# Horizon Thermodynamics in D-Dimensional f(R) Black Hole

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. The New Horizon-First Law and Its Application in f(R) Theory

## 3. The Entropy and Energy of D-Dimensional f(R) Black Hole

## 4. Applications

#### 4.1. The Constant Ricci Curvature Case

#### 4.2. The Non-Constant Ricci Curvature Case

#### 4.2.1. $F\left(r\right)=1+\alpha r$

#### 4.2.2. $F=\alpha {r}^{a}$

**${a}_{4}=2\alpha {(a-2)}^{\frac{a}{2}-1}{\left[\frac{a(D-1)(D-3)}{D-2+2a-{a}^{2}}\right]}^{\frac{a}{2}}$.**The entropy (44) and the energy (45) respectively reads

## 5. Discussion and Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D
**1973**, 7, 2333–2346. [Google Scholar] [CrossRef] - Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys.
**1975**, 43, 199–220. [Google Scholar] [CrossRef] - Bardeen, J.M.; Carter, B.; Hawking, S.W. The four laws of black hole mechanics. Commun. Math. Phys.
**1973**, 31, 161–170. [Google Scholar] [CrossRef] - Jacobson, T. Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett.
**1995**, 75, 1260–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Yang, R. The thermal entropy density of spacetime. Entropy
**2013**, 15, 156. [Google Scholar] [CrossRef] - Yang, R.-J. Is gravity entropic force? Entropy
**2014**, 16, 4483–4488. [Google Scholar] [CrossRef] [Green Version] - Brustein, R.; Hadad, M. The Einstein equations for generalized theories of gravity and the thermodynamic relation δQ=TδS are equivalent. Phys. Rev. Lett.
**2009**, 103, 101301. [Google Scholar] [CrossRef] - Eling, C.; Guedens, R.; Jacobson, T. Non-equilibrium thermodynamics of spacetime. Phys. Rev. Lett.
**2006**, 96, 121301. [Google Scholar] [CrossRef] [Green Version] - Elizalde, E.; Silva, P.J. F(R) gravity equation of state. Phys. Rev. D
**2008**, 78, 061501. [Google Scholar] [CrossRef] [Green Version] - Bamba, K.; Geng, C.-Q.; Nojiri, S.; Odintsov, S.D. Equivalence of modified gravity equation to the Clausius relation. Europhys. Lett.
**2010**, 89, 50003. [Google Scholar] [CrossRef] [Green Version] - Chen, S.; Jing, J.; Liao, H. Black hole entropy arising from massless scalar field with Lorentz violation induced by the coupling to Einstein tensor. Phys. Lett. B
**2015**, 751, 474–478. [Google Scholar] [CrossRef] - Padmanabhan, T. Classical and quantum thermodynamics of horizons in spherically symmetric space-times. Class. Quant. Gravity
**2002**, 19, 5387–5408. [Google Scholar] [CrossRef] - Paranjape, A.; Sarkar, S.; Padmanabhan, T. Thermodynamic route to field equations in Lancos-Lovelock gravity. Phys. Rev. D
**2006**, 74, 104015. [Google Scholar] [CrossRef] [Green Version] - Sheykhi, A.; Dehghani, M.H.; Dehghani, R. Horizon Thermodynamics and Gravitational Field Equations in Quasi Topological Gravity. Gen. Rel. Gravity
**2014**, 46, 1679. [Google Scholar] [CrossRef] [Green Version] - Kothawala, D.; Sarkar, S.; Padmanabhan, T. Einstein’s equations as a thermodynamic identity: The Cases of stationary axisymmetric horizons and evolving spherically symmetric horizons. Phys. Lett. B
**2007**, 652, 338–342. [Google Scholar] [CrossRef] [Green Version] - Hansen, D.; Kubiznak, D.; Mann, R. Horizon Thermodynamics from Einstein’s Equation of State. Phys. Lett. B
**2017**, 771, 277–280. [Google Scholar] [CrossRef] - Feng, H.; Yang, R.-J. Horizon thermodynamics in f(R,R
^{μν}R_{μν}) Theory. Chin. Phys. C**2020**, in press. [Google Scholar] - Zheng, Y.; Yang, R.-J. Horizon thermodynamics in f(R) theory. Eur. Phys. J. C
