# Kullback–Leibler Divergence of a Freely Cooling Granular Gas

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Free Cooling Evolution of Velocity Cumulants

#### 2.1. Boltzmann Equation and HCS

#### 2.2. Sonine Expansion Formalism

#### 2.3. Truncated Sonine Approximation

#### 2.4. Comparison with MD Simulations

## 3. KLD as a Lyapunov Functional

#### 3.1. Boltzmann’s H-Functional

#### 3.2. KLD

#### 3.3. MD Simulations

#### 3.3.1. Maxwellian Distribution as a Reference (${\varphi}_{\mathrm{ref}}={\varphi}_{\mathrm{M}}$)

#### 3.3.2. HCS Distribution as a Reference (${\varphi}_{\mathrm{ref}}={\varphi}_{\mathrm{H}}$)

#### 3.3.3. Relative Entropy of ${\varphi}_{\mathrm{H}}$ with Respect to ${\varphi}_{\mathrm{M}}$

## 4. Summary and Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

DSMC | Direct simulation Monte Carlo |

HCS | Homogenous cooling state |

KLD | Kullback–Leibler divergence |

MD | Molecular dynamics |

VDF | Velocity distribution function |

## Appendix A. Simulation and Numerical Details

## Appendix B. Initial Conditions

**Table A1.**Values of the fourth and sixth cumulants for the initial distributions $\delta $, M, I, $\mathsf{\Gamma}$, and S (see text).

$\mathit{\delta}$ | M | I | $\mathbf{\Gamma}$ | S | |
---|---|---|---|---|---|

${a}_{2}\left(0\right)$ | $\begin{array}{cc}-0.500& (d=2)\\ -0.400& (d=3)\end{array}$ | 0 | $\begin{array}{cc}0.151& (d=2)\\ 0.111& (d=3)\end{array}$ | $\begin{array}{cc}0.580& (d=2)\\ 0.580& (d=3)\end{array}$ | $\begin{array}{cc}0.885& (d=2)\\ 0.792& (d=3)\end{array}$ |

${a}_{3}\left(0\right)$ | $\begin{array}{cc}-0.667& (d=2)\\ -0.457& (d=3)\end{array}$ | 0 | $\begin{array}{cc}-0.080& (d=2)\\ -0.046& (d=3)\end{array}$ | $\begin{array}{cc}-0.062& (d=2)\\ -0.149& (d=3)\end{array}$ | $\begin{array}{cc}-4.733& (d=2)\\ -2.219& (d=3)\end{array}$ |

## Appendix C. Formal Expression for ${\mathbf{\partial}}_{\mathit{s}}{\mathcal{D}}_{\mathbf{KL}}\mathbf{(}\mathit{\varphi}\mathbf{\parallel}{\mathit{\varphi}}_{\mathbf{ref}}\mathbf{)}$

