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Abstract: We consider brain activity from an information theoretic perspective. We analyze the
information processing in the brain, considering the optimality of Shannon entropy transport using
the Monge–Kantorovich framework. It is proposed that some of these processes satisfy an optimal
transport of informational entropy condition. This optimality condition allows us to derive an
equation of the Monge–Ampère type for the information flow that accounts for the branching
structure of neurons via the linearization of this equation. Based on this fact, we discuss a version of
Murray’s law in this context.

Keywords: informational entropy; neuroscience; Monge–Ampère equation; optimal transport;
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1. Introduction

The brain as the organ responsible for processing information in the body has been subjected to
evolutionary pressure. “The business of the brain is computation, and the task it faces is monumental.
It must take sensory inputs from the external world, translate this information into a computationally
accessible form, then use the results to make decisions about which course of action is appropriate
given the most probable state of the world” [1]. It is therefore arguable that information processing
has been optimized, at least to some extent, by natural selection [2,3]. This is a rather abstract claim
that should ultimately be contrasted with experiments (in this respect, see [4,5]). In a subsequent work,
we explore this question in more detail, but a plausible connection can be established with experimental
and theoretical results via fMRI in which different measures of cost have been proposed. The brain
as an informational system is the subject of active research (see for instance [6–8]). For example,
“behavior analysis has adopted these tools [Information theory] as a novel means of measuring the
interrelations between behavior, stimuli, and contingent outcomes” [1]. In this context, in [1], it was
shown that informational measures of contingency appear to be a reasonable basis for predicting
behavior. We also refer the reader to the issue devoted to information theory in neuroscience [9] for a
recent account of this perspective. In the work just mentioned, several papers investigate optimization
principles (for instance, the maximum entropy principle [10] or the free energy principle; see [11,12])
as tools for understanding inference, coding, and other brain functionalities. Information theory will
allow filling the gaps between disciplines, for example psychology, neurobiology, physics, mathematics,
and computer science. In the present paper, we adopt a related setting and mathematically formalize
information processing in the brain within the framework of optimal transport. The rationale for
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this is consistent with the view that some essential brain functionalities such as inference and the
coordination of tasks (e.g., auditory and motor activities) involve the transportation of information
and that such processes should be efficient, have been subjected to evolutionary pressure, and as a
consequence, are (pseudo) optimal. As was already pointed out, our theoretical proposal should be
contrasted with experimental results.

It is necessary to observe from the very beginning that information processing and transport are
of an intrinsically spatiotemporal nature. Therefore, our proposal should include these two features.
In doing so, we expect the spatial part of the optimization to give rise to spatial patterns, for instance
network-like or branching hierarchical components, as well as the temporal structure, such as periodic
or synchronized patterns. However, in this paper, we begin by considering only the spatial part,
except for a few general remarks. Since our proposal is an attempt to establish a methodological
framework to study informational entropy transport in the brain, we deal with spacial aspects first,
leaving a study of the dynamical aspects for a subsequent work. Furthermore, in order to simplify
the problem, we consider only the one-dimensional case in the mathematical formalism. However,
it is certain that the geometry of the brain has to play an essential role in all the processes [13], and we
extrapolate some of the results we obtain to two and three dimensions.

Now, we provide an overview of the paper. In Section 2, we present a general framework for
information processing in the brain as an optimal transport of entropy, as well as some mathematical
results in the context of the Monge–Kantorovich problem. The main idea is that instead of considering
that some sort of physical mass is being transported, it is informational entropy. In order to provide
the mathematical results and for the sake of completeness, we adapt the material on the existence of a
solution in the optimal mass transportation case as presented by Bonnotte [14] to the informational case.
We conclude this section with a derivation of the Monge–Ampère equation in the one-dimensional case.
We begin Section 3 by recalling the linearization of the Monge–Ampère equation around the square of
the distance function, which involves the Laplacian. Then, we argue that adding a nonlinear term is
justified by the physiological nature of transmission along neurons. The resulting model is a semilinear
elliptic equation. At the end of this section, we relate the qualitative features of the solutions with
the branching structure of neural networks in the brain. In other words, we show that the optimal
transport process of informational entropy is consistent with the geometric branching structure of
neural branching. In Section 4, we elaborate on the relationship of the branching structure of neurons
and Murray’s law [15], which provides the optimal branching ratio of the father to the daughter branch
sections, as well as the optimal bifurcation angle. We propose a modified version of Murray’s law
when the underlying transport network carries information instead of a fluid. The last section is
devoted to concluding remarks, further research, and open questions.

2. The Monge–Kantorovich Problem

We present a general overview of the results on optimal transportation theory needed in this work.
For a complete exposition, see [14,16,17] or [18], but for the sake of completeness, we include a
general discussion without giving the proofs of the results, but including appropriate references.
Our presentation follows closely [14] and some parts of [16].

The original Monge–Kantorovich problem was formulated in the context of mass transport
(Monge) or budget allocation (Kantorovich). In a later section, we will adapt the setting to include the
transport of informational entropy.

Monge’s problem: Given two probability measures µ and ν on Rn and a cost function
c : Rn ×Rn −→ [0, ∞], the problem of Monge can be stated as follows:

Find T : Rn −→ Rn, such that ν = T#µ and
∫
Rn

c(x, T(x))dµ(x) is minimal. (1)
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The condition ν = T#µ means that T transports µ onto ν; that is, ν is the push-forward of µ by T: for
any ξ,

∫
Rn ξ(y)dν(y) =

∫
Rn ξ(T(x))dµ(x).

Monge–Kantorovich problem: Monge’s problem might have no solution; hence, it is better to
take the following generalization proposed by Leonid Kantorovich: instead of looking for a map,
find a measure:

π ∈ Π(µ, ν) such that
∫

Rn×Rn

c(x, y)dπ(x, y) is minimal, (2)

where Π(µ, ν) stands for the set of all transport plans between µ and ν, i.e., the probability measures
on Rn ×Rn with marginals µ and ν. This problem really extends Monge’s problem. For any transport
map T, sending µ onto ν yields a measure π ∈ Π(µ, ν), which is given by π = (Id, T)#µ, i.e., the only
measure π on Rn ×Rn such that:

∀ξ ∈ Cb,
∫
Rn×Rn

ξ(x, y)dπ(x, y) =
∫
Rn

ξ(T(x))dµ(x),

and the associated costs of transportation are the same. In this version, it is not difficult to show that
there is always a solution ([14] or [16]).

2.1. Dual Formulation

There is a duality between the Monge–Kantorovich problem (2) and the following problem:

Find ψ ∈ L1(µ), φ ∈ L1(ν), such that ψ(x) + φ(y) ≤ c(x, y) and
∫
X

ψ(x)dµ +
∫
Y

φ(y)dν is maximal.

It seems natural to look for a solution of this problem among the pairs (ψ, φ) ∈ P(X×Y) that satisfy:

φ(y) = inf
x
{c(x, y)− ψ(x)} and ψ(x) = inf

y
{c(x, y)− φ(y)}.