**2018**, 78, 682. [Google Scholar] [CrossRef] - Zheng, Y.; Yang, R.-J. Entropy and Energy of Static Spherically Symmetric Black Hole in f(R) theory. Universe
**2020**, 6, 47. [Google Scholar] [CrossRef] [Green Version] - Yang, R.-J. Constraints from accretion onto a Tangherlini-Reissner-Nordstrom black hole. Eur. Phys. J. C
**2019**, 79, 367. [Google Scholar] [CrossRef] - Cognola, G.; Gorbunova, O.; Sebastiani, L.; Zerbini, S. On the Energy Issue for a Class of Modified Higher Order Gravity Black Hole Solutions. Phys. Rev. D
**2011**, 84, 023515. [Google Scholar] [CrossRef] [Green Version] - Deser, S.; Tekin, B. Energy in generic higher curvature gravity theories. Phys. Rev. D
**2003**, 6, 084009. [Google Scholar] [CrossRef] [Green Version] - Deser, S.; Tekin, B. New energy definition for higher curvature gravities. Phys. Rev. D
**2007**, 75, 084032. [Google Scholar] [CrossRef] [Green Version] - Abreu, G.; Visser, M. Tolman mass, generalized surface gravity, and entropy bounds. Phys. Rev. Lett.
**2010**, 105, 041302. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Cai, R.-G.; Cao, L.-M.; Hu, Y.-P.; Ohta, N. Generalized Misner-Sharp Energy in f(R) Gravity. Phys. Rev. D
**2009**, 80, 104016. [Google Scholar] [CrossRef] [Green Version] - De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Rel.
**2010**, 13, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Sotiriou, T.P.; Faraoni, V. f(R) theories of Gravity. Rev. Mod. Phys.
**2010**, 82, 451–497. [Google Scholar] [CrossRef] [Green Version] - Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rep.
**2011**, 509, 167–321. [Google Scholar] [CrossRef] [Green Version] - Hayward, S.A. Unified first law of black hole dynamics and relativistic thermodynamics. Class. Quant. Gravity
**1998**, 15, 3147–3162. [Google Scholar] [CrossRef] - Dyer, E.; Hinterbichler, K. Boundary Terms, Variational Principles and Higher Derivative Modified Gravity. Phys. Rev. D
**2009**, 79, 024028. [Google Scholar] [CrossRef] [Green Version] - Vollick, D.N. Noether Charge and Black Hole Entropy in Modified Theories of Gravity. Phys. Rev. D
**2007**, 76, 124001. [Google Scholar] [CrossRef] [Green Version] - Iyer, V.; Wald, R.M. A Comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes. Phys. Rev. D
**1995**, 52, 4430–4439. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Di Criscienzo, R.; Hayward, S.A.; Nadalini, M.; Vanzo, L.; Zerbini, S. Hamilton-Jacobi tunneling method for dynamical horizons in different coordinate gauges. Class. Quant. Gravity
**2010**, 27, 015006. [Google Scholar] [CrossRef] [Green Version] - Pogosian, L.; Silvestri, A. The pattern of growth in viable f(R) cosmologies. Phys. Rev. D
**2008**, 77, 023503. [Google Scholar] [CrossRef] [Green Version] - Dolgov, A.D.; Kawasaki, M. Can modified gravity explain accelerated cosmic expansion? Phys. Lett. B
**2003**, 573, 1–4. [Google Scholar] [CrossRef] [Green Version] - Parikh, M.K. The Volume of black holes. Phys. Rev. D
**2006**, 73, 124021. [Google Scholar] [CrossRef] [Green Version] - Amirabi, Z.; Halilsoy, M.; Habib Mazharimousavi, S. Generation of spherically symmetric metrics in f(R) gravity. Eur. Phys. J. C
**2016**, 76, 338. [Google Scholar] [CrossRef] [Green Version] - Bueno, P.; Cano, P.A. On black holes in higher-derivative gravities. Class. Quant. Gravity
**2017**, 34, 175008. [Google Scholar] [CrossRef] [Green Version] - Nashed, G.G.L.; Capozziello, S. Charged spherically symmetric black holes in f(R) gravity and their stability analysis. Phys. Rev. D
**2019**, 99, 104018. [Google Scholar] [CrossRef] [Green Version]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhu, C.; Yang, R.-J.
Horizon Thermodynamics in *D*-Dimensional *f*(*R*) Black Hole. *Entropy* **2020**, *22*, 1246.
https://doi.org/10.3390/e22111246

**AMA Style**

Zhu C, Yang R-J.
Horizon Thermodynamics in *D*-Dimensional *f*(*R*) Black Hole. *Entropy*. 2020; 22(11):1246.
https://doi.org/10.3390/e22111246

**Chicago/Turabian Style**

Zhu, Chenrui, and Rong-Jia Yang.
2020. "Horizon Thermodynamics in *D*-Dimensional *f*(*R*) Black Hole" *Entropy* 22, no. 11: 1246.
https://doi.org/10.3390/e22111246