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Abstract: Fracturing processes within solid Earth materials are inherently a complex phenomenon
so that the underlying physics that control fracture initiation and evolution still remain elusive.
However, universal scaling relations seem to apply to the collective properties of fracturing phenomena.
In this article we present a statistical physics approach to fracturing based on the framework of
non-extensive statistical physics (NESP). Fracturing phenomena typically present intermittency,
multifractality, long-range correlations and extreme fluctuations, properties that motivate the
NESP approach. Initially we provide a brief review of the NESP approach to fracturing and
earthquakes and then we analyze stress and stress direction time series within Arctic sea ice.
We show that such time series present large fluctuations and probability distributions with “fat” tails,
which can exactly be described with the q-Gaussian distribution derived in the framework of NESP.
Overall, NESP provide a consistent theoretical framework, based on the principle of entropy, for
deriving the collective properties of fracturing phenomena and earthquakes.

Keywords: fracturing; earthquakes; faults; sea ice time series; complexity; non-extensive statistical physics;
scaling; extreme events

1. Introduction

Stress increase within solid Earth materials and the buildup of a proportional amount of strain
eventually culminates in the deformation and fracture of the material. The most striking example
in nature are earthquakes that mainly originate from the deformation and subsequent rupture of
the seismogenic crust due to stress built-up arising from plate tectonic motions. As stress increases,
cracks and fractures start to appear in the solid Earth that may coalesce to form larger fractures
and eventually fault networks and tectonic plate boundaries [1,2]. Fracturing processes within solid
Earth materials is inherently a complex phenomenon that incorporates a wide range of spatial and
temporal scales and dynamics that interact nonlinearly to produce even extreme-in-size events [3,4].
The dynamics that lead to such events are generally unobservable in nature, while the exact physics
and the microscopic laws that govern friction and the fracture evolution still remain elusive, so that
the definition of the exact physics and forecasting of upcoming events represents nonetheless an
outstanding challenge for science.

Despite the extreme complexity that characterize rupture initiation and propagation in solids,
the ensemble of many fractures may present simple phenomenology and scaling properties that seem
universally valid. The most prominent is scale-invariance that is manifested in the size distributions
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of earthquakes and faults. Fault trace-lengths and fault displacements manifest power-law type
distributions and multifractal geometries [5], while earthquakes occur on a fractal-like network of
faults with frequency-size distributions that scale according to the Gutenberg-Richter (G-R) relation [6],
which resembles a power-law relationship between the number of earthquakes and the fault rupture
area [7]. In addition, the temporal evolution of seismicity is characterized by multifractality and
correlations at all timescales [8–10], while the production rate of aftershocks that follow a mainshock
generally decays as a power-law with time according to the modified Omori formula [11].

Such properties have motivated the consideration of statistical physics as a consistent tool
for explaining the macroscopic behavior of fracturing phenomena [4,12,13]. By using the laws of
probability theory and statistics, statistical physics aims to provide theoretical insights and predict
the macroscopic properties of such complex systems. While the prediction of particles’ motion
within an ice block or within the deforming blocks of earthquake faults is infeasible, the ensemble
average of this motion that results in the macroscopic behavior of the solid can be explained by
statistical physics [14]. From a quantitative perspective, simple systems depend exponentially
on time, space, energy and other basic variables, whereas complex systems behave subexponentially
and typically as power-laws, with fracturing being a prototypical and very important example of
complexity [15]. The later has recently motivated the application of non-extensive statistical physics
(NESP) to the phenomenology of various complex systems, including fracturing phenomena and
earthquakes [16]. NESP, originally introduced by [17], generalizes the classic Boltzmann-Gibbs
statistical physics and its main advantage is that it considers all-length scale correlations among the
various possible microstates, leading to heavy-tailed distributions with power-law asymptotic behavior.
The application of NESP to various complex systems during the last two decades and the consistency
between the theory and observations, have demonstrated that NESP is a suitable framework for
illuminating the macroscopic properties of such systems by defining a priori the various microscopic
states and their interactions.

In the present work we present a brief review and new results regarding the application of NESP to
fracturing processes and earthquakes. For analytical reviews the reader can refer to [18–20]. Initially we
provide the theoretical framework of NESP as it applies to fracturing processes and then discuss
its application to earthquake related phenomena. Then we present for the first time the application
of this framework to stress timeseries taken from Arctic sea ice. Stresses induced by ice motion
demonstrate (multi)fractal scaling properties, anti-persistent behavior and “fat” tailed probability
distributions [21,22], properties that cannot be described by Gaussian statistics. Instead, we show that
even in the phenomenological level (i.e., without defining any underlying model) NESP framework
can adequately describe stress fluctuations in Arctic sea ice. Such findings provide further insights in
how to model risk of large deformation events that present large ice motion induced stresses, which can
impact any given place in the Arctic sea ice pack.