## References

- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J.
**1948**, 27, 379–423. [Google Scholar] [CrossRef] [Green Version] - Gray, R.M. Entropy and Information Theory, 2nd ed.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Brey, J.J.; Santos, A. Nonequilibrium entropy of a gas. Phys. Rev. A
**1992**, 45, 8566–8572. [Google Scholar] [CrossRef] [PubMed] - Kremer, G.M. Thermodynamics and kinetic theory of granular materials. In Perspectives and Challenges in Statistical Physics and Complex Systems for the Next Decade; Viswanathan, G.M., Raposo, E.P., da Luz, M.G.E., Eds.; World Scientific: Singapore, 2014; pp. 287–299. [Google Scholar] [CrossRef]
- Chapman, S.; Cowling, T.G. The Mathematical Theory of Non-Uniform Gases, 3rd ed.; Cambridge University Press: Cambridge, UK, 1970. [Google Scholar]
- Garzó, V.; Santos, A. Kinetic Theory of Gases in Shear Flows: Nonlinear Transport; Fundamental Theories of Physics; Springer: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Statist.
**1951**, 22, 79–86. [Google Scholar] [CrossRef] - Kullback, S. Information Theory and Statistics; Dover: New York, NY, USA, 1978. [Google Scholar]
- Santos, A.; Kremer, G.M. Relative Entropy of a Freely Cooling Granular Gas. AIP Conf. Proc.
**2012**, 1501, 1044–1050. [Google Scholar] [CrossRef] [Green Version] - Bettolo Marconi, U.M.; Puglisi, A.; Vulpiani, A. About an H-theorem for systems with non-conservative interactions. J. Stat. Mech.
**2013**, P08003. [Google Scholar] [CrossRef] - de Soria, M.I.G.; Maynar, P.; Mischler, S.; Mouhot, C.; Rey, T.; Trizac, E. Towards an H-theorem for granular gases. J. Stat. Mech.
**2015**, P11009. [Google Scholar] [CrossRef] [Green Version] - Plata, C.A.; Prados, A. Global stability and H theorem in lattice models with nonconservative interactions. Phys. Rev. E
**2017**, 95, 052121. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bannerman, M.N.; Sargant, R.; Lue, L. DynamO: A Free O(N) General Event-Driven Molecular Dynamics Simulator. J. Comput. Chem.
**2011**, 32, 3329–3338. [Google Scholar] [CrossRef] [Green Version] - Garzó, V. Granular Gaseous Flows. A Kinetic Theory Approach to Granular Gaseous Flows; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Brilliantov, N.V.; Pöschel, T. Kinetic Theory of Granular Gases; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Brilliantov, N.; Pöschel, T. Deviation from Maxwell distribution in granular gases with constant restitution coefficient. Phys. Rev. E
**2000**, 61, 2809–2812. [Google Scholar] [CrossRef] [Green Version] - van Noije, T.P.C.; Ernst, M.H. Velocity distributions in homogeneous granular fluids: The free and the heated case. Granul. Matter
**1998**, 1, 57–64. [Google Scholar] [CrossRef] - Montanero, J.M.; Santos, A. Computer simulation of uniformly heated granular fluids. Granul. Matter
**2000**, 2, 53–64. [Google Scholar] [CrossRef] [Green Version] - Santos, A.; Montanero, J.M. The second and third Sonine coefficients of a freely cooling granular gas revisited. Granul. Matter
**2009**, 11, 157–168. [Google Scholar] [CrossRef] - Brey, J.J.; Ruiz-Montero, M.J.; Cubero, D. Homogeneous cooling state of a low-density granular flow. Phys. Rev. E
**1996**, 54, 3664. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ahmad, S.R.; Puri, S. Velocity distributions in a freely evolving granular gas. Europhys. Lett.
**2006**, 75, 56–62. [Google Scholar] [CrossRef] - Ahmad, S.R.; Puri, S. Velocity distributions and aging in a cooling granular gas. Phys. Rev. E
**2007**, 75, 031302. [Google Scholar] [CrossRef] - Yu, P.; Schröter, M.; Sperl, M. Velocity Distribution of a Homogeneously Cooling Granular Gas. Phys. Rev. Lett.
**2020**, 124, 208007. [Google Scholar] [CrossRef] - Bobylev, A.V.; Cercignani, C.; Toscani, G. Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials. J. Stat. Phys.
**2003**, 111, 403–417. [Google Scholar] [CrossRef] - Bisi, M.; Carrillo, J.A.; Toscani, G. Decay Rates in Probability Metrics Towards Homogeneous Cooling States for the Inelastic Maxwell Model. J. Stat. Phys.
**2006**, 124, 625–653. [Google Scholar] [CrossRef] - Bolley, F.; Carrillo, J.A. Tanaka Theorem for Inelastic Maxwell Models. Commun. Math. Phys.
**2007**, 276, 287–314. [Google Scholar] [CrossRef] [Green Version] - Carrillo, J.A.; Toscani, G. Contractive probability metrics and asymptotic behavior of dissipative kinetic equations. Riv. Mat. Univ. Parma
**2007**, 6, 75–198. [Google Scholar] - Carlen, E.A.; Carrillo, J.A.; Carvalho, M.C. Strong Convergence towards homogeneous cooling states for dissipative Maxwell models. Ann. I. H. Poincaré
**2009**, 26, 167–1700. [Google Scholar] [CrossRef] [Green Version] - Brilliantov, N.; Pöschel, T. Breakdown of the Sonine expansion for the velocity distribution of granular gases. Europhys. Lett.
**2006**, 74, 424–430, Erratum:**2006**, 75, 188, doi:10.1209/epl/i2006-10099-3. [Google Scholar] [CrossRef] [Green Version] - Noskowicz, S.H.; Bar-Lev, O.; Serero, D.; Goldhirsch, I. Computer-aided kinetic theory and granular gases. EPL
**2007**, 79, 60001. [Google Scholar] [CrossRef] - Brito, R.; Ernst, M.H. Extension of Haff’s cooling law in granular flows. Europhys. Lett.
**1998**, 43, 497–502. [Google Scholar] [CrossRef] [Green Version] - Goldshtein, A.; Shapiro, M. Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations. J. Fluid Mech.
**1995**, 282, 75–114. [Google Scholar] [CrossRef] - Coppex, F.; Droz, M.; Piasecki, J.; Trizac, E. On the first Sonine correction for granular gases. Physica A
**2003**, 329, 114–126. [Google Scholar] [CrossRef] [Green Version] - Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions; Dover: New York, NY, USA, 1972. [Google Scholar]
- Bird, G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows; Clarendon: Oxford, UK, 1994. [Google Scholar]
- Brey, J.J.; Dufty, J.W.; Kim, C.S.; Santos, A. Hydrodynamics for granular flow at low density. Phys. Rev. E
**1998**, 58, 4638–4653. [Google Scholar] [CrossRef] [Green Version] - Boltzmann, L. Lectures on Gas Theory; Dover: New York, NY, USA, 1995. [Google Scholar]
- Maynar, P.; Trizac, E. Entropy of Continuous Mixtures and the Measure Problem. Phys. Rev. Lett.
**2011**, 106, 160603. [Google Scholar] [CrossRef] [Green Version] - Mischler, S.; Mouhot, C.; Rodriguez Ricard, M. Cooling Process for Inelastic Boltzmann Equations for Hard Spheres, Part I: The Cauchy Problem. J. Stat. Phys.
**2006**, 124, 655–702. [Google Scholar] [CrossRef] [Green Version] - Mischler, S.; Mouhot, C. Cooling Process for Inelastic Boltzmann Equations for Hard Spheres, Part II: Self-Similar Solutions and Tail Behavior. J. Stat. Phys.
**2006**, 124, 703–746. [Google Scholar] [CrossRef] [Green Version] - Mischler, S.; Mouhot, C. Stability, Convergence to Self-Similarity and Elastic Limit for the Boltzmann Equation for Inelastic Hard Spheres. Commun. Math. Phys.
**2009**, 288, 431–502. [Google Scholar] [CrossRef] - Pettersson, R. On Solutions to the Linear Boltzmann Equation for Granular Gases. Transp. Theory Stat. Phys.
**2004**, 33, 527–543. [Google Scholar] [CrossRef] - Esipov, S.E.; Pöschel, T. The granular phase diagram. J. Stat. Phys.
**1997**, 86, 1385–1395. [Google Scholar] [CrossRef] [Green Version] - Kuninaka, H.; Hayakawa, H. Anomalous Behavior of the Coefficient of Normal Restitution in Oblique Impact. Phys. Rev. Lett.
**2004**, 93, 154301. [Google Scholar] [CrossRef] [PubMed] [Green Version]

