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Abstract: To date, testing for Granger non-causality using kernel density-based nonparametric
estimates of the transfer entropy has been hindered by the intractability of the asymptotic distribution
of the estimators. We overcome this by shifting from the transfer entropy to its first-order Taylor
expansion near the null hypothesis, which is also non-negative and zero if and only if Granger
causality is absent. The estimated Taylor expansion can be expressed in terms of a U-statistic,
demonstrating asymptotic normality. After studying its size and power properties numerically,
the resulting test is illustrated empirically with applications to stock indices and exchange rates.
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1. Introduction

Characterizing causal interactions between time series has been challenging until Granger in
his pioneering work brought forward the concept later known as Granger causality [1]. Since then,
testing causal effects has attracted attention not only in Economics and Econometrics, but also in the
domains of neuroscience [2,3], biology [4] and physics [5], among others.

The vector autoregressive (VAR) modeling-based test has become a popular methodology over
the last decades, with repeated debates on its validity. As we see it, there are at least two critical
problems with parametric causality tests. First, being based on a classical linear VAR model, traditional
Granger causality tests may overlook significant nonlinear dynamical relationships between variables.
As Granger [6] put it, nonlinear models represent the proper way to model the real world which
is ‘almost certainly nonlinear’. Secondly, parametric approaches to causality testing bear the risk
of model mis-specification. A wrong regression model could lead to a lack of power, or worse,
unjustified conclusions. For example, Baek and Brock construct an example where nonlinear causal
relations cannot be detected by a traditional linear causality test [7].

In a series of studies, authors have tried to relax parametric model assumptions and provide
nonparametric versions of Granger causality tests, which essentially are tests for conditional
independence. Hiemstra and Jones were among the first to propose a formal nonparametric
approach [8]. By modifying Beak and Brock’s nonparametric method [7], and developing asymptotic
theory, Hiemstra and Jones obtained a nonparametric test for Granger causality. However, as this test
suffers from a fundamental inconsistency problem, [9] proposed a modified, consistent version of the
test based on kernel density estimators, hereafter referred to as the DP test. Alternative semiparametric
and nonparametric tests for conditional independence have been proposed based on, among other,
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additive models [10], the Hellinger distance measure [11], copulas [12], generalized empirical
distribution functions [13], empirical likelihood ratios [14] and characteristic functions [15].

The scope of this paper is to provide a novel test for Granger causality, based on the
information-theoretical notion of transfer entropy (hereafter TE), coined by Schreiber [16]. The transfer
entropy was initially used to measure asymmetric information exchange in a bivariate system. By using
appropriate conditional densities, the transfer entropy is able to measure information transfer from
one variable to another. This property makes it attractive for detecting conditional dependence in
dynamical settings in a general (distributional) sense. We refer to [17,18] for detailed reviews of the
relation between Granger causality and directed information theory.

Despite the attractive properties of the transfer entropy and related information-theoretical
notions, such as the mutual information—the application of concepts from information theory to time
series analysis has proved difficult due to the lack of asymptotic theory for nonparametric estimators
of these information-theoretical measures. For example, Granger and Lin [19] utilize entropy to
detect serial dependence using critical values obtained by simulation. Hong and White [20] prove
asymptotic normality for an entropy-based statistic, but the asymptotics only hold for a specific kernel
function. Barnett [21] established an asymptotic χ2 distribution for transfer entropy estimators in
parametric settings. Establishing asymptotic distribution theory for a fully nonparametric transfer
entropy measure is challenging, if not impossible. Diks and Fang [22] provide numerical comparisons
to gain some insights into the statistical behavior of nonparametric transfer entropy-based tests.

In this paper, we propose a test statistic based on a first order Taylor expansion of the transfer
entropy, which is shown to be asymptotically normally distributed. Instead of deriving the limiting
distribution of the transfer entropy—which is hard to track—directly, we bypass the problem by
focusing on a quantity that locally (near the null hypothesis) is similar, but globally different, while still
sharing the global positive-definiteness property with the transfer entropy. Furthermore, we show that
this new test statistic is closely related to the DP test (Section 2.2), and follow a similar approach to
finding the asymptotic normal distribution of the estimator of the Taylor expansion.

This paper is organized as follows. Section 2 provides a short introduction to the nonparametric
DP test and its lack of power against certain alternatives. Subsequently, the transfer entropy and a
nonparametric test based on its first order Taylor expansion near the null hypothesis are introduced.
The close linkage of this novel test statistic with the DP test is shown, and asymptotic normality is
proved using an asymptotically equivalent U-statistic representation of the estimator. Section 2 also
discusses the optimal bandwidth selection rule for specific cases. Section 3 deals with Monte Carlo
simulations; three different data generating processes are considered, enabling a direct comparison
of size and power between the modified DP test and the DP test. Section 4 considers two financial
applications. In the first, we apply the new test to stock volume and return data to make a direct
comparison with the DP test; in the second application high frequency exchange rates of main
currencies are tested. Finally, Section 5 summarizes.

2. A Transfer Entropy-Based Test Statistic for Granger Non-Causality

2.1. Nonparametric Granger Non-Causality Tests

This subsection provides some basic concepts and definitions for Granger causality, and the idea
of nonparametrically testing for conditional independence. We restrict ourselves to the bivariate setting
as it is the most common implementation, although generalization to multivariate densities is possible.

Intuitively, for a strictly stationary bivariate process {(Xt, Yt)}, t ∈ Z, it is said that {Xt} Granger
causes {Yt} if current and past values of {Xt} contain some additional information, beyond that in
current and past values of {Yt}, about future values of {Yt}. A linear Granger causality test based on
a parametric VAR model can be seen as a special case where testing for conditional independence is
equivalent to testing a restriction in the conditional mean specification.



Entropy 2020, 22, 1123 3 of 27

In a more general setting, the null hypothesis of Granger non-causality can be rephrased in terms
of conditional dependence between two time series: {Xt} is a Granger cause of {Yt} if the distribution
of {Yt} conditional on its own history is not the same as that conditional on the histories of both
{Xt} and {Yt}. If we denote the information set of {Xt} and {Yt} until time t by FY,t and FX,t,
respectively, and use ‘∼’ to denote equivalence in distribution, we may give a formal and general
definition for Granger causality. For a strictly stationary bivariate process {(Xt, Yt)}, t ∈ Z, {Xt} is a
Granger cause of {Yt} if, for all k ∈ 1, 2, . . .,

(Yt+1, . . . , Yt+k) | ( FY,t, FX,t ) � (Yt+1, . . . , Yt+k) |FY,t.