2. Fracturing Processes in Terms of Non-Extensive Statistical Physics

In 1988, Tsallis [17] introduced the nonadditive entropy Sq as a generalization of the classic
Boltzmann-Gibbs (BG) entropy SBG. Although BG statistical mechanics properly describes
nature for a wide class of physical systems that present short-ranged microscopic interactions
(e.g., Markovian processes) and/or strongly chaotic dynamics, there is a significant class of physical
systems that violate some or all of these properties [16,23,24]. Such systems typically present
long-range correlations, multifractal geometries, intermittency and/or substantial variations between
the various possible states, properties that typically lead to power-law type distributions. In contrast to
BG statistical mechanics, NESP that refers to the nonadditive entropy Sq contemplates all-length scale
correlations among the various microscopic components of a system emanating to subexponential
and typically heavy-tailed distributions. Such properties, i.e., intermittency, (multi)fractal structures,
long-range correlations and power-law type distributions, seem to conform well to the collective
properties of fracturing processes and earthquakes, as we discussed in the introduction of this article.
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In the following, we address the NESP theory for a continuous variable X that may express the
size of an earthquake in terms of the seismic moment Mo, the size of a fractured fragment or a fault,
or even the inter-event times and distances between successive earthquakes. If p (X) is the probability
distribution of X, normalized such that 0 ≤ p (X) ≤ 1, then the non-additive entropy Sq is expressed as:

Sq = k
1−

∫
pq(X)dX

q− 1
(1)

where k can be any constant, such as Boltzmann’s constant, and q is an entropic index that signifies
the non-extensivity of the system. Let us note that the introduction of Sq was originally inspired by
multifractal geometries [16]. The notation q for the entropic index that is related to Sq was adapted from
the index variable q that denotes the order of the fluctuation function in multifractal sets, although the
two indexes are not the same [16]. In Equation (1), the entropic index q interposes a bias in the
probabilities of the various configurations, such that for 0 < p (X) < 1, pq (X) > p (X) for q < 1 and
pq (X) < p (X) for q > 1 [16].

Now, to obtain p(X) the previous expression (Equation (1)) is optimized subjected to given constraints,
the first being the normalization condition of p(X),∫

∞

0
p(X)dX = 1 (2)

while the second refers to the condition of the generalized expectation value (or q-mean value) Xq,

Xq = 〈X〉q =

∞∫
0

XPq(X)dX (3)

where Pq(X) is the escort probability distribution Pq(X) =
pq(X)∫
∞

0 pq(X)dX
[16]. Using the standard

Lagrange multiplier method and the variational principle to Equation (1) under the constraints of
Equations (2) and (3), the following probability distribution function is obtained:

p(X) =
[1− (1− q)βqX]1/(1−q)

Zq
=

expq

(
−βqX

)
Zq

(4)

where Zq is the generalized partition function,

Zq =

∫ xmax

0
expq

(
−βqX

)
dX (5)

and expq (X) is the q-exponential function (see [16] and references therein), defined as:

expq(X) =

 [1 + (1− q)X]1/(1−q) for 1 + (1− q)X ≥ 0
0 for 1 + (1− q)X ≤ 0

(6)

For q > 1, the q-exponential function presents asymptotic power-law behavior according to
∼ X−1/(q−1), while for q < 1 a cut-off appears in the tail of the distribution at Xc = 1/(1− q)βq [25].
The inverse of the q-exponential function (for X > 0) is the q-logarithmic function:

lnq X =
X1−q

− 1
1− q

(7)

The previous functions, i.e., the q-exponential and q-logarithmic, recover the ordinary exponential
and logarithmic functions, respectively, in the limit of q→1.
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The corresponding to Equation (4) cumulative distribution function P (X) can be obtained upon
integration of the escort probability distribution Pq (X) (see [16,19,25]):

P(X) =

∞∫
0

Pq(X)dX = expq

(
−

X
X0

)
(8)

where Pq(X) and expq(X) have been defined previously.
Another frequent case is when we impose the mean value of the squared variable X2 in Equation (3),

which in this case provides the q-mean value X2
q . In this case, optimization of Sq under the constraints

of normalization (Equation (2)) and the q-mean value X2
q leads to:

p(X) =
1

Zq
[1− β(1− q)X2]

1/(1−q)
(9)

where β = [(3− q)X2
q ]
−1. The latter equation is known as the q-Gaussian distribution [16]. In the limit

of q→1, the q-Gaussian converges to the ordinary Gaussian distribution, while for q > 1 it decays
asymptotically as power-law, ∼ |X|−2/(q−1).