**Figure 1.**Plot of (

**a**) the HCS fourth cumulant ${a}_{2}^{\mathrm{H}}$ and (

**b**) the HCS sixth cumulant ${a}_{3}^{\mathrm{H}}$ versus the coefficient of restitution $\alpha $. Symbols represent simulation results: MD (this work) for disks (∘) and spheres (∆), and DSMC [18,19,29] for disks (×) and spheres (□). The lines are the theoretical predictions ${a}_{2}^{\mathrm{H},b}$ (see Equation (20)) and ${a}_{3}^{\mathrm{H},ab}$ (see Equations (22) and (24)). The insets magnify the region $0.6\le \alpha \le 1$. The error bars in the simulation data are smaller than the size of the symbols.

**Figure 2.**Evolution of the fourth cumulant ${a}_{2}\left(s\right)$ as a function of the average number of collisions per particle for (

**a**) disks and (

**b**) spheres. Symbols represent MD simulation results, while the lines correspond to the theoretical prediction (26). The values of the coefficient of restitution are (from top to bottom) $\alpha =0.1$ (□), $0.4$ (×), 1 (∘), and $0.87$ (∆). The error bars in the simulation data are smaller than the size of the symbols.

**Figure 3.**Evolution of the sixth cumulant ${a}_{3}\left(s\right)$ as a function of the average number of collisions per particle for (

**a**) disks and (

**b**) spheres. Symbols represent MD simulation results, while the lines correspond to the theoretical prediction (29). The values of the coefficient of restitution are (from bottom to top on the right side) $\alpha =0.1$ (□), $0.4$ (×), $0.87$ (∆), and 1 (∘). The error bars in the simulation data are smaller than the size of the symbols, except in the stationary regime for $\alpha =0.1$.

**Figure 4.**Evolution of the fourth cumulant ${a}_{2}\left(s\right)$ for a coefficient of restitution $\alpha =0.1$ as a function of the average number of collisions per particle for (

**a**) disks and (

**b**) spheres. Symbols represent MD simulation results, while the lines correspond to the theoretical prediction (26). Five different initial conditions are considered (see Appendix B): $\delta $ (⋄), M (∘), $\mathsf{\Gamma}$ (×), I (□), and S (∆). The error bars in the simulation data are smaller than the size of the symbols, except in the early stage for the initial condition S.

**Figure 5.**Evolution of the sixth cumulant ${a}_{3}\left(s\right)$ for a coefficient of restitution $\alpha =0.1$ as a function of the average number of collisions per particle for (

**a**) disks and (

**b**) spheres. Symbols represent MD simulation results, while the lines correspond to the theoretical prediction (29). Five different initial conditions are considered (see Appendix B): $\delta $ (⋄), M (∘), $\mathsf{\Gamma}$ (×), I (□), and S (∆). The error bars in the simulation data are smaller than the size of the symbols, except in the early stage for the initial condition S.