In the absence of Granger causality, i.e.,

(Yt+1, . . . , Yt+k) | ( FY,t, FX,t ) ∼ (Yt+1, . . . , Yt+k) |FY,t,

{Xt} has no influence on the distribution of future {Yt}. This is also referred to as Granger non-causality
and often expressed as conditional independence between {Xt} and {Yt} as

(Yt+1, . . . , Yt+k) ⊥ (Xt, . . . , Xt−m) |FY,t, (1)

for m = 0, 1, 2, . . ., Granger non-causality, as expressed in Equation (1), lays the first stone for a
nonparametric test without imposing any parametric assumptions, apart from strict stationarity and
weak dependence, about the data generating process or underlying distributions for {Xt} and {Yt}.
The orthogonality here concerns not only the conditional mean, but also higher conditional moments.
We assume two things here. First, {(Xt, Yt)} is a strictly stationary bivariate process. In practice,
it is infeasible in nonparametric settings to condition on the entire past of Xt and Yt. We therefore
implicitly consider the process to be of finite Markov orders, lX < ∞ and lY < ∞ in the past of Xt and
Yt, respectively.

The null hypothesis of Granger non-causality is that H0 : {Xt} is not a Granger cause of {Yt}.
To keep focus on the main contribution of this paper—the Taylor expansion of the transfer entropy
and its asymptotic distribution—in this paper we limit ourselves to the bivariate case with single
lags in the past such that k = lX = lY = 1, which so far has been the case considered most in the
literature on nonparametric Granger non-causality. Extensions to higher lags and/or higher-variate
processes are feasible, but require reduction of the bias order by data sharpening or higher-order density
estimation kernels (see e.g., Diks and Wolski, 2016). We define the three-variate vector Wt = (Xt, Yt, Zt),
where Zt = Yt+1; and W = (X, Y, Z) indicates a random variable W with distribution equal to the
invariant distribution of Wt. Within the bivariate setting, W is a three-dimensional vector. In terms of
density functions f·(·) (which are assumed to exist), and given k = lX = lY = 1, Equation (1) can be
phrased as

H0 :
fX,Y,Z(x, y, z)

fY(y)
=

fY,Z(y, z)
fY(y)

fX,Y(x, y)
fY(y)

, (2)

for all (x, y, z) in the support of W, or equivalently as

H0 :
fX,Y,Z(x, y, z)

fY(y)
− fY,Z(y, z)

fY(y)
fX,Y(x, y)

fY(y)
= 0, (3)

for all (x, y, z) in the support of W. A nonparametric test for Granger non-causality seeks to find
statistical evidence of violation of Equation (2) or Equation (3). There are many nonparametric
measures available for this purpose, some of which are mentioned above. However, as far as we know,
the DP test, to be described below, currently is the only fully nonparametric test that is known to have
correct asymptotic size under the null hypothesis of Granger non-causality.
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2.2. The DP Test

Hiemstra and Jones [8] proposed to test the condition expressed by Equation (2) by calculating
correlation integrals for each density and measuring the discrepancy between two sides of the equation.
However, their test is known to suffer from severe size distortion due to the fact that the quantity on
which the test is based is inconsistent with Equation (2). To overcome this problem, DP suggest to use
a conditional dependence measure by incorporating a local weight function g(x, y, z) and formulating
Equation (3) as

E
[(

fX,Y,Z(X, Y, Z)
fY(Y)

− fY,Z(Y, Z)
fY(Y)

fX,Y(X, Y)
fY(Y)

)
g(X, Y, Z)

]
= 0. (4)

Under the null hypothesis of no Granger causality, the term within the large round brackets
vanishes, and the expectation goes to zero. As noted in [23], Equation (4) can be treated as an infinite
number of moment restrictions. Although testing for Equation (4) for a specific function g instead
of testing Equation (2) or Equation (3) may lead to a loss of power against some specific alternatives,
there is also an advantage to do so. For example, in the DP test, the weight function g(x, y, z) is taken
to be g(x, y, z) = f 2

Y(y), as this leads to a U-statistic representation of the corresponding estimator,
which enables the analytical derivation of the asymptotic normality of the test statistic. In principle,
other choices for g(x, y, z) will also do as long as the test has satisfactory power against alternatives of
interest. Since in the DP test, g(x, y, z) = f 2

Y(y), it tests the implication

H′0 : q ≡ E [ fX,Y,Z(X, Y, Z) fY(Y)− fX,Y(X, Y) fY,Z(Y, Z)] = 0, (5)

of H0, rather than H0 itself.
Given a local density estimator of a dW-variate random vector W at Wi as

f̂W(Wi) = ((n− 1)h)−dW
n

∑
j,j 6=i

K
(Wi −Wj

h

)
, (6)

where K is a finite variance, zero mean, kernel density function (e.g., the standard normal density
function) and h is the bandwidth, the DP test develops a third order U-statistic estimator for the
functional q, given by

Tn(h) =
(n− 1)

n(n− 2) ∑
i

(
f̂X,Y,Z(Xi, Yi, Zi) f̂Y(Yi)− f̂X,Y(Xi, Yi) f̂Y,Z(Yi, Zi)

)
, (7)

where the normalization factor (n − 1)/(n(n − 2)) is inherited from the U-statistic representation
of Tn(h). It is worth mentioning that a second order square (or rectangular) kernel K is adopted
by DP. However, there are two main drawbacks of using a square kernel. First, a square kernel
will yield a discontinuous density estimate f̂ (·), which is not attractive from a practical perspective.
Second, it weighs all neighbor points Wj equally, overlooking their relative distance to the estimation
point Wi. Therefore, a smooth kernel function—the Gaussian kernel—is used here, namely the product
kernel function defined as K(W) = ∏dW

s=1 κ(ws), where ws is sth element in W. Using a standard

univariate Gaussian kernel, κ(ws) = (2π)−1/2e−
1
2 (ws)2

, K(.) is the standard multivariate Gaussian
kernel as described in [24,25].