3. Applications to Fracturing: From Earthquake Faults to Sea Ice

The principles of NESP have been applied in a series of recent publications to the macroscopic
properties of fracturing and earthquakes and other earthquake-related phenomena ([18–20] and
references therein). In these works, it has been illustrated that NESP constitute a powerful tool for
deriving the collective properties of fracturing processes from the first principles of statistical physics
and the specification of the microscopic interactions within the studied system. In the following,
we initially provide a brief review to the various applications in earthquake fracturing phenomena and
then apply for the first time the NESP framework to sea ice stress timeseries.

3.1. Applications to Earthquake Fracturing

Fracturing in lithosphere deformation is exemplified in fault networks. Fault networks that are
typically the sites of smaller to larger magnitude earthquakes, represent a complex scale-invariant
system with irregular geometries and sizes that vary from few millimeters to tens or hundreds of
kilometers [2]. Scale-invariance in fault networks is further supported by fractal geometries that
have been used to describe the growth patterns of complex fault networks [5]. The NESP approach
to fault-size distributions arose naturally to provide a general principle, based on the notions of
statistical physics, for deriving the least biased distribution that best describe fault and fracture
systems [26,27]. The NESP analysis in a series of publications indicated that fault trace-length
distributions can well be approximated with the q-exponential distribution for q-values greater than
one, supporting subadditivity in planetary lithosphere deformation [26–29]. Furthermore, the reported
q-values in fault-length distributions seem to depend on the tectonic environment [29], the mechanical
correlations between the fault network [28], or on the strain rates in active continental rifts [27].

Scale-invariant fracturing is further supported by the frequency-magnitude distribution of
earthquakes that generally follow the Gutenberg–Richter relation [6], which resembles power-law
scaling between the number of earthquakes and the fault rupture area (e.g., [7,18]). Consistent with
the idea that earthquakes are primarily the result of stick-slip frictional instabilities inside fault zones,
Sotolongo-Costa and Posadas [30], based on the NESP formalism, introduced the fragment-asperity
interaction model for earthquake dynamics. According to this model, the released seismic energy E is
related to the size of the fragments that fill the space between fault blocks. If N (>M) is the cumulative
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distribution of the number of earthquakes N with magnitude greater than M, then the derived model,
as was later revised by [31,32], reads as:

N(> M)

N
=


1−

( 1−qM
2−qM

)(
10M

α2/3
M

)
1−

( 1−qM
2−qM

)(
10Mo

α2/3
M

)

(2−qM)/(1−qM)

(10)

where M0 is the minimum earthquake magnitude in the dataset, aM a model parameter that expresses
the proportionality between the released seismic energy and the size of the fragments and qM
the entropic index. The fragment-asperity model has found various applications in regional and
local seismicity, as well as in volcanic seismicity [33–38]. In Figure 1 we show the application of the
model to the 1996–2016 earthquake activity in the Yellowstone volcanic field (after the work of [38]).
Generally, the results of the aforementioned studies suggest that the fragment-asperity model can
adequately describe the frequency-magnitude distribution of earthquakes in a broader range of scales
compared to the G-R relation. In addition, the qM temporal variations in regional seismicity have
been used as an index of tectonic instability and proximity towards stronger earthquakes [39–45].
The combination of the qM temporal variations with natural time analysis of seismicity has shown
precursory changes before strong earthquakes [41,45], including the 2011 Tohoku mega-earthquake [46].
Moreover, the combination of the aforementioned techniques reveals temporal correlations in the
earthquake magnitudes evolution, which is further supported by the multifractal detrended fluctuation
analysis of seismicity in the natural time domain [47].

Figure 1. Frequency-magnitude distribution of earthquakes in the Yellowstone volcanic field (squares)
during 1996–2016. The solid line represents the model of Equation (10) for qM = 1.44, while the dashed
lines the corresponding 95% confidence intervals. Modified from [38].