We will write φ(y) = ψc(y) and ψ(x) = φc(x).

Definition 1. A function ψ is said to be c-concave if ψ = φc for some function φ. In that case, ψc and φc are
called the c-transform of ψ and φ, respectively. We also say that (ψ, ψc) is an admissible pair and ψ, ψc are
admissible potentials.

Then, the problem becomes:

Find ψ ∈ L1(µ) such that
∫
X

ψ(x)dµ +
∫
Y

ψc(y)dν is maximal. (3)

The function ψ is called a Kantorovich potential between µ and ν.
The following proposition explains how to relate the Monge–Kantorovich problem (2) with (3),

known as the Kantorovich duality principle.

Proposition 1 (Kantorovich duality principle). Let µ and ν be Borel probability measures on X and Y ∈
Rn, respectively. If the cost function c : Rn ×Rn −→ [0, ∞] is lower semi-continuous and:∫

Y

∫
X

c(x, y)dµ(x)dν(y) < ∞,

then there is a Borel map ψ : Rn −→ R that is c-concave and optimal for (3). Moreover, the resulting maximum
is equal to the minimum of the Monge–Kantorovich problem (2); i.e.,
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min
π∈Π(µ,ν)

∫
Rn×Rn

c(x, y)dπ(x, y) = max
φ∈L1(µ)


∫
X

φ(x)dµ(x) +
∫
Y

φc(y)dν(y)

 ,

or:
min

π∈Π(µ,ν)
I[π] = max

(φ,φc)∈Φ
J(φ, φc), (4)

where,

Φ =
{
(φ, ψ) ∈ L1(µ)× L1(ν)

∣∣∣φ(x) + ψ(y) ≤ c(x, y) for µ− a.e. x ∈ X and ν− a.e. y ∈ Y
}

. (5)

If π ∈ Π(µ, ν) is optimal, then φ(x) + φc(y) = c(x, y) almost everywhere for π.

Proof. A proof of this result can be found in [16].

2.2. Solution in the Real Line: Optimal Transportation Case

For the rest of this section, we only consider the one-dimensional case, as discussed in
the Introduction.

Let X and Y be two bounded smooth open sets in R and µ(dx), ν(dy) the probability measures
of X and Y, respectively, with µ(dx) = f dx, ν(dy) = gdy, f = 0 in R\X, and g = 0 in R\Y. Let F :
R −→ [0, 1] and G : R −→ [0, 1] be the cumulative distributions of µ and ν, respectively, defined by
F(x) = µ((−∞, x]) and G(y) = ν((−∞, y]).

Proposition 2. Let h ∈ C1(R) be a non-negative, strictly convex function. Let µ and ν be Borel probability
measures on R such that: ∫

Y

∫
X

h(x− y)dµ(x)dν(y) < ∞. (6)

If µ has no atom and F and G stand for the respective cumulative distribution of µ and ν, respectively, then:

T = G−1 ◦ F

solves Monge’s problem (1) for the cost:
c(x, y) = h(x− y). (7)

If π is the induced transform plan, that is:
π = (Id, T)#µ

defined as T#µ(E) = µ(T−1(E)) for E ∈ Y, then π is optimal for the Monge–Kantorovich problem (2).

Proof. A proof of Proposition (2) can be found in [14].

In order to get the previous result, one has to consider the functional:∫
X×Y

c(x, y)dπ(x, y),

where c : X×Y −→ R is some given cost function and Π(x, y) stands for the set of all transport plans
between µ and ν, meaning the probability measures on R×R with marginals µ and ν; i.e.,

Π(µ, ν) =

π ∈ P(X×Y)
∣∣∣ ∫

Y

dπ(x, y) = dµ(x),
∫
X

dπ(x, y) = dν(y)

 , (8)

or more rigorously:
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Π(µ, ν) =
{

π ∈ P(X×Y)
∣∣∣π(A×Y) = µ(A), π(X, B) = ν(B), A ⊆ X, B ⊆ Y

}
.

Our goal is to get a similar result to Proposition (2) in the case when entropy transportation is
considered instead of mass transportation. This is the content of the next section.

3. Solution in the Real Line: Optimal Entropy Transportation Case

As was pointed out in [1], “the fundamental measure in information theory is the entropy.
It corresponds to the uncertainty associated with a signal. “Entropy” and “information” are
used interchangeably, because the uncertainty about an outcome before it is observed, corresponds
to the information gained by observing it” (for a review, see [1,19] or [20]). In that context, we will
prove the existence of an optimal entropy transport for the cost function c(x, y) satisfying (6) and (7),
similarly to the optimal transportation case discussed in the last section. We will also find the
Monge–Ampère equation for quadratic cost |x− y|2/2 for this optimal entropy transport. A few words
are in order regarding the choice of c. From the mathematical perspective, it considerably simplifies the
analysis. As a matter of fact, the optimal transportation problem has not been solved for the general
case of nonquadratic costs. On the other hand, from the physiological point of view, it is natural to
assume that the energy required to send a signal from one point of the brain to another can be taken as
a monotone function of the distance.

Let µ and ν be probability measures defined as above, then take X = Y = Ω ∈ R, and let the
entropy be characterized by Shannon’s proposal:

− ρ(x) ln(ρ(x)), (9)

where x ∈ Ω, ρ, and ρ̃ are the distribution densities with respect to µ and ν, respectively, in the same
way as the formulation of the optimal transportation problem states; i.e.,

µ = ρdx, ν = ρ̃dy,

satisfying (8). We wish (9) to be related to the probability measure µ in Ω. It is natural to think that in
passing from the state characterized by (9) to the one characterized by−ρ̃(y) ln(ρ̃(y)), where y ∈ Ω and
wish it to be related to the probability measure ν in Ω. Similarly, −ρ(x) ln(ρ(x)) and −ρ̃(y) ln(ρ̃(y))
will be the marginals of −ρρρ(x, y) ln(ρρρ(x, y)).

As a first concrete proposal, we consider the following functional:∫
Ω×Ω

c(x, y)ρρρ(x, y) ln(ρρρ(x, y)) dxdy,

where c is a spatial cost function. Notice that we have dropped the minus sign, so looking for
maximal entropy is equivalent to minimizing the previous expression. The problem is then to find the
optimal entropy transport strategy between x and y (analogous to Monge’s problem). There is
however a standard problem, which is the fact that in the continuous case, the entropy could
be negative, whereas in the discrete case (i.e., for discrete probability functions), the entropy is
always positive. We therefore consider the absolute value of the entropy defined in (9). More precisely,
define the following:

|ρ ln ρ(x)| = (ρ ln ρ)+(x) + (ρ ln ρ)−(x),

with:
(ρ ln ρ)+(x) = max

Ω
(ρ ln ρ, 0) and (ρ ln ρ)−(x) = −min

Ω
(ρ ln ρ, 0).