For lX = lY = 1, DP prove the asymptotic normality of Tn(h). Namely, if the bandwidth h = hn

depends on the sample size as hn = Cn−β for constants C > 0 and β ∈ ( 1
4 , 1

3 ), then the test statistic in
Equation (7) satisfies

√
n

Tn(h)− q
Sn

d−→N(0, 1), (8)
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where S2
n is a consistent estimator of the asymptotic variance of Tn(h). DP suggest to implement an

one-sided version of the test, rejecting H′0: q = 0 against the alternative Ha: q > 0 if Tn(h) is too large.
That is, given the asymptotic critical value z1−α, the null hypothesis H′0 is rejected at significance level
α if
√

nTn(h)/Sn > z1−α.

2.3. Inconsistency of the DP Test

The drawback of the DP test arises from the fact that H′0 in Equation (5), obtained for a specific
weight function g(x, y, z), need not be equivalent to H0 in Equations (2) and (3); it merely is an
implication of H0. For consistently testing H0, an analogue of q is desirable that satisfies the positive
definiteness property stated next, which q does not satisfy.

Definition 1. A functional s of the distribution of W is positive definite if s ≥ 0 with s = 0 if and only if Xt

and Zt are conditionally independent given Yt.

From the previous reasoning, it is obvious that Equation (5) is implied by Equation (3), and
Definition 1 states that a strictly positive q is achieved if and only if H0 is violated. In other words,
the null hypothesis of Granger non-causality requires that Xt and Zt are independent conditionally
on Yt, which is just a sufficient, but not a necessary, condition for q = 0. With Definition 1,
H′0 coincides with H0 and a consistent estimator of q, i.e., Tn(h) as suggested by DP, will have
unit asymptotic power. If this property is not satisfied, a test for q = 0 could deviate from the test on
H0. Although [23] identified specific sub-classes of processes for which q is positive definite, we can
easily construct a counterexample where the DP test has no power even if Xt strongly Granger causes
Zt. For completeness, such a counterexample is given next.

Inspired by the example in [26], where a closely-related test for unconditional independence
is proposed, we consider a conditional counterpart to illustrate that q is not positive definite.
The one-sided DP test will be seen to suffer from a lack of power for this example process. As we show
below, in the case where q = 0, this drawback cannot be overcome even with a two-sided DP test.

Consider the process {(Xt, Yt, Zt)} where, as before, Zt ≡ Yt+1. We assume that the i.i.d.
continuous variable Xt ∈ [−1, 1], with probability 1 − d of being positive, where 0 < d < 1.
Further, there is no dependence between Xt and Yt, and Zt does not depend on Yt but on Xt in
such a way that the conditional density of (Xt, Zt|Yt = y) is given by

f (xt, zt|yt) = f (xt, zt) =


1− 2d, if 0 ≤ xt ≤ 1, 0 ≤ zt ≤ 1,

d, if 0 ≤ xt ≤ 1, −1 ≤ zt < 0,

d, if − 1 ≤ xt < 0, 0 ≤ zt ≤ 1,

0, if − 1 ≤ xt < 0, −1 ≤ zt < 0,

(9)

for 0 ≤ d ≤ 1
2 .

Given Equation (9), the marginal densities of Xt, Yt and Zt can be calculated to be all equal,
with P(−1 ≤ Xt < 0) = d and P(0 ≤ Xt ≤ 1) = 1− d, while the conditional probability of Zt being
larger than zero given {(Xt = xt, Yt = yt)} is given by P(0 < Zt ≤ 1|(xt, yt)) = 1 for −1 ≤ xt < 0,
and P(0 ≤ Zt ≤ 1|(xt, yt)) = (1− 2d)/(1− d) for 0 ≤ xt ≤ 1. Hence, for 0 < d ≤ 1

2 , {Xt} is a Granger
cause of {Yt} since Xt has an impact on the distribution of Zt = Yt+1, given Yt. For this example, we
can explicitly calculate q defined in Equation (5), which is found to be q = d2 ((1− d)3 + d3) (4d− 1).
For 0 < d < 1

4 , q has a negative value. In this situation, the one-sided DP test, which rejects for large q,
is not a consistent test for Granger non-causality. One may argue that this is not a problem if we use a
two-sided test at the price of losing some power. However, the inconsistency of the DP test—which
tests H′0 rather than H0—then would still be illustrated by the example if d = 1

4 , for which q = 0
exactly, while {Xt} is clearly a Granger cause of {Yt}; the DP test will only have trivial power against
this alternative.
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Figure 1 reports the power of the one-sided DP test as a function of the sample size for different
significance levels, based on 10, 000 independent simulations. Three nominal sizes are illustrated here:
5%, 10% and 15%, and the sample size ranges from 100 to 20, 000. It is striking from Figure 1 that the
DP test hardly has power against the alternative with d = 1/4, for which q = 0. The same conclusion
can be drawn from Figure 2, where the size-power plots [27] are given. For almost all sub-panels with
different sample sizes, the power of the DP test is around the diagonal line for this particular example
when q = 0, which indicates that the DP test has only trivial power to detect Granger causality from
Xt to Yt.

The lack of power of the one-sided DP test in this example is hardly alleviated by its two-sided
counterpart, as a result of the absence of equivalence between q = 0 and conditional independence.
The difference between H0 and its implication H′0 gives rise to the lack of power of the DP test as the
estimated quantity is not positive definite. In the next subsection, a new test statistic, based on the
information-theoretical concept transfer entropy, is introduced and the test statistic is shown to be
positive definite, which overcomes the inherited drawback of the DP test. In fact, this new test statistic
shares many similarities with the DP test statistic, but also has an information-theoretical interpretation
for its non-negativity.
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Figure 1. Power for the one-sided DP test for the artificial process {(Xt, Yt, Zt)} for d = 1/4, for which
q = 0, at nominal size, from the bottom to the top, 5%, 10% and 15%, respectively, based on 10, 000
independent simulations.
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Figure 2. Size-power plots for the one-sided DP test for the artificial process {(Xt, Yt, Zt)} for d = 1/4,
for which q = 0, based on 10, 000 independent simulations. Each subplot draws the actual power
against the nominal size for different sample sizes, ranging from 100 to 5000. The solid curve represents
the actual power and the red dash line indicates the diagonal, indicating the nominal size of a test.