Moreover, it has been shown that the probability distribution of incremental earthquake energies
(i.e., the differences of released energies between successive earthquakes) presents heavy tails with
asymptotic power-law scaling, a behavior that can well be reproduced by the q-Gaussian distribution
(Equation (9)) [19,36,48]. In Figure 2 we show the probability density of incremental earthquake
energies in Southern California during 1981–2011 for M ≥ 2 (earthquake catalogue available from the
Southern California Earthquake Data Center; http://scedc.caltech.edu). In this case earthquake energies
S are expressed as S = exp(M) and the incremental energies as R = Si+1 − Si, where i = 1, 2, . . . , N−1 with
N the total number of earthquakes. Incremental energies are further normalized to zero mean and

http://scedc.caltech.edu
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unitary variance according to x = (R− 〈R〉)/σR, where 〈R〉 and σR are the mean and standard deviation
of R, respectively. The probability density p (x) of the normalized incremental earthquake energies
deviate from the Gaussian function and instead presents heavy tails and a scaling behavior that can
well be described with the q-Gaussian distribution for q = 1.69 ± 0.08 (Figure 2). This type of scaling
enhances the probabilities of large fluctuations that in the case of seismicity designates the occurrence
of strong earthquakes immediately after the occurrence of weaker ones. By comparing real earthquake
data with the dissipative Olami–Feder–Christensen model (OFC—[49]) in the critical regime [48],
interpreted this result as further confirmation for intermittency, self-organized criticality and long-range
interactions in the evolution of seismicity.

Figure 2. Probability density function p (x) of the normalized increments x (see text) of released seismic
energies in the Southern California earthquake catalogue (filled circles) and the q-Gaussian fit (solid line)
for q = 1.69. The Gaussian function (dashed line) is also shown for comparison.

Further applications of NESP theory to fracturing and earthquakes concern the spatiotemporal
evolution of seismicity from the millimeter scale (laboratory), to tens, hundreds (regional) and
thousands of kilometers (global) scale (e.g., [18]). Abe and Suzuki [25,50] showed that the cumulative
distribution functions (CDFs) of inter-event distances P (>r) and inter-event times P (>T) between
successive earthquakes in California and Japan scale according to the q-exponential distribution
(Equation (8)), for q-values of qr < 1 and qT > 1, respectively. These results were further tested and
verified in acoustic emissions recorded in laboratory experiments [51], in aftershock sequences [52],
volcanic seismicity [36,38] and earthquake swarms [53,54], as well as in regional [34,35,37,55–57]
and global seismicity [40,58]. In Figure 3 we show the CDFs P (>T) and P (>r) of inter-event
times and distances, respectively, during the 2008–2009 Yellowstone Lake earthquake swarm and
the corresponding fits according to the q-exponential distribution (after [38]). The q-exponential
distribution (Equation (8)) describes well the observed distributions for the q-values of qT = 1.715 and
qr = 0.71 (Figure 3). Such results further signify nonlinear dynamics and long-range interactions in the
spatiotemporal evolution of seismicity, in agreement with findings from independent methods [59–61].
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Figure 3. Cumulative distribution functions of the inter-event times (circles) (left) and -distances
(diamonds) (right) between the successive earthquakes during the 2008–2009 Yellowstone Lake swarm.
The solid lines represent the q-exponential distribution (Equation (8)) fitted to the data for the values of
qT = 1.715 and qr = 0.71. Modified from [38].

In addition, [9,34] studied the probability density function of inter-event times T in nonstationary
earthquake timeseries in the Corinth Rift, Southern California and Japan and found a bimodal scaling
behavior between two power-law regimes for short and long inter-event times (or waiting times),
respectively. This scaling behavior can well be reproduced by a generalized gamma distribution
derived within the framework of NESP [62], namely the q-generalized gamma distribution that reads as:

f (T) = C
(

T
T0

)γ−1

expq

(
−

T
T0

)
(11)

where C is a normalization constant, T0 a scaling parameter and γ a scaling exponent, while the last
term in the right-hand side of the latter equation is the q-exponential function (Equation (6)). This type
of scaling and the gradual crossover between two power-law regimes indicates clustering effects
and correlations at all time scales in the temporal evolution of seismicity, associated with triggered
aftershock sequences and long-range interactions in the background activity, respectively [9,10].