It is natural to assume that: ∫
Ω

|ρ ln ρ(x)| dx = K, (10)
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for some constant K ∈ R+\{0}, and let:

dµ =
1
K
|ρ(x) ln ρ(x)|dx, (11)

with:
dµ+ =

1
K
(ρ ln ρ)+(x)dx and dµ− =

1
K
(ρ ln ρ)−(x)dx.

Observation 1. If ρρρ(x, y) is the distribution density of π(x, y) in Ω×Ω, then (11) is a well-defined Borel
probability measure on Ω, and:

dν =
1
K
|ρ̃(y) ln ρ̃(y)|dy (12)

is also a well-defined Borel probability measure on Ω. Then, we can define:

Π̂(µ, ν) =

π ∈ P(Ω×Ω)
∣∣∣ ∫
Y=Ω

dπ(x, y) = dµ(x),
∫

X=Ω

dπ(x, y) = dν(y)

 , (13)

with µ and ν given by (11) and (12); or more rigorously:

Π̂(µ, ν) =
{

π ∈ P(Ω×Ω)
∣∣∣π(A, Ω) = µ(A), π(Ω, B) = ν(B), A, B ⊆ Ω

}
,

with µ and ν given by (11) and (12); we can take the cumulative distributions of µ and ν, respectively,
by F(x) = µ((−∞, x]) and G(y) = ν((−∞, y]) with µ and ν given as before. By definition, they are
non-decreasing.

Now, we are in the condition to establish the problem (1) analogous to that of Monge, namely:

Find a map T : R −→ R, such that ν = T#µ with µ and ν given by (11) and (12) and∫
Ω

c(x, T(x))dµ(x) is minimal, (14)

and analogous to the Monge–Kantorovich problem:

Find a measure π ∈ Π̂(µ, ν) given by (13) with µ and ν given by (11) and (12) such that∫
Ω×Ω

c(x, y) dπ(x, y) is minimal. (15)

Next, we present the equivalent proposition of (2), for the measures given by (11) and (12), namely:

Proposition 3. Let h ∈ C1(R) be a non-negative, strictly convex function. Let µ and ν be Borel probability
measures on R given by (11) and (12), respectively. Suppose that:∫

Ω

∫
Ω

h(x− y)dµ(x)dν(y) < ∞. (16)

for Ω ∈ R. If µ has no atom and F and G represent the corresponding cumulative distribution functions of µ

and ν, respectively, then:
T = G−1 ◦ F

solves Problem (14) for the cost:
c(x, y) = h(x− y).

If π is the induced entropy transform plan, that is:
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π = (Id, T)#µ,

defined as T#µ(E) = µ(T−1(E)) for E ∈ Ω, then π is optimal for Problem (15).

Proof. The proof of this result is adapted from [14] and for the sake of completeness is given in
Appendix A.

Our next goal is to deduce the Monge–Ampère equation for this case. In order to do that, we will
need an analog of the Kantorovich duality principle (Proposition (1)), for the measures given by
(11) and (12), namely:

Proposition 4. Let µ and ν be the Borel probability measures on Ω ∈ R given by (11) and (12), respectively.
If the cost function:

c : R×R −→ [0, ∞)

is lower semi-continuous and: ∫
Ω

∫
Ω

c(x, y)dµ(x)dν(y) < ∞,

then there is a Borel map ψ : R −→ R that is c-concave and optimal for (3). Moreover, the resulting maximum
is equal to the minimum of Problem (15); i.e.,

min
π∈Π̂(µ,ν)

∫
R×R

c(x, y)dπ(x, y) = max
ψ∈L1(µ)


∫
Ω

ψ(x)dµ(x) +
∫
Ω

ψc(y)dν(y)


or:

min
π∈Π̂(µ,ν)

I[π] = max
(ψ,ψc)∈Φ

J(ψ, ψc), (17)

where,

Φ =
{
(φ, ψ) ∈ L1(µ)× L1(ν)

∣∣∣ φ(x) + ψ(y) ≤ c(x, y) for µ− a.e. x ∈ Ω and ν− a.e. y ∈ Ω
}

, (18)

and if π ∈ Π̂(µ, ν) given by (13) is optimal, then ψ(x) + ψc(y) = c(x, y) almost everywhere for π.

Proof. A proof of this result can be found in Appendix A.

If we propose C(x, y) = |x − y|2/2, we wish T to be expressed as T = ∇φ for some convex
function φ and then to be able to find the corresponding Monge–Ampère equation related to the
measures µ and ν given by (11) and (12). This fact is guaranteed by Brenier’s theorem. The details of
its proof adapted for our case are important and can be found in Appendix A.

Theorem 1 (Brenier). Let µ and ν be the Borel probability measures on Ω ∈ R given by (11) and (12),
respectively, and with finite second-order moments; that is, such that:∫

Ω

|x|2dµ(x) < ∞ and

∫
Ω

|y|2dν(y) < ∞. (19)

Then, if µ is absolutely continuous on Ω, there exists a unique
T : R −→ R such that ν = T#µ and:∫

Ω

|x− T(x)|2dµ(x) = min
γ∈Π̂(µ,ν)

∫
Ω

|x− y|2dγ(x, y),
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with Π̂(µ, ν) given by (13). Moreover, there is only one optimal transport plan, γ, which is necessarily (Id, T)#µ,
and T is the gradient of a convex function ϕ, which is therefore unique up to an additive constant. There is also a
unique (up to an additive constant) Kantorovich potential, ψ, which is locally Lipschitz and linked to ϕ through
the relation:

ϕ(x) =
1
2
|x|2 − ψ(x).

Proof. See Appendix A.

Observation 2. Observe that Theorem 1 holds for the general case on Rn.

The Monge–Ampère Equation

Let:
dµ(x) =

1
K

∣∣∣ρ(x) ln[ρ(x)]
∣∣∣dx and dν(y) =

1
K

∣∣∣ρ̃(y) ln[ρ̃(y)]
∣∣∣dy

be two probability measures, absolutely continuous with respect to the Lebesgue measure.
By Theorem 1, there exists a unique gradient of a convex function, ϕ, such that:∫

Ω

ζ(y)
∣∣∣ρ̃(y) ln[ρ̃(y)]

∣∣∣dy =
∫
Ω

ζ(∇φ(x))
∣∣∣ρ(x) ln[ρ(x)]

∣∣∣dx, (20)

for all test functions ζ ∈ Cb(R). Since ϕ is strictly convex, then ∇ϕ is C0 and one-to-one.
Hence, taking y = ∇ϕ(x), we get:∫

Ω

ζ(y)
∣∣∣ρ̃(y) ln[ρ̃(y)]

∣∣∣dy =
∫
Ω

ζ(∇φ(x))
∣∣∣ρ̃(∇ϕ(x)) ln[ρ̃(∇ϕ(x))]

∣∣∣det D2 ϕ(x)dx. (21)

From (20) and (21), we get:∣∣∣ρ(x) ln[ρ(x)]
∣∣∣ = ∣∣∣ρ̃(∇ϕ(x)) ln[ρ̃(∇ϕ(x))]

∣∣∣det D2 ϕ(x), (22)

and the Monge–Ampère equation:

det D2 ϕ(x) =

∣∣∣ρ(x) ln[ρ(x)]
∣∣∣∣∣∣ρ̃(∇ϕ(x)) ln[ρ̃(∇ϕ(x))]

∣∣∣ , (23)

corresponding to this case.

4. Neural Branching Structure and the Linearization of the Monge–Ampère Equation

As was pointed out in the Introduction, the purpose of this section is to propose a model for
the branching structure of the neurons, which is consistent with the process of information transport
previously introduced. The basic idea is as follows. If we consider that information transport is
optimized in some brain processes, we consequently have (as discussed in the previous section) an
associated Monge–Ampère equation for the transport plan potential. Besides, it is natural to consider a
cost that is close to some power of the distance function, since physiological cost can be taken to depend
on the distance traveled by the corresponding signal, as is usually assumed in transport networks.
For technical reasons, and in order to be able to adapt results well known in the literature, we take this
cost function to be close to:

|x− y|2
2

,
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From a qualitative perspective, this choice should not change the results much, as long as the cost
function remains convex (see [16]). If this is the case, we can then compute the linearization of the
Monge–Ampère equation around this quadratic cost function. The resulting equation is a linear
elliptic equation. We argue that a self-activating mechanism should be incorporated in the form of a
nonlinear term (as a result of the excitable nature of the transport of electric impulses along axons).
In this way, we end up with a semilinear equation that can be used to explain branching processes in
biological networks (see [21]). More specifically, the solution to this equation could be associated with
the concentration of a morphogen, e.g., a growth factor, and if such a concentration is above a certain
threshold, a branching mechanism is triggered. It is then consistent to look for solutions that are close
to the quadratic cost function and therefore to linearize around it.

In order to linearize the Monge–Ampère equation, we assume then that ϕ is very close to |x|2/2,

so
∣∣∣ρ(x) ln[ρ(x)]

∣∣∣ is very close to
∣∣∣ρ̃(∇ϕ(x)) ln[ρ̃(∇ϕ(x))]

∣∣∣. In that case, following [16,22,23], make:

ϕ(x) ≡ ϕε(x) =
|x|2

2
+ εη + O(ε2) (24)

and:∣∣∣ρ̃(∇ϕ(x)) ln[ρ̃(∇ϕ(x))]
∣∣∣ = ∣∣∣ρ̃(∇ϕ(x)) ln[ρ̃(∇ϕ(x))]

∣∣∣
ε
≡ (1 + εh + O(ε2))

∣∣∣ρ(x) ln[ρ(x)]
∣∣∣, (25)

with η, h ∈ L1(µ) and ε� 1. We leave the details of this computation for Appendix A. Substituting
(24) and (25) in the Monge–Ampère Equation (23), we get as the linearized operator:

Lη = h, (26)

with:
L =

(
− ∆ +∇

(
− log

∣∣∣ρ(x) ln ρ(x)
∣∣∣) · ∇).

Then, the Laplacian plus a transport term can be seen as the linearized version of the
Monge–Ampère equation for our proposal. We notice that the main mechanism responsible for
the flow of information along the axons is the propagation of electrical impulses. This is well known to
be an excitable process that involves, among others, a self-activating component, as for instance in
the standard Hodgkin–Huxley or FitzHugh–Nagumo models. If we include this into the linearization
previously obtained (Equation (26)), we get:

Lφ =
(
− ∆φ +∇

(
− log

∣∣∣ρ(x) ln ρ(x)
∣∣∣) · ∇φ

)
+ F(φ),

where F a is function describing the self-activating mechanism and can be taken typically as a power
of φ:

F(φ) = φp,

with p > 1. Solutions of this type of equations have been studied by many authors since the pioneering
work by Ni and Takagi ([24] and the references therein), since they appear in different contexts.
These solutions typically exhibit concentrations that can be responsible for branching structures.

Indeed, if one assumes that the concentration of a solution to the previous equation is correlated
with a growth factor morphogen, then a branch will stem out of the main branch. This or similar models
have been proposed using reaction-diffusion models following Turing’s original proposal ([25] or [26]),
for pattern formation; in particular for branching structures in plants ([27,28] or [29]), lungs ([21]),
and other vascular systems ([30,31]). Figures 1 and 2 show numerical simulations for a particular case
of the linearization of the Monge–Ampère equation. Growth is induced by the concentration of the
solution, and it can be seen that the process gives rise to lateral branches.
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Figure 1. Numerical solution of the linearization of the Monge-Ampère equation including growth.
Branching occurs when there is the concentration of the solution, the morphogen, above a certain
threshold (the color code stands for standard heat maps: red, high; blue, low). This simulation was
provided by Jorge Castillo-Medina and developed in COMSOL. For more details, the reader is referred
to [21] and the references therein.

Figure 2. A similar simulation as in the previous figure with a different growth rate. Notice the different
branching structure. Simulation performed by J. Castillo as well; see also [21].

5. Murray’s Law and Neural Branching

In the previous section, we argued that neuronal branching is compatible with reaction
diffusion processes. On the other hand, we deduced the corresponding equations by considering the
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transport of information along neural networks. The question of whether there is some connection
with Murray’s law arises naturally. Recall that Murray’s law refers to a transport network ([32,33]).

In his original paper [32], Murray obtained from optimizing considerations a relationship for
the different parameters associated with a branching transport network that was later generalized
in [15]. In what follows, we deduce it from scratch for the sake of completeness (we refer the reader
to [15,34,35] for further details). The total power required for the flow to overcome the viscous drag is
described by:

Wt =
8µL f 2

πr4 + mπLr2, (27)

where µ is the dynamic viscosity of the fluid, L is the vessel length, f is the volumetric flow rate,
m is an all-encompassing metabolic coefficient that includes the chemical cost of keeping the blood
constituents fresh and functional and the general cost owing to the weight of the blood and the vessel,
and r is the vessel radius. For our purposes, we modify Equation (27) as follows:

Wt =
a f 2

r2 + brα, (28)

where the first term corresponds to the power required for an electrical impulse to propagate along
the axon. Notice in particular that the factor of r2 in the denominator follows from the fact that
electrical resistance is inversely proportional to the area of the section of the conducting material.
On the other hand, the second term is proportional to a power, α, of the radius and describes the
fact that metabolic cost can vary depending on the type of neurons with which we are dealing.
For instance, the degree of myelination of the axon could determine the effective cost associated with
information transport. The minimum power is found by differentiating with respect to r and equating
to zero:

dWt

dr
=
−2a f 2

r3 + αbrα−1. (29)

With this, the optimal radius:

r2+α =
2a
αb

f 2, (30)

and the optimal relation between volumetric flow rate and vessel radius, such that the power
requirement is minimized, is obtained with:

f = kr1+ α
2 , (31)

where k =
√

αb
2a .

Using the construction of [33], if the radius of the main branch (r0), lateral branches (r1, r2), and
x and y are the angles between the lateral branches and the main branch, we obtain a generalized
version of Murray’s law:

f0 = f1 + f2 = kr1+ α
2

o = k
(

r1+ α
2

1 + r1+ α
2

2

)
;

thus, we get the general law:

r1+ α
2

0 = r1+ α
2

1 + r1+ α
2

2 .

for α ∈ R. Using these relations, we obtain three general equations associated with the branching
angles (see Figure 3) x, y, and x + y:

cos(x) =
r4

o + r4
1 −

(
r1+ α

2
0 − r1+ α

2
1

) 8
2+α

2r2
0r2

1
, (32)
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cos(y) =
r4

o + r4
2 −

(
r1+ α

2
0 − r1+ α

2
2

) 8
2+α

2r2
0r2

2
, (33)

cos(x + y) =

(
r1+ α

2
1 + r1+ α

2
2

) 8
2+α − r4

1 − r4
2

2r2
1r2

2
, (34)

which correspond to a different generalized Murray’s law for different values of α ∈ R.

Figure 3. The figure shows schematically the geometric configuration when branching occurs on
a plane. Illustration after [33] by the authors.

Observation 3. If α = 2, then by (32)–(34), we get cos(x + y) = 1 and then x + y = 0, which is consistent
with the fact that cos x = 1, then x = 0 and cos y = 1, and then, y = 0. This case corresponds to no branching.
In terms of the cost, this would imply that it is more efficient for the network not to bifurcate.

If α = 4, then cos(x) =
r4

o + r4
1 − (r3

0 − r3
1)

4
3

2r2
0r2

1
, cos(y) =

r4
o + r4

2 − (r3
0 − r3

2)
4
3

2r2
0r2

2
, and cos(x + y) =

(r3
1 + r3

2)
4
3 − r4

1 − r4
2

2r2
1r2

2
, which corresponds to Murray’s original proposal [33], which states that the angle in

the bifurcation of an artery should not be less than 75◦ (74.9◦ to be more exact). This is consistent with the
numerical and experimental results in [36].

If α = 6, we get cos(x + y) = 0 and then x + y = π
2 . On the other hand, cos(x) = r2

1/r2
0, then

cos(x) > 0 since r0, r1 6= 0; this implies that cos(x) 6= 0 and x 6= π
2 . Similarly, y 6= π

2 . We obtain that
x + y = π

2 and x, y ∈ (0, π
2 ) for this case. In other words, for α = 6, the angle between the bifurcated branches

is π/2, but orthogonal branching is ruled out.
We conclude then that the relevant values for our purposes are for α ∈ [2, 6]. It would be interesting to

contrast these possible scenarios with experimental data for different kinds of nervous tissues. To our knowledge,
no systematic experimental study of branching angles has been carried out.

6. Conclusions

We proposed that information flow in some brain processes can be analyzed in the framework of
optimal transportation theory. A Monge–Ampère equation was obtained for the optimal transportation
plan potential in the one-dimensional case. Extrapolating to higher dimensions, the corresponding
linearization around a quadratic distance cost was derived and shown to be consistent with the
branching structure of the nervous system. Finally, a generalized version of Murray’s law was derived
assuming different cost functions, depending on a parameter related to the metabolic maintenance
term. Future work includes a detailed comparison of the methodological proposal with experimental
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data. In particular, it would be interesting to carry out the program here proposed in a concrete
cognitive experiment. Possible concrete experiments to compare with could be found in [2,3,5]. Here,
we outline a simple procedure with fMRI data in which a direct connection with optimal transport
theory can be tested. Consider the brain activity map for the resting state given by standard fMRI.
Once normalized, this map will provide the initial probability density and entropy to be transported.
In fact, in [37], another possible methodology for measuring the entropy with fMRI can be found.
Later on, the subject is asked to perform a simple motor task, for instance move the right hand.
The corresponding density after the task is done can then be registered as before and will provide the
final density in the optimal transport problem. Some intermediate densities should be determined
as well. This information will provide a transport plan that can be compared with the mathematical
solution of the problem. Correspondingly, the branching structures and their bifurcation angles and
radii should be compared with experimental results as well. In principle, Murray’s law should be
consistent with the Monge–Ampère equation and its linearization, and it should be possible to derive
it from them. A precise relationship between the maximum entropy principle and optimal entropy
transport should be clarified.
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Appendix A. Relevant Theorems and Some Proofs

Theorem A1 (The continuity and support theorem). Let µ be a probability measure on R with cumulative
distribution function F. The following properties are equivalent:

a. The function F is strictly increasing in the interval:

{x ∈ R
∣∣ 0 < F(x) < 1}.

b. The inverse function F−1 is continuous.
c. The inverse measure µ−1 is non-atomic.
d. The support of µ, given by:

supp(µ) = {A ∈ Σ
∣∣ µ(A) > 0}

with Σ a σ-algebra defined on R, is a closed interval in the real line, finite or not.

Proof. The proof of this result can be found in [38], Appendix A.

Proposition A1. Let h ∈ C1(R) be a non-negative, strictly convex function. Let µ and ν be Borel probability
measures on R given by (11) and (12), respectively. Suppose that:∫

Ω

∫
Ω

h(x− y)dµ(x)dν(y) < ∞. (A1)
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for Ω ∈ R. If µ has no atom and F and G represent the respective cumulative distribution functions of µ and
ν, respectively, then:

T = G−1 ◦ F

solves Problem (14) for the cost:
c(x, y) = h(x− y).

If π is the induced entropy transform plan, that is:

π = (Id, T)#µ,

defined as T#µ(E) = µ(T−1(E)) for E ∈ Ω, then π is optimal for Problem (15).

Proof. 1. T is well defined:
The only problem we might have with the definition of T = G−1 ◦ F could be when F(x) = 0.
However, if F(x) = 0, then:

T(x) = G−1(F(x))
= G−1(0)
= min

{
y ∈ [−∞, ∞] | 0 ≤ G(y)

}
= −∞,

but if for some a ∈ R, we have F(a) = 0, then µ((−∞, a]) = 0, which means that a = −∞ and T
is well defined, as desired.

2. ν = T#µν = T#µν = T#µ:
Let F and G be defined as in observation (1). Then, T = G−1 ◦ F is non-decreasing, since F and G
are non-decreasing. Then:

T−1((−∞, y]) =
{

x ∈ [−∞, ∞] | T(x) = y
}

=
{

x ∈ [−∞, ∞] |G−1(F(x)) = y
}

=
{

x ∈ [−∞, ∞] | F(x)) = G(y)
}

,

Since T is non-decreasing, T−1((−∞, y]) is an interval.

Claim 1. Since µ has no atom, F is increasing and continuous, and then, T−1((−∞, y]) is a
closed interval.

If µ has no atom, let A ∈ Ω and α ∈ R+ such that µ(A) = α. Then, given β ∈ R+ such that
0 < β ≤ α, there exits B ⊂ A such that µ(B) = β. Then, ∀γ ∈ R such that 0 < γ ≤ α, there exists
xγ ∈ A such that:

µ((−∞, xγ]) = γ,

then 0 < F(xγ) < F(xα) ≤ 1 for all γ, α such that xγ < xα, and so, F is increasing and continuous;
Theorem A1 implies that F−1 is continuous, and then:

{x ∈ R
∣∣ 0 ≤ F(x) ≤ 1} = supp(µ),

is closed. In particular, {x ∈ R
∣∣ 0 ≤ F(x) ≤ G(y)} is closed. Then, we conclude that T−1((−∞, y])

is a closed interval, as desired.
We have proven Claim 1.
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Now, if x = sup{x ∈ R
∣∣ F(x) ≤ G(y)}, then F(x) = G(y), and we have:

µ
(
T−1((−∞, y])

)
= µ

(
(−∞, x]

)
= F(x)
= G(y)
= ν

(
(−∞, y]

)
,

and then, ν = T#µ, as desired.
3. T = G−1 ◦ FT = G−1 ◦ FT = G−1 ◦ F is optimal:

Observe that (µ, ν) given by (11) and (12) satisfy:∫
Y=Ω

dπ(x, y) = dµ(x) and

∫
X=Ω

dπ(x, y) = dν(y)

where:
dπ(x, y) =

1
K
∣∣ρρρ(x, y) ln(ρρρ(x, y)

∣∣dxdy,

and:
dµ(x) =

1
K
∣∣ρ(x) ln(ρ(x))

∣∣dx,

then π(x, y) ∈ Π̂(µ, ν) as given by (13).
Now, observe that: ∫

Ω
h′(x− T(x)) 1

K

∣∣ρ(x) ln(ρ(x))
∣∣dx =

∫
Ω

h′(x− T(x))dµ;

since T and h′ are non-decreasing,

h′(u− T(u)) ≤ h′(u− T(x))

for u ≥ x. Then:
y∫

x
h′(u− T(u))du ≤

y∫
x

h′(u− T(x))du

≤ h(y− T(x))− h(x− T(x)).

On the other hand,
h′(u− T(u)) ≥ h′(u− T(x))

for u ≤ x, and then:

y∫
x

h′(u− T(u))du = −
x∫

y
h′(u− T(u))du

≤ −
x∫

y
h(u− T(x))du;

= −[h(x− T(x))− h(y− T(x))]

= h(y− T(x))− h(x− T(x)).
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As a consequence, in any case, we have:

y∫
x

[
h(u− T(u))du ≤ h(y− T(x))− h(x− T(x)). (A2)

Set:

ψ(y) =

y∫
0

h′(u− T(u))du,

then (A2) becomes:
ψ(y)− ψ(x) ≤ h(y− T(x))− h(x− T(x)),

which implies:
ψc(T(x)) = inf

y

{
h(y− T(x))− ψ(y)

}
= h(x− T(x))− ψ(x);

as a consequence, ψ is c-concave, according to Definition (1).

Hypothesis A1 implies the existence of x0, y0 ∈ Ω such that:∫
Ω

h(x− y0)dµ(x) < ∞ and

∫
Ω

h(x0 − y)dν(y) < ∞. (A3)

Claim 2: ψ ∈ L1(µ)ψ ∈ L1(µ)ψ ∈ L1(µ) and ψc ∈ L1(ν)ψc ∈ L1(ν)ψc ∈ L1(ν): Observe that:

h(x− y0)− ψc(y0) = h(x− y0)− inf
y

{
h(y− y0)− ψ(y)

}
≥ h(x− y0)− (h(x− y0)− ψ(x))

= ψ(x),

(A4)

and:
h(x0 − T(x))− ψ(x0) ≥ inf

y

{
h(y− T(x))− ψ(y)

}
= h(x− T(x))− ψ(x)
= ψc(T(x));

hence:
ψ(x) ≥ −ψc(T(x)) ≥ −h(x0 − T(x)) + ψ(x0), (A5)

then, by (A4) and (A5),

h(x− y0)− ψc(y0) ≥ ψ(x) ≥ −h(x0 − T(x)) + ψ(x0); (A6)

now, by Hypothesis A3 and since ν = T#µ:∫
Ω

h(x0 − T(x))dµ =
∫
Ω

h(x0 − y)dν < ∞; (A7)

therefore, integrating (A6) with respect to µ, we get:∫
Ω

[
h(x− y0)− ψc(y0)

]
dµ(x) ≥

∫
Ω

ψ(x)dµ(x) ≥
∫
Ω

[
− h(x0 − T(x)) + ψ(x0)

]
dµ(x);

as a consequence:



Entropy 2020, 22, 1231 17 of 24

∫
Ω

|ψ(x)|dµ(x) < ∞,

and we can conclude that ψ ∈ L1(µ)ψ ∈ L1(µ)ψ ∈ L1(µ).

Similarly:

h(x0 − T(x))− ψ(x0) ≥ ψc(T(x)) ≥ −ψ(x) ≥ −h(x− y0) + ψc(y0)

by (A4) and (A5); using (A3) and (A7), if we integrate with respect to µ,∫
Ω

[
h(x0 − T(x))− ψ(x0)

]
dµ(x) ≥

∫
Ω

ψc(T(x))dµ(x) ≥
∫
Ω

[
− h(x− y0) + ψc(y0)

]
dµ(x);

therefore: ∫
Ω

|ψc(T(x))|dµ(x) =
∫
Ω

|ψc(y)|dν(y) < ∞

Hence, ψc ∈ L1(ν)ψc ∈ L1(ν)ψc ∈ L1(ν). We have proven Claim 2.

Integrating φ(x) + φc(T(x)) = h(x− T(x)) = c(x, y) with respect to µ, we get:

∫
Ω

ψ(x)dµ(x) +
∫
Ω

ψc(T(x))dµ(x) =
∫
Ω

h(x− T(x))dµ(x),

and then: ∫
Ω

ψ(x)dµ(x) +
∫
Ω

ψc(y)dν(y) =
∫
Ω

c(x, T(x))dµ(x).

Finally, observe that ψ(x) + ψc(y) ≤ c(x, y) for every (x, y) ∈ Ω×Ω; if π1 ∈ Π̂(µ, ν) is another
entropy transport plan, the associated total entropy transport cost c(x, y) is greater, by the
definition of ψ and ψc; then, the equality holds only for the optimal entropy transport plan
π and T = G−1 ◦ F; hence, it solves Problem (14), and π = (Id, T)#µ solves Problem (15).
We have proven the proposition.

Proposition A2. Let µ and ν be the Borel probability measures on Ω ∈ R given by (11) and (12), respectively.
If the cost function:

c : R×R −→ [0, ∞)

is lower semi-continuous and: ∫
Ω

∫
Ω

c(x, y)dµ(x)dν(y) < ∞,

then there is a Borel map ψ : R −→ R that is c-concave and optimal for (3). Moreover, the resulting maximum
is equal to the minimum of Problem (15); i.e.,

min
π∈Π̂(µ,ν)

∫
R×R

c(x, y)dπ(x, y) = max
ψ∈L1(µ)


∫
Ω

ψ(x)dµ(x) +
∫
Ω

ψc(y)dν(y)


or:

min
π∈Π̂(µ,ν)

I[π] = max
(ψ,ψc)∈Φ

J(ψ, ψc), (A8)
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where,

Φ =
{
(φ, ψ) ∈ L1(µ)× L1(ν)

∣∣∣ φ(x) + ψ(y) ≤ c(x, y) for µ− a.e. x ∈ Ω and ν− a.e. y ∈ Ω
}

, (A9)

and if π ∈ Π̂(µ, ν) given by (13) is optimal, then ψ(x) + ψc(y) = c(x, y) almost everywhere for π.

Proof. The existence of a maximizing pair and Relation (A8) have been proven in Proposition A1.
Now, choosing an optimal π ∈ Π̂(µ, ν), we have:∫

Ω×Ω

[c(x, y)− ψ(x)− ψc(y)]dπ(x, y) =
∫

Ω×Ω

c(x, y)dπ(x, y) −
∫
Ω

ψ(x)dµ(x)

−
∫
Ω

ψc(y)dν(y)

= 0,

and since c(x, y)− ψ(x)− ψc(y) ≥ 0 in Ω×Ω, it must vanish for π-a.e. (x, y) ∈ Ω×Ω.
The proof is completed.

Theorem A2 (Brenier). Let µ and ν be the Borel probability measures on Ω ∈ R given by
(11) and (12), respectively, and with second-order moments; that is, such that:∫

Ω

|x|2dµ(x) < ∞ and

∫
Ω

|y|2dν(y) < ∞ (A10)

Then, if µ is absolutely continuous on Ω, there exists a unique T : R −→ R such that ν = T#µ and:∫
Ω

|x− T(x)|2dµ(x) = min
γ∈Π̂(µ,ν)

∫
Ω

|x− y|2dγ(x, y),

with Π̂(µ, ν) given by (13). Moreover, there is only one optimal transport plan γ, which is necessarily (Id, T)#µ,
and T is the gradient of a convex function ϕ, which is therefore unique up to an additive constant. There is also a
unique (up to an additive constant) Kantorovich potential, ψ, which is locally Lipschitz and linked to ϕ through
the relation:

ϕ(x) =
1
2
|x|2 − ψ(x).

Proof. Claim 1: π = (Id,∇φ)#µπ = (Id,∇φ)#µπ = (Id,∇φ)#µ, and it is optimal:

Set c(x, y) =
|x− y|2

2
. Proposition A1 guarantees the existence of the pair (ψ, ψc) ∈ Φ as given

by (A9) such that ψ(x) + ψc(y) ≤ |x− y|2
2

for all (x, y) ∈ Ω×Ω; then:

ψ(x) + ψc(y) ≤ x2 − 2xy + y2

2

and then:

xy ≤
[ x2

2
− ψ(x)

]
+
[y2

2
− ψc(y)

]
.

Set:

ϕ(x) =
[ x2

2
− ψ(x)

]
and ϕc(y) =

[y2

2
− ψc(y)

]
. (A11)

Hypothesis A10 means:
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M =
∫
Ω

|x|2
2

dµ(x) +
∫
Ω

|y|2
2

dν(y) < ∞,

then:

I[π] =
∫

Ω×Ω

|x− y|2
2

dπ(x, y) ≤
∫

Ω×Ω

[
|x|2 + |y|2

]
dπ(x, y) = 2M;

hence, I[π] is always finite in Π̂(µ, ν) given by (13). As a consequence,

inf
Π̂(µ,ν)

I[π] =
1
2

[ ∫
Ω
|x|2dµ(x) +

∫
Ω
|y|2dν(y)

]
− sup

{ ∫
Ω×Ω

xy dπ(x, y)
∣∣∣π ∈ Π̂(µ, ν)

}
= M− inf

Φ̂

{ ∫
Ω

ϕ(x) dµ(x) +
∫
Ω

ϕc(y) dν(y)
}

= sup
Φ

{ ∫
Ω

ϕ(x) dµ(x) +
∫
Ω

ϕc(y) dν(y)
}

= sup
Φ

J(ϕ, ϕc),

where J(ϕ, ϕc) =
∫
Ω

ϕ(x) dµ(x) +
∫
Ω

ϕc(y) dν(y), Φ given by (18), and:

Φ̂ =
{
(ϕ, ψ) ∈ L1(µ)× L1(ν)with values inR∪ {∞}

∣∣∣ xy ≤ ϕ(x) + ψ(y) for µ− a.e. x ∈ Ω

and ν− a.e. y ∈ Ω
}

.
(A12)

Then, the Kantorovich duality principle (4) becomes:

sup
{ ∫

Ω×Ω

xy dπ(x, y)
∣∣∣π ∈ Π̂(µ, ν)

}
= inf

Φ̂
J(ϕ, ϕc). (A13)

Now, xy ≤ ϕ(x) + ϕc(y) since (ϕ, ϕc) ∈ Φ̂; hence:

ϕc ≥ sup
x

{
xy− ϕ(x)

}
≡ ϕ∗(y).

ϕ∗(y) is called the Legendre transform of ϕ(x) and satisfies:

ϕ(x) + ϕ∗(y) ≥ xy.

It can be proven that inf
Φ̂

J = J(ϕ, ϕ∗) (see [16]; Theorem 2.9); now, Proposition A1 guarantees the

existence of an optimal transport plan π. As a consequence, Relation (A13) implies:∫
Ω

ϕ(x) dµ(x) +
∫
Ω

ϕ∗(y) dν(y) =
∫

Ω×Ω
xy dπ(x, y)

=
∫

Ω×Ω

[
ϕ(x) + ϕc(y)

]
dπ(x, y),

and then: ∫
Ω×Ω

[
ϕ(x) + ϕc(y)− xy

]
dπ(x, y) = 0,
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for all (x, y) ∈ Ω×Ω. However, ϕ(x) + ϕc(y)− xy ≥ 0 by the definition of the Legendre transform.
Then, for π-a.e. (x, y) ∈ Ω×Ω, we have:

ϕ(x) + ϕ∗(y)− xy = 0 ⇐⇒ xy ≥ ϕ(x) + ϕ∗(y)

⇐⇒ xy ≥ ϕ(x) +
(

zy− ϕ(z)
)

, ∀z ∈ R
⇐⇒ ϕ(z) ≥ ϕ(x) + y(z− x)
⇐⇒ y ∈ ∂ϕ(x)

(A14)

(by symmetry, we can also conclude that x ∈ ∂ϕ∗(y)). Now, since ϕ is convex, it can be proven that it
is locally Lipschitz and continuous; Rademacher’s theorem (see [39]; Section 3.1.2) implies then that ϕ

is differentiable µ-a.e. on R. As a consequence:

∂ϕ(x) =
{
∇ϕ(x)

}
. (A15)

One can prove that y = ∇ϕ(x) (see [16]). Therefore, π = (Id, T)#µ = (Id,∇ϕ)#µ, and it is optimal.
We have proven Claim 1.
Claim 2: π = (Id,∇ϕ)#µπ = (Id,∇ϕ)#µπ = (Id,∇ϕ)#µ is the only transport plan:
Let ϕ̂ be another convex function such that ν = ∇ϕ̂#µ.
We want to prove ∇ϕ(x) = ∇ϕ̂(x) µ-a.e. x ∈ Ω.

By Claim 1, (Id,∇ϕ̂)#µ is an optimal transport plan, and the pair (ϕ̂, ϕ̂∗) is optimal for the
dual problem, just like (ϕ, ϕ∗). Therefore:∫

Ω

ϕ̂(x)dµ(x) +
∫
Ω

ϕ̂∗(y)dν(y) =
∫
Ω

ϕ(x)dµ(x) +
∫
Ω

ϕ∗(y)dν(y).

Let π be the optimal transport plan associated with ϕ. Then:∫
Ω×Ω

[
ϕ̂(x) + ϕ̂∗(y)

]
dπ(x, y) =

∫
Ω×Ω

[
ϕ(x) + ϕ∗(y)

]
dπ(x, y) =

∫
Ω×Ω

xy dπ(x, y);

hence: ∫
Ω

[
ϕ̂(x) + ϕ̂∗(∇ϕ(x))

]
dµ(x) =

∫
Ω

x∇ϕ(x)dµ(x),

and: ∫
Ω

[
ϕ̂(x) + ϕ̂∗(∇ϕ(x))− x∇ϕ(x)

]
dµ(x) = 0;

since ϕ̂(x) + ϕ̂∗(∇ϕ(x))− x∇ϕ(x) ≥ 0, we conclude:

ϕ̂(x) + ϕ̂∗(∇ϕ(x))− x∇ϕ(x) = 0,

µ-a.e. on Ω. Hence, by (A14):

∇ϕ(x) ∈ ∂ϕ̂(x), µ− a.e. x ∈ Ω.

Now, since ϕ̂ is differentiable µ-a.e. on Ω:

∇ϕ(x) = ∇ϕ̂(x).

Claim 2 has been proven.
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Finally, we have proven not only the uniqueness of Problem (15) (analogous to the
Monge–Kantorovich problem), but also the uniqueness of the gradient of a convex function ∇φ

such that ∇ϕ#µ = ν and:

min
γ∈Π̂(µ,ν)

∫
Ω×Ω

|x− y|2dγ(x, y) =
∫
Ω

|x−∇ϕ(x)|2dµ(x) =
∫
Ω

|x− T(x)|2dµ(x).

We have proven the theorem.

Appendix B. Linearization of the Monge–Ampère Equation

Assume that ϕ is very close to
|x|2

2
, so

∣∣∣ρ(x) ln[ρ(x)]
∣∣∣ is very close to

∣∣∣ρ̃(∇ϕ(x)) ln[ρ̃(∇ϕ(x))]
∣∣∣.

In that case, following [16,22,23], make:

ϕ(x) ≡ ϕε(x) =
|x|2

2
+ εη + O(ε2),

and: ∣∣∣ρ̃(∇ϕ(x)) ln[ρ̃(∇ϕ(x))]
∣∣∣ ≡ ∣∣∣ρ̃(∇ϕ(x)) ln[ρ̃(∇ϕ(x))]

∣∣∣
ε
= (1 + εh + O(ε2))

∣∣∣ρ(x) ln[ρ(x)]
∣∣∣.

with η, h ∈ L1(µ). Then, by the Neumann series:∣∣∣ρ(x) ln[ρ(x)]
∣∣∣∣∣∣ρ̃(∇ϕ(x)) ln[ρ̃(∇ϕ(x))]

∣∣∣ =

∣∣∣ρ(x) ln[ρ(x)]
∣∣∣

(1 + εh + O(ε2))
∣∣∣ρ(∇ϕ(x)) ln[ρ∇ϕ(x))]

∣∣∣
=

(1− εh + O(ε2))
∣∣∣ρ(x) ln[ρ(x)]

∣∣∣∣∣∣ρ(∇ϕ(x)) ln[ρ∇ϕ(x))]
∣∣∣ .

(A16)

On the other hand, it is easy to see that:

det D2 ϕ(x) = det D2
( |x|2

2
+ εη + O(ε2)

)
= det D2

( |x|2
2

)
+ ε trace (HD2η) + O(ε2).

Definition A1. The term trace (HD2η)trace (HD2η)trace (HD2η) is called the linearization of the Monge–Ampère equation,

where H = (H)ij is the matrix of co-factors of D2
( |x|2

2

)
= I.

Then:
det D2

(
ϕ(x)

)
= 1 + ε trace (D2η) + O(ε2). (A17)

Substituting (A16) and (A17) into the Monge–Ampère Equation (22) and omitting order superior terms,
we get:

(1 + ε∆η)
∣∣∣ρ(∇ϕ(x)) ln[ρ∇ϕ(x))]

∣∣∣ = (1− εh)
∣∣∣ρ(x) ln[ρ(x)]

∣∣∣, (A18)
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and: ∣∣∣ρ(∇ϕ(x)) ln[ρ∇ϕ(x))]
∣∣∣ =

∣∣∣ρ ln ρ
∣∣∣(∇ϕ(x))

=
∣∣∣ρ ln ρ

∣∣∣∇( |x|2
2

+ εη
)

=
∣∣∣ρ ln ρ

∣∣∣(x + ε∇η
)

=
∣∣∣ρ(x) ln ρ(x)

∣∣∣+ ε∇η · ∇
(∣∣∣ρ(x) ln ρ(x)

∣∣∣),

by using the order one Taylor’s series. as a consequence, (A18) becomes:

(1 + ∆η)
[∣∣∣ρ(x) ln ρ(x)

∣∣∣+ ε∇η · ∇
(∣∣∣ρ(x) ln ρ(x)

∣∣∣)] = (1− εh)
∣∣∣ρ(x) ln ρ(x)

∣∣∣,
then:

(1− εh) = (1 + ∆η)
[
1 + ε∇η ·

(∇∣∣∣ρ(x) ln ρ(x)
∣∣∣∣∣∣ρ(x) ln ρ(x)
∣∣∣
)]

= (1 + ∆η)
[
1 + ε∇η · ∇ log

∣∣∣ρ(x) ln ρ(x)
∣∣∣],

and then:

(1− εh) = 1 + ε∇η · ∇ log
∣∣∣ρ(x) ln ρ(x)

∣∣∣+ ε∆η + ε2∆η
[
∇η · ∇ log

∣∣∣ρ(x) ln ρ(x)
∣∣∣];

omitting again order two terms, we get:

−h = ∇η · ∇ log
∣∣∣ρ(x) ln ρ(x)

∣∣∣+ ∆η,

or simply:
Lη = h, (A19)

with:
L =

(
− ∆ +∇

(
− log

∣∣∣ρ(x) ln ρ(x)
∣∣∣) · ∇).

We have proven that the Laplace equation can be seen as the linearized version of the Monge–Ampère
equation for our proposal.
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