2.4. Information-Theoretical Interpretation

In a very different context from testing for conditional independence, the problem of information
feedback and impact also has drawn much attention since 1950. Information theory, as a branch of
applied mathematical theory of probability and statistics, studies the transmission of information over
a noisy channel. This entropy, also referred to as Shannon entropy, is a key measure in the field of
information theory brought forward in [28,29]. The entropy measures the uncertainty and randomness
associated with a random variable. Suppose that S is a random vector with density fS(s), then the
Shannon entropy is defined as

H(S) = −
∫

fS(s) log{ fS(s)}ds.

There is a long history of applying information measures in econometrics. For example,
ref. [30] uses the Kullback–Leibler information criterion (KLIC) [31] to construct a one-sided test for
serial independence. Since then, nonparametric tests using entropy-based measures for independence
between two time series are becoming prevalent. Granger and Lin [19] use entropy measure to identify
the lags in a nonlinear bivariate model. Granger et al. [32] study dependence with a transformed
metric entropy, which has the additional advantage of allowing multiple comparisons of distances and
turns out to be a proper measure of distance. Hong and White [20] provide a new entropy-based test
for serial dependence, and show that the test statistic is asymptotically normal.
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Although inspiring, those results cannot be applied directly to measure conditional dependence.
We therefore consider that the transfer entropy (TE) introduced in [16] is a suitable measure to serve
this purpose. The TE quantifies the amount of information explained in one series k steps ahead from
the state of another series, given the information contained in its own past. We briefly introduce the
TE and KLIC before we further discuss its relation with the modified DP test.

Suppose that we have a bivariate process {(Xt, Yt)}, and for brevity we put X = {Xt}, Y =

{Yt} and Z = {Yt+k}. Again, we limit ourselves to k = 1 lag for simplicity, and consider the
three-dimensional vector W = (X, Y, Z) as before. The transfer entropy TEX→Y is a nonlinear and
nonparametric measure for the amount of information contained in X about Z, in addition to the
information about Z that already contained in Y. Although the TE defined in [16] applies to discrete
variables, it is easily generalized to continuous variables. Conditional on Y, TEX→Y is defined as

TEX→Y = EW

(
log

fZ,X|Y(Z, X|Y)
fX|Y(X|Y) fZ|Y(Z|Y)

)

=
∫ ∫ ∫

fX,Y,Z(x, y, z) log
fX,Z|Y(x, z|y)

fX|Y(x|y) fZ|Y(z|y)
dx dy dz

= EW

(
log

fX,Y,Z(X, Y, Z)
fY(Y)

− log
fX,Y(X, Y)

fY(Y)
− log

fY,Z(Y, Z)
fY(Y)

)
= EW (log fX,Y,Z(X, Y, Z) + log fY(Y)− log fX,Y(X, Y)− log fY,Z(Y, Z)) .

(10)

Using the conditional mutual information I(Z, X|Y = y), the TE can be equivalently formulated in
terms of four Shannon entropies as

TEX→Y = I(Z, X|Y)
= H(Z|Y)− H(Z|X, Y)

= H(Z, Y)− H(Y)− H(Z, X, Y) + H(X, Y).

In order to construct a test for Granger causality based on the TE, it remains to be shown that the
TE is a proper basis for testing the null hypothesis. The following theorem, as a direct result of the
properties of the KLIC, lays the quantitative foundation for testing based on the TE.

Theorem 1. The transfer entropy TEX→Y, as a functional of the joint density of W = (X, Y, Z), is positive
definite; that is, TEX→Y ≥ 0 with equality if and only if fZ,X|Y(z, x|y) = fX|Y(x|y) fZ|Y(z|y) for all (x, y, z)
in the support of W.

Proof. Equation (1) follows from generalizing Theorem 3.1 in Chapter 2 of [33], where the divergence
between two different densities has been considered. An alternative proof is given in Equation (A.1) in
Appendix A by using Jensen’s inequality and concavity of the log function.

It is not difficult to verify that the condition for TEX→Y = 0 coincides with Equations (2) and
(3) for Granger non-causality under the null hypothesis. This positive definiteness makes TEX→Y a
desirable measure for constructing a one-sided test of Granger causality; any divergence from zero is a
sign of conditional dependence of Y on X. To estimate TEX→Y, one may follow the recipe in [34] by
measuring k-nearest neighbor distances. A more natural method, applied in this paper, is to use the
plug-in kernel estimates given in Equation (6), and replace unknown expectations by sample averages.

However, the direct use of the TE to test Granger non-causality is not easy due to the lack of
asymptotic theory for the test statistic. It has been shown [19] that the asymptotic distribution of
entropy-based estimators usually depends on strict assumptions regarding the dataset. Over the years
several break-throughs have been made with the application of entropy to testing serial independence,
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e.g., [30] obtains an asymptotic N(0, 1) distribution for an entropy measure by a sample-splitting
technique and [20] derives asymptotic normality under bounded support data and quartic kernel
assumptions. However, the limiting distribution of the natural nonparametric TE estimator is still
unknown under more general conditions.

One may argue in favor of using simulation techniques to overcome the problem of the lack of
asymptotic theory. However, as suggested in [11], there exist estimation biases of TE statistics for
non-parametric dependence measures under the smoothed bootstrap procedure. Even with parametric
test statistics, it has been noticed [21] that the TE-based estimator is generally biased. Surrogate data
are also applied widely, for instance in [35,36] to detect information transfer. We therefore consider the
direct usage of the TE for nonparametric tests for Granger non-causality difficult, if not impossible.

Below, we show that a first order Taylor expansion of the TE provides a way out to construct the
asymptotic distribution of this meaningful information measure. In the next section, we show that
the first order Taylor expansion of the TE can form the basis of a modified DP test for conditional
independence. This not only helps to circumvent the problem of asymptotic distribution for
entropy-based statistic, but also endows the modified DP test with positive definiteness.

In the remaining part of this section we will introduce the first order Taylor expansion of the TE,
and the positive definiteness of the measure will be given afterwards. Starting with Equation (10),
we perform the first order Taylor expansion locally at TEX→Y = 0, which is

TEX→Y = EW

[
log

fZ,X|Y(Z, X|Y)
fX|Y(X|Y) fZ|Y(Z|Y)

]

= EW

[
log

(
1 +

(
fZ,X|Y(Z, X|Y)

fX|Y(X|Y) fZ|Y(Z|Y) − 1

))]

= EW

[
fZ,X|Y(Z, X|Y)

fX|Y(X|Y) fZ|Y(Z|Y) − 1

]
+ h.o.t.,

(11)

where ‘h.o.t’ stands for ‘higher order terms’ in
fZ,X|Y(Z,X|Y)

fX|Y(X|Y) fZ|Y(Z|Y) − 1, which is small close to the null

hypothesis. Ignoring the higher order terms in the transfer entropy makes the distribution of the test
statistic tractable, without (up to leading order) affecting the dependence measure close to the null
hypothesis, where by definition a powerful test is needed.

