â†)Ûo(t)

]
, (A3)
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applying the transformation we obtain:

Û†
o âÛo = eiE(t)(2n̂+1)eiF(t)[b̂†ei ωm

2 t+b̂e−i ωm
2 t ] âe−iωct,

Û†
o â†Ûo = â†eiωcte−iF(t)[b̂†ei ωm

2 t+b̂e−i ωm
2 t ]e−iE(t)(2n̂+1),

(A4)

where

F(t) = 2
(

G
ωm

)
sin
(ωm

2
t
)

,

E(t) =
(

G
ωm

)2
(ωmt− sin(ωmt)).

(A5)

Notice the presence of the operators in the exponentials. These impede the application of the
Wei-Norman theorem since the set of operators is not closed under commutation. Notice however that
the factor G/ωm � 1 [36] so that at this point it is convenient to make the approximation

Û†
opt âÛopt ' âe−iωct, Û†

opt â
†Ûopt ' â†eiωct, (A6)

and we get the approximate interaction Hamiltonian

H̃(0)
I = h̄Ω cos(ωLt)

(
âe−iωct + â†eiωct

)
, (A7)

where we have used H̃(0)
I to stress the fact that it is an approximate interaction Hamiltonian.

The corresponding exact time evolution operator can be written as a product of exponentials

Û(0)
I = eβâ†

eγâeδ, (A8)

with:

β̇ = −iΩ cos(ωLt)eiωct,

γ̇ = −iΩ cos(ωLt)e−iωct,

δ̇ = βγ̇,

(A9)

and initial conditions β(0) = γ(0) = δ(0) = 0. We see that β = −γ∗ so that we can write

Û(0)
I = eδe

1
2 |β|2 eβâ†−β∗ â

= eδ+ 1
2 |β|2 D̂â(β).

(A10)

Finally, taking into account the above relationships and Equation (2), the approximate evolution
operator of the forced optomechanical system is [42]

Û0 = ÛoÛ(0)
I

= eδ+ 1
2 |β|2 eα1n̂eα2 N̂e(α3+|α4|2/2)n̂2

D̂b̂(α4n̂)D̂â(β).
(A11)
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