**Figure 6.**Evolution of ${\mathcal{D}}_{\mathrm{KL}}(\varphi \parallel {\varphi}_{\mathrm{M}})$ (in logarithmic scale) as a function of the average number of collisions per particle for (

**a**) disks and (

**b**) spheres. Symbols represent MD simulation results, while the lines correspond to the theoretical approximation (39) (the thin dashed lines for the first stage of the evolution mean that it was necessary to take the real part). The values of the coefficient of restitution are (from top to bottom on the right side) $\alpha =0.1$ (□), $0.4$ (×), $0.87$ (∆), and 1 (∘). The error bars in the simulation data are smaller than the size of the symbols, except when ${\mathcal{D}}_{\mathrm{KL}}(\varphi \parallel {\varphi}_{\mathrm{M}})\lesssim {10}^{-4}$ for $\alpha =1$.

**Figure 7.**Evolution of ${\mathcal{D}}_{\mathrm{KL}}(\varphi \parallel {\varphi}_{\mathrm{M}})$ (in logarithmic scale) for a coefficient of restitution $\alpha =0.1$ as a function of the average number of collisions per particle for hard (

**a**) disks and (

**b**) spheres. Symbols represent MD simulation results. Five different initial conditions are considered (see Appendix B): $\delta $ (⋄), M (∘), $\mathsf{\Gamma}$ (×), I (□), and S (∆). The error bars are smaller than the size of the symbols, except when ${\mathcal{D}}_{\mathrm{KL}}(\varphi \parallel {\varphi}_{\mathrm{M}})\lesssim {10}^{-4}$ for the initial condition M.

**Figure 8.**Evolution of ${\mathcal{D}}_{\mathrm{KL}}(\varphi \parallel {\varphi}_{\mathrm{H}})$ (in logarithmic scale) as a function of the average number of collisions per particle for (

**a**) disks and (

**b**) spheres. Symbols represent MD simulation results, while the lines correspond to the theoretical prediction (40) (the thin dashed lines for the first stage of the evolution meaning that it was necessary to take the real part). The values of the coefficient of restitution are $\alpha =0.1$ (□), $0.4$ (×), $0.87$ (∆), and 1 (∘) The error bars in the simulation data are smaller than the size of the symbols, except when ${\mathcal{D}}_{\mathrm{KL}}(\varphi \parallel {\varphi}_{\mathrm{M}})\lesssim {10}^{-4}$.

**Figure 9.**Evolution of ${\mathcal{D}}_{\mathrm{KL}}(\varphi \parallel {\varphi}_{\mathrm{H}})$ (in logarithmic scale) for a coefficient of restitution $\alpha =0.1$ as a function of the average number of collisions per particle for hard (

**a**) disks and (

**b**) spheres. Symbols represent MD simulation results. Five different initial conditions are considered (see Appendix B): $\delta $ (⋄), M (∘), $\mathsf{\Gamma}$ (×), I (□), and S (∆). The error bars are smaller than the size of the symbols, except when ${\mathcal{D}}_{\mathrm{KL}}(\varphi \parallel {\varphi}_{\mathrm{M}})\lesssim {10}^{-4}$.

**Figure 10.**Plot of ${\mathcal{D}}_{\mathrm{KL}}({\varphi}_{\mathrm{H}}\parallel {\varphi}_{M})$ as a function of the coefficient of restitution $\alpha $ for disks (– –, ∘) and spheres (—, ∆). Symbols represent MD simulation results, while the lines correspond to the theoretical prediction provided by Equation (39) with ${a}_{2}\left(s\right)\to {a}_{2}^{\mathrm{H}}$ and ${a}_{3}\left(s\right)\to {a}_{3}^{\mathrm{H}}$. The inset magnifies the region $0.6\le \alpha \le 1$. The error bars in the simulation data are smaller than the size of the symbols.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Megías, A.; Santos, A.
Kullback–Leibler Divergence of a Freely Cooling Granular Gas. *Entropy* **2020**, *22*, 1308.
https://doi.org/10.3390/e22111308

**AMA Style**

Megías A, Santos A.
Kullback–Leibler Divergence of a Freely Cooling Granular Gas. *Entropy*. 2020; 22(11):1308.
https://doi.org/10.3390/e22111308

**Chicago/Turabian Style**

Megías, Alberto, and Andrés Santos.
2020. "Kullback–Leibler Divergence of a Freely Cooling Granular Gas" *Entropy* 22, no. 11: 1308.
https://doi.org/10.3390/e22111308