By ignoring higher order terms, we define the first order expansion ϑ = EW

[
fZ,X|Y(Z,X|Y)

fX|Y(X|Y) fZ|Y(Z|Y) − 1
]

as a measure for conditional dependence. The following theorem states that ϑ, which with slight abuse
of language we still refer to as a transfer entropy, inherits the positive definiteness of the TE.

Theorem 2. The transfer entropy ϑ, as a functional of the joint density of W = (X, Y, Z), is positive definite;
that is, ϑ ≥ 0 with equality if and only if fZ,X|Y(z, x|y) = fX|Y(x|y) fZ|Y(z|y) for all (x, y, z) in the support
of W.

Proof. See Equation (A.2).

Equation (2) indicates that the divergence measure ϑ has the desirable property of positive
definiteness, which the measure q used in the DP test is lacking. However, direct estimation of
Equation (11) does not lead to a practically useful test statistic without the asymptotic distribution.
In the next subsection we show that the nonparametric estimator of ϑ is asymptotically normal. The key
to this result is the fact that the DP statistic and the newly proposed statistic only differ in terms of the
weight function g(x, y, z) in Equation (4), and that the proof of asymptotic normality of the DP test can
be easily adjusted to accommodate this new weight function.
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2.5. A Modified DP Test

In comparing Equations (3) and (4), it can be seen that the discrepancy between H′0 and H0 arises
from incorporation of the weight function g(x, y, z) = f 2

Y(y) to the null hypothesis. In principle other
positive functions g(x, y, z) can be used, such as those discussed by DP. As long as the corresponding
estimator of the divergence measure has a U-statistic representation, asymptotic normality follows from
the theory of U-statistics. Particularly, we propose to modify the DP test by dividing all terms in the
expectation of Equation (5) by the function v(x, y, z) ≡ fX,Y(x, y) fY,Z(y, z), since then, by Theorem 2

H′′0 : E
[
( fX,Y,Z(X, Y, Z) fY(Y)− fX,Y(X, Y) fY,Z(Y, Z))

1
v(X, Y, Z)

]
= 0, (12)

is not just implied by H0, but equivalent to it.
One can also think of Equation (12) as the result of plugging in a different weight function in

Equation (4). By the choice g(x, y, z) = f 2
Y(y)/( fX,Y(x, y)× fY,Z(y, z)) instead of g(x, y, z) = f 2

Y(y),
which was used by DP, Equation (12) simplifies to

H′′0 : ϑ ≡ E
[

fX,Y,Z(X, Y, Z) fY(Y)
fX,Y(X, Y) fY,Z(Y, Z)

− 1
]
= 0, (13)

which is equivalent to the first order Taylor expansion in Equation (11) and hence to H0 by Equation (2).
To estimate ϑ, we propose to use the following statistic with density estimator defined in Equation (6):

T′n(h) =
(n− 1)

n(n− 2)

n

∑
i=1

[(
f̂X,Y,Z(Xi, Yi, Zi) f̂Y(Yi)− f̂X,Y(Xi, Yi) f̂Y,Z(Yi, Zi)

) 1
v̂(Xi, Yi, Zi)

]
, (14)

where v̂(Xi, Yi, Zi) = f̂X,Y(X, Y) f̂Y,Z(Y, Z). The reason for estimating ϑ in this form is that, with the
sample statistic T′n(h), we can obtain a third order U-statistic representation of ϑ, similar to that for the
DP test statistic, by which asymptotic normality follows.

The asymptotic normality of T′n(h) is stated in Equation (3) below, which relies on the following
two lemmas concerning the uniform consistency of density estimators.

Lemma 1. (Uniform consistency of f̂ ) Let {Wi} = {(Xi, Yi, Zi)}, i ∈ N be a stationary sequence of 3-variate
random variables with a continuous and bounded Lebesgue density f , satisfying the strong mixing conditions
in Assumption 2 of [37]. If for the estimation of f , based on the first n values Wi, the kernel density estimator
fn = f̂ is used with kernel function K(w), as given in Equation (6), with n-dependent bandwidth h = hn =

cnst.× n−β, β < 1
3 , and K(w) is bounded and integrable, then

supw∈Rk | fn(w)− f (w)| → 0 a.s.

Proof. Equation (1) is a special case of Theorem 7 in [37], which more generally concerns the uniform
consistency of the kernel estimator of f and its derivatives.

Equation (1) provides the uniform consistency with probability one for a class of kernel estimators
of multivariate density functions. This is a generalization of the consistency result of the univariate
density estimation of [38,39] to the multivariate case with dependent observations. Note that to
serve our purpose here we need uniform convergence, which is stronger than pointwise convergence.
We refer to [40] for a detailed discussion between different types of convergence.

We next consider T̃′n, which differs from T′n in Equation (14) only in having v̂(.) in the denominator
replaced by the true unknown function v(.). In the next lemma, the short-hand notation vi = v(Wi)

and ηi = η(Wi) = fX,Y,Z(Xi, Yi, Zi) fY(Yi)− fX,Y(Xi, Yi) fY,Z(Yi, Zi) is used.
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Lemma 2. Under the conditions of Lemma Equation (1), if in addition Var
(

ηi
vi

)
< ∞, then

√
n(T′n(hn)− ϑ)

and
√

n(T̃′n(hn)− ϑ) have the same limiting distribution. More formally stated,

T′n(hn)− T̃′n(hn) = oP

(
1√
n

)
.

Proof. See Equation (A.3).

Theorem 3. If the bivariate time series {(Xt, Yt)}n
t=1 is strictly stationary and satisfies at least one of the

mixing conditions (a), (b) or (c) in Theorem 1 of [41], the corresponding random vector (Xt, Yt, Zt) satisfies the
conditions of Lemmas 1 and 2, and the density estimation kernel has bandwidth hn = Cn−β, C > 0, β ∈ ( 1

4 , 1
3 ),

T′n(hn) is asymptotically normally distributed. In particular

√
n

T′n(hn)− ϑ

Sn

d−→N(0, 1),

where S2
n is an HAC estimator of the long-run variance σ2 of

√
n(T′n(hn)− ϑ).