3.2. Application to Arctic Sea Ice Time Series

The sea ice covering the Arctic ocean is an open, non-equilibrium, multicomponent geophysical
system with hierarchic properties [63,64] and well-pronounced scaling behavior [21,65]. Sea ice is a
critical parameter for the Earth’s climate system as it insulates the ocean from the atmosphere. As the
ice cover deforms and fractures, the albedo decreases allowing the ocean to absorb more shortwaves,
so that the ice cover reduces its strength and shrinks during summer, a process that possibly further
enhances fracturing [22,66,67]. During winter, on the other hand, sea ice fractures and expands as new
ice is produced, a process that customizes the heat and salinity in polar regions [68].

Beyond the key role of sea ice for the Earth’s climate, the sea ice cover further represents a protype
for investigating deformation and fracture processes in geophysical systems, as the large lateral extent
of the ice cover compared to its thickness allows monitoring of deformation from surface measurements.
In addition, monitoring and sampling of deformation in sea ice requires relatively short times, as its
deformation develops at much shorter time scales compared to the Earth’s crust.

Previous works have shown that sea ice deformation is accommodated by fracturing processes
in a wide range of scales so that strong spatial heterogeneity and intermittency appear in the stress
and strain rates, characterized by multifractal scaling properties, extreme fluctuations and long-range
temporal correlations [21,69,70]. Various forces drive stresses, strains and fracturing in the sea ice
cover [21,71]. Among those, the main component is considered to be the wind that induces stresses



Entropy 2020, 22, 1194 8 of 15

and strains with its motion. However, sea ice mechanics and the internal ice stress term seems to be
critical in sea ice deformation [72]. In this line, it has been suggested that the intermittence in principal
stresses σ1 and σ2 and the principal stress direction θs does not emerge by the turbulent wind forcing,
but it naturally emerges from the fracturing process itself [70].

In the current section we analyze time series of principal stress values σ1, σ2 along with the
direction of principal stress θs within Arctic sea ice recorded during the CEAREX field campaign [73].
In the course of the drift phase of CEAREX during October and November 1988 and at a distance of
approximately 230 m from the ship, in-plane compressive stresses were measured in a multi-year ice
floe in the eastern Arctic. At this site, ice was in average 1.60 m thick, with thickness variations of
less than 20 cm within a 15 m region. Three sensors were installed at roughly the neutral surface of
the floe in a rosette pattern to provide calculations of principal stresses σ1 and σ2, using a hydraulic
fluid-filled flatjack type stress sensor of 20 cm in diameter. The latter provided the estimation of the
principal stresses with a resolution of 1.7 kPa. Data sampling, taken once per second, was averaged
over two-minutes intervals and stored. The direction of principal stress θs and the principal stresses σ1,
σ2 time series are shown in Figure 4. In the data set analyzed, negative stress values indicate compression
and positive stress values tension (Figure 4). The direction θs of σ2 is measured counterclockwise
from East. The mean directionθs in the data set is 42◦with a variance 222, while for the principal stresses
σ1 and σ2 the mean values are −1.3 kPa and −15.1 kPa and the variances 47.1 and 270.8, respectively.

For the analysis, we consider the increments time series X(t) of the two principal stress values σ1

and σ2 and of the principal stress direction θs. The increments time series X(t) is defined as X(t) =

S(t + 1) − S(t), where S(t) is one of the parameters σ1, σ2 and θs, respectively. We then construct the
probability density function (pdf) p(x), where x = (X − 〈X〉)/σX with σX being the standard deviation
of the variable X(t), normalized to zero mean and unit variance of X(t). The normalized pdfs p(x) are
shown in Figure 5. From Figure 5 we can immediately verify the departure of the observed pdfs from
the classic Gaussian function. Note that in Figure 5 we plot the Gaussian function fitted to the data and
not the standard Gaussian function with zero mean and unitary variance. Instead, the observed p(x)
presents heavy tails and scaling behavior that can rather be described with the q-Gaussian distribution
of the form:

f (x) = A
[
1− (1− q)

x2

B

]1/(1−q)

(12)

for the parameter’s values shown in Table 1. The results of this analysis indicate that principal stresses
σ1 and σ2 and principal stress direction θs increments within Arctic sea ice differ from Brownian
random noise. Alternately, stress timeseries display long-range time correlations described by the
q-Gaussian distribution.

Table 1. Summary table showing the associated values estimated from the analysis for each principal
stress (σ1, σ2) and stress direction (θs), i.e., the q-value and B from the q-Gaussian function (Equation (12))
and their associated uncertainties.

Stress q δq B δB

σ1 1.85 0.04 0.0017 0.0002
σ2 1.82 0.12 0.0068 0.0006
θs 1.74 0.03 0.078 0.006
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Figure 4. The direction of principal stress θs (top) and the principal stresses σ1 (middle) and σ2 (bottom)
(in kPa) time series, recorded during the CEAREX field campaign within Arctic sea ice.
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Figure 5. Probability density function of the normalized increments x (see text) of θs(t), σ1(t) and σ2(t)
(filled circles) from top to bottom, respectively, the Gaussian fit (dashed black line) and the q-Gaussian
fit (solid purple line) for the parameter values shown in Table 1.
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4. Conclusions

Various aspects of fracturing exhibit complexity. Within this complexity, however, scaling laws
seem to apply to the macroscopic properties of fracturing. These laws include the (multi)fractal
distribution of fault networks, the G-R scaling relation for the frequency-magnitude distribution
of earthquakes and the Omori’s law for the decay rate of aftershocks. While such laws are now
well accepted by the scientific community, the fundamental physics in the microscopical level
that lead to such patterns remain controversial and to be answered in the future. In the present
work we discussed how can the macroscopic properties of fracturing processes and earthquakes be
derived by using the first principles of statistical physics. Within this approach, NESP provides a
consistent theoretical framework, based on the principle of entropy, for describing some of the essential
properties of fracturing, such as (multi)fractality, large fluctuations and long-range correlations that
lead to heavy-tailed distributions. Within this framework appropriate probability distributions can
be derived that describe some of the collective properties of earthquake and faults, such as fault
trace-lengths distributions, the frequency-magnitude distribution of earthquakes, the fluctuations of
seismic energy release, or the spatiotemporal scaling properties of seismicity.

Furthermore, we presented for the first time the application of the NESP framework to sea
ice stress time series fluctuations. Our results indicate that the principal stresses σ1 and σ2 and
the principal stress direction θs fluctuations within Arctic sea ice exhibits “fat” tails enhanced by
long-range correlations, similar to that observed in seismicity. This property further enhances the
probability to encounter extreme events that cannot be described by Gaussian statistics. The latter
implies that the possibility of experiencing a destructive stress event would be seriously underestimated
if dynamic ice stress is assumed to follow a Gaussian distribution. Instead, we have demonstrated
that the q-Gaussian distribution, derived within the framework of NESP, can adequately describe
the scaling behavior of the Arctic sea ice stress fluctuations and the statistics of the extreme events.
Hence, the multiscale fracturing processes associated with the deformation and dynamics of Arctic
sea ice, characterized by intermittency of strain rates, stress amplitudes and principal stress directions,
can be approximated with the q-Gaussian distribution. The advantage of considering NESP and the
q-Gaussian distribution is that, based on the principle of entropy, sea ice mechanics can be associated
to statistical physics, while it includes BG statistical physics as a particular case.

Overall, the results presented in a series of recent publications and in the current work support
the idea that NESP is an appropriate methodological tool to apply to the macroscopic properties
of fracturing processes and earthquakes in terms of probabilities, based on the definition of the
relevant microscopic configurations and their interactions. By optimizing the nonadditive entropy Sq

using appropriate constraints, a range of power-law to exponential-like distributions are acquired,
which are both omnipresent in physical systems. The scaling behavior and the q-values of q ≥ 1
presented here for sea ice stress timeseries, but also presented elsewhere for the size distribution
of fractures, faults and earthquakes for a wide range of scales (e.g., [16,18–20,51,74], support the
idea that solid Earth materials represent a subadditive complex system with fracturing processes
universally characterized by q-values of q ≥ 1. The compliance of the q-exponential or the q-Gaussian
family of distributions and the macroscopic properties of fracturing implies that the former may act as
attractors for fracturing processes. The latter also becomes relevant for a wide class of other complex
systems, as diverse as financial markets, living organisms, optical lattices or black holes, among others
(e.g., [75,76]), suggesting that fracturing belong to the same universality class as such systems.

Although the results presented here provide a step forward to the better understanding of
fracturing phenomena and the underlying physics, the scientific challenge that still remains is to
deduce in unified way, using the notions of statistical physics, the physical mechanisms that drive
fracture nucleation and evolution. Towards such endeavor, the application of NESP to fracturing
phenomena provide a consistent theoretical framework, based on first principles and the concept
of entropy, to describe the macroscopic behavior of fracturing processes, where properties such
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as intermittency, multifractality, long-range correlations and extreme events are intrinsic characteristics
of the underlying dynamics.
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