Proof. See Equation (A.4).

When implementing the test based on Equation (14), some comments regarding the treatment
of the marginals are in order. Note that ϑ is invariant under invertible smooth transformations of
the marginals due to the form of Equation (13) assuming that Xt and Yt are continuous (the ratio of
densities of the same variables is invariant under marginal transforms). Therefore, the dependence
structure between Xt and Yt remains intact under invertible marginal transforms. Although our testing
framework does not depend crucially on the restrictive assumption of a uniform distribution for the
time series as in [20,42], we recommend to use the probability integral transformation (PIT) on each of
the marginals, as suggested by DP, as this usually improves the performance of statistical dependence
tests. The reason is that, contrary to directly calculating the test statistics on the original data,
the bounded support after transforming the marginals to a uniform distribution avoids non-existing
moments during the bias and variance evaluation, which helps to stabilize the test statistic. There
are alternative ways to transform the marginal variables into a bounded support, for example, by
using a logistic function as [20]. Here, we decided to just apply the PIT, as it does not require any
user-specified parameters, and always leads to identical (uniform) marginals. The procedure is to
transform the original series {Xt} ({Yt}) to {UX

t } ({UY
t }) such that {UX

t } ({UY
t }) is the empirical CDF

of {Xt} ({Yt}) and the empirical distribution of {UX
t } ({UY

t }) is uniform.
Since the transfer entropy-based measure ϑ is non-negative, tests based on the statistic T′n(h) are

implemented as one-sided tests, rejecting the null hypothesis if
√

nT′n(h)/Sn > z1−α, where z1−α is the
(1− α)th quantile of standard normal distribution for a given significance level α.

2.6. Bandwidth Selection

In nonparametric settings, there typically is no uniformly most powerful test against all
alternatives. Hence, it is unlikely that a uniformly optimal bandwidth exists. As long as the bandwidth
tends to zero with as h = Cn−β, C > 0, β ∈ ( 1

4 , 1
3 ), our test has unit asymptotic power. Yet, we may

define the optimal bandwidth in the sense of asymptotically minimal mean squared error (MSE).
When balancing the first and forth leading terms in Equation (A5) to minimize the squared bias and
variance, for a second order kernel, it is easy to show that the optimal bandwidth for the DP test is
given by

hDP = Cn−2/7, where C =

(
13.5 q2

(E[s(W)])2

)1/7
, (15)
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with q2 and E[s(W)] the series expansion for the second moment of kernel function and expectation of
bias, respectively. Since the convergence rate of the MSE, derived in Equation (A.4), is not affected
by the way we construct the new test statistic, the derivation of Equation (15) remains intact and we
calibrated the optimal bandwidth for our new test, finding

h∗ ≈ 0.6hDP, (16)

where the scale factor 0.6 involved is a result of bias and variance adjustment for replacing the square
kernel by the Gaussian kernel (the variance of the uniform DP kernel was 1/

√
3 ≈ 0.57735, which we

rounded off to 0.6). Intuitively, the q2 and E[s(W)] terms are different from those for the DP test;
more details can be found in Equation (A.5).

The optimal value for C is process-dependent and difficult to track analytically. For example,
for a (G)ARCH process the optimal bandwidth is approximately given by hDP = Cn−2/7 where C ≈ 8
(see DP). Applying Equation (16), we proceed with h∗ = 4.8n−2/7 for (G)ARCH processes. To gain
some insights into the bandwidth, we illustrate the test size and power with a 2-variate ARCH process,
given by

Xt ∼ N(0, 1 + aY2
t−1),

Yt ∼ N(0, 1 + aY2
t−1).

(17)

We let 0 < a < 0.4 and run 5000 Monte Carlo simulations for time series length varying from 200
to 5000. The size is assessed based on testing Granger non-causality from {Xt} to {Yt}, and for the
power we use the same process but testing from Granger non-causality from {Yt} to {Xt}. The results
are presented in Table 1, from which it can be seen that the modified DP test is conservative in the
sense that its empirical size is lower than the nominal size 0.05 in all cases, while the power increases
when a increases and when the sample size increases.

Table 1. Observed size and power of the T′n(h) test for bivariate ARCH process Equation (17).

n 200 500 1000 2000 5000

h 1.0563 0.8130 0.6670 0.5471 0.4211

a = 0.1 Size 0.0020 0.0016 0.0036 0.0016 0.0048
Power 0.0032 0.0128 0.0288 0.0792 0.4000

a = 0.2 Size 0.0020 0.0008 0.0032 0.0016 0.0048
Power 0.0208 0.0932 0.2824 0.7292 0.9992

a = 0.3 Size 0.0020 0.0012 0.0028 0.0032 0.0044
Power 0.0816 0.3668 0.7916 0.9972 1.0000

a = 0.4 Size 0.0020 0.0016 0.0032 0.0028 0.0084
Power 0.1928 0.6968 0.9848 1.0000 1.0000

Note: Empirical size and power of the modified DP test for the process given in Equation (17) for different sample
sizes and parameter a. The values represent observed rejection rates over 5000 realizations for nominal size 0.05.

3. Size/Power Simulations

This section investigates the performance of the modified DP test. Before proceeding with new
data generating processes, we first revisit the example illustrated in Equation (9) for which the DP
test fails to detect that {Xt} is Granger causing {Yt}. The modified DP test is performed with 10, 000
replications, with the same bandwidth. The counterpart of the power-size plots for the DP test in
Figure 2 is delivered in Figure 3. In contrast with the lack of power of the DP test, for time series length
n = 500 and larger, the modified DP test already has a very high power in this artificial experiment,
as expected.
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Figure 3. Size-power plots for the one-sided modified DP test for the artificial process {(Xt, Yt, Zt)} for
d = 1/4, for which q = 0, based on 10, 000 independent replications. Each subplot shows the observed
power against the nominal size for different sample sizes, ranging from 100 to 5000. The solid curve
represents the observed power and the red dashed line corresponds with the diagonal, indicating the
nominal size of the test.

Next, we use numerical simulations to study the behavior of the modified DP test, while direct
comparisons between the modified DP test T′n and the DP test Tn are also given. Three processes are
being considered. In the first experiment, we consider a simple bivariate VAR process, given by

Xt = aYt−1 + εx,t, εx,t ∼ N(0, 1),
Yt = aYt−1 + εy,t, εy,t ∼ N(0, 1).

(18)

The second process is designed as a nonlinear VAR process in Equation (19). Again, the size and
power are investigated by testing for Granger non-causality in two different directions.

Xt = 0.6Xt−1 + aXt−1Yt−1 + εx,t, εx,t ∼ N(0, 1),
Yt = 0.6Yt−1 + εy,t, εy,t ∼ N(0, 1).

(19)

The last process is the same as the example we used for illustrating the performance of the
bandwidth selection rule, which is a bivariate ARCH process also given in Equation (17),

Xt ∼ N(0, 1 + aY2
t−1),

Yt ∼ N(0, 1 + aY2
t−1).

(20)
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The results, which are shown in Figures 4–6, are obtained with 5000 simulations for each
process. We present the DP test and the modified DP test with both the empirical size–size and
size–power plots for the three processes in Equations (18)–(20) for sample sizes n = 500 and
n = 5000, respectively. The control parameter a is considered to take the values 0.1 and 0.4. As
before, the empirical size is obtained by testing for Granger non-causality from {Xt} to {Yt}, and the
empirical power is the observed rejection rate of testing for Granger non-causality from {Yt} to {Xt}.

It can be seen from Figures 4–6 that the modified DP test is slightly more conservative than the DP
test under the null hypothesis. However, the size distortion reduces when the sample size increases.
The modified DP test is more powerful than the DP test in the linear and nonlinear VAR settings given
in Equations (18) and (19). Overall, we see that the larger the sample size and the stronger the causal
effect are, the better the asymptotic performance of the modified DP test is.
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Figure 4. Size–size and size–power plots of Granger non-causality tests, based on 5000 simulations.
The DGP is bivariate nonlinear vector autoregressive (VAR) as in Equation (19), with {Yt} Granger
causing {Xt}. The left (right) column shows observed rejection rates under the null (alternative)
hypothesis, the blue lines stand for DP test while the red lines indicate the modified DP test. The solid
line and dashed line present results for sample size n = 500 and n = 5000, respectively.
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(a) Size-Size Plot, a=0.1
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(b) Size-Power Plot, a=0.1
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(c) Size-Size Plot, a=0.4
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Figure 5. Size–size and size–power plots of Granger non-causality tests, based on 5000 simulations.
The DGP is the bivariate linear VAR of Equation (18), with {Yt} Granger causing {Xt}. The left (right)
column shows observed rejection rates under the null (alternative) hypothesis, the blue lines stand for
the DP test while the red lines indicate the modified DP test. The solid line and dashed line present
results for sample size n = 500 and n = 5000, respectively.
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Figure 6. Size–size and size–power plots of Granger non-causality tests, based on 5000 simulations.
The DGP is bivariate ARCH as in Equation (20), with {Yt} Granger causing {Xt}. The left (right)
column shows observed rejection rates under the null (alternative) hypothesis, the blue lines stand for
DP test while the red lines indicate the modified DP test. The solid line and dashed line present results
for sample size n = 500 and n = 5000, respectively.
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4. Empirical Illustration

4.1. Stock Volume–Return Relation

In this section, we first revisit the stock return–volume relation considered in [8] and DP.
This topic has a long research history. Early empirical work mainly focused on the positive correlation
between volume and stock price change, see [43]. The later literature exposed directional relations,
for example, [44] found that large price movements are followed by high volume. In [45], authors
observed a high-volume return premium; namely, periods of extremely high (low) volume tend to
be followed by positive (negative) excess returns. More recently, [46] investigated the power law
cross-correlations between price changes and volume changes of the S&P 500 Index over a long period.

We use daily volume and returns data for the three most-followed indices in US stock markets,
the Standard and Poor’s 500 (S&P), the NASDAQ Composite (NASDAQ) and the Dow Jones Industrial
Average (DJIA), between January 1985 and October 2016. The daily volume and adjusted daily closing
prices were obtained from Yahoo Finance. The time series were converted by taking log returns
multiplied by 100. In order to adjust for the day-of-the-week and month-of-the-year seasonal effects in
both mean and variance of stock returns and volumes, we performed a two-stage adjustment process,
similar to the procedure applied in [8]. We replace Akaike’s information criterion used by [8] with
the [47] information criterion to be more stringent on picking up variables, having no intention to
provoke a debate over the two criteria; we simply prefer a more parsimonious liner model to avoid
potential overfitting. We apply our test not only to the raw data, but also on VAR filtered residuals and
EGARCH(1,1,1) filtered residuals. We have tried different error distributions like normal, Students’
t, GED and Hansen’s skewed t [48]. The differences caused by different distributional assumptions
are small; we only report the results based on the Students’ t distribution due to space considerations.
The idea of filtering is to remove linear dependence and the effect of heteroskedasticity to isolate the
nonlinear and higher moment relationships among series, respectively.

Tables 2–4 report the resulting t statistics for both the DP test and our modified DP test in
both directions. The linear Granger F-values based on the optimal VAR models are also given.
Two bandwidth values are used: 1.5 and 0.6, after standardization, where the latter value roughly
corresponds to the derived optimal bandwidth (h = 0.6138) and the larger bandwidth, also used in DP,
is added as a robustness check.

Table 2. Test Statistics for the Standard and Poor’s 500 (S&P 500) returns and volume data. ‘MPD’
stands for ‘modified DP’.

Volume→ Return

Linear DP MDP

h = 1.5 h = 0.6 h = 1.5 h = 0.6

Raw data 0.8503 2.8769 ** 2.9952 ** 3.8526 ** 2.7929 **

VAR residuals - 3.6880 ** 3.5683 ** 4.2696 ** 3.5769 **

EGARCH residuals - 1.4403 1.2347 1.2672 2.4143 **

Volume→ Return

Linear DP MDP

h = 1.5 h = 0.6 h = 1.5 h = 0.6

Raw data 18.8302 ** 4.9309 ** 4.5138 ** 4.9253 ** 3.8359 **

VAR residuals - 5.2732 ** 5.1692 ** 5.2239 ** 3.7835 **

EGARCH residuals - 3.0067 ** 3.1214 ** 3.1176 ** 3.5101 **

Note: Test statistics for Granger causality between S&P 500 returns and volume data. Results for bandwidth values
1.5 and 0.6 are reported. Asterisks are used to indicate results that are significant at the 5% (∗) and 1% (∗∗) levels.
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Table 3. Test Statistics for the NASDAQ returns and volume data.

Volume→ Return

Linear DP MDP

h = 1.5 h = 0.6 h = 1.5 h = 0.6

Raw data 0.0979 3.5894 ** 3.3751 ** 4.1311 ** 3.3532 **

VAR residuals - 4.3932 ** 4.2931 ** 5.3026 ** 3.7300 **

EGARCH residuals - 0.8282 0.5604 1.0430 1.2531

Volume→ Return

Linear DP MDP

h = 1.5 h = 0.6 h = 1.5 h = 0.6

Raw data 11.1736 ** 5.1100 ** 5.0201 ** 4.9980 ** 4.5935 **

VAR residuals - 5.6293 ** 6.4855 ** 5.5750 ** 5.0233 **

EGARCH residuals - 3.5959 ** 4.0693 ** 4.0745 ** 4.4522 **

Note: Test statistics for Granger causality between NASDAQ returns and volume data. Results for bandwidth
values 1.5 and 0.6 are reported. Asterisks are used to indicate results that are significant at the 5% (∗) and 1%
(∗∗) levels.

Table 4. Test Statistics for the Dow Jones Industrial Average (DJIA) returns and volume data. ’MDP’
stands for ‘modified DP’.

Volume→ Return

Linear DP MDP

h = 1.5 h = 0.6 h = 1.5 h = 0.6

Raw data 0.9761 1.2557 1.8384 * 1.9450 * 2.2697 *

VAR residuals - 1.8711 * 2.0951 * 2.0998 * 2.7207 **

EGARCH residuals - 1.4543 1.4317 1.0566 1.4801

Volume→ Return

Linear DP MDP

h = 1.5 h = 0.6 h = 1.5 h = 0.6

Raw data 17.0779 ** 2.3076 * 1.7236 * 2.4972 ** 3.3222 **

VAR residuals - 2.3086 * 2.0454 * 2.6734 ** 3.1056 **

EGARCH residuals - 0.8033 1.0589 1.8989 * 3.0707 **

Note: Test statistics for the Granger causality between DJIA returns and volume data. Results for bandwidth values
1.5 and 0.6 are reported. Asterisks are used to indicate results that are significant at the 5% (∗) and 1% (∗∗) levels.

Generally speaking, the results indicate that the effect in the return–volume direction is stronger
than vice versa. For the test results on the raw data, the F-tests based on the linear VAR model and
both nonparametric tests suggest evidence of return affecting volume for all three indexes. For the
other direction, causality from volume to return, the linear Granger test finds no evidence of causal
impact while the nonparametric tests claim strong causal effect except for the DJIA where only the
modified DP test finds a causal link from volume to return. As argued above, the results for the linear
test are suspicious since it only examines linear causal effects in the conditional mean; information
exchange from higher moments is completely ignored.

A direct comparison between the DP test and the modified DP test shows that the new test is
more powerful overall. For the unfiltered data, both tests find a strong causal effect in two directions
for S&P and NASDAQ, but for the DJIA, the t-statistics of the DP test are weaker than those of the
modified DP test. The bi-directional causality between return and volume remains unchanged after
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linear VAR filtration, although the DP test again shows weaker evidence. The result also suggests that
the causality is strictly nonlinear. The linear test (F-test) is unable to spot these nonlinear linkages.

Further, in the direction from Volume to Return, these nonlinear causalities tend to vanish after
EGARCH filtering. Thus, the bi-directional linkage is reduced to a one-directional relation from
return to volume. The modified DP statistics, however, are in general larger than the DP t-values,
and indicate more causal relations. In contrast with the DP test, our test suggests that the observed
nonlinear causality cannot be completely attributed to second moment effects. Heteroskedasticity
modeling may reduce this nonlinear feature to some extent, but its impact is not as strong as the DP
test would suggest.

4.2. Application to Intraday Exchange Rates

In the second application, we apply the modified DP test to intraday exchange rates. We consider
five major currencies: JPY, AUD, GBP, EUR and CHF, all against the USD. The data, obtained from
Dukascopy Historical Data Feed, contain 5-min bid and ask quotes for the third quarter of 2016;
from July 1 to September 30, with a total of 92 trading days and 26,496 high frequency observations.
We use 5-minute data, corresponding to the sampling frequency of 288 quotes per day, which is high
enough to avoid measurement errors (see [49]) but also low enough for the micro-structure not to be of
major concern.

Although the foreign exchange market is one of the most active financial markets in the world,
where trading takes place 24 h per day, intraday trading is not always active. Thus, we delete the thin
trading period, from Friday 21:00 GMT until Sunday 20:55 GMT, also to keep the intraday periodicity
intact. We calculate the exchange rate returns as in [50]. First, the average log bid and log ask prices
are calculated, then the differences between the log prices at consecutive times are obtained. Next,
we remove the conditional mean dynamics by fitting an MA(1) model and using the residuals as
our return series following [51]. Finally, intraday seasonal effects are filtered out using estimated
time-of-day dummies following [50], i.e.,

ri,n,t = di,tzi,n,t, (21)

where ri,n,t denotes intraday log returns after MA(1) filtering. The subscript i = 1, . . . , 5 indicates five
different currencies and n, t stands for time t on day n. The first component of return series di,t refers
to a deterministic intraday seasonal component while zi,n,t is the nonseasonal return portion, which is
assumed to be independent of di,t. To distinguish di,t from zi,n,t, we fit the time-of-day dummies to
2 log |ri,n,t| and use the estimated d̂i,t to standardize the return ri,n,t with the restriction ∑T

t=1 di,t = 1.
Figures 7–9 report the first 200 autocorrelations of returns, absolute returns and squared returns,
when checking on the raw series, MA(1) residuals and EGARCH residuals, respectively.

We perform pairwise nonparametric Granger causality tests on the MA(1) filtered and seasonally
adjusted data, as well as on the standardized residuals after EGARCH(1,1,1) filtering. We use the
skewed t distribution introduced in [48] to model the innovation terms. We choose a bandwidth of
0.2768, according to Equation (16).
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Figure 7. Autocorrelations of returns, absolute returns and square returns, up to 200 lags.
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Figure 8. Autocorrelation of returns, absolute returns and square returns after MA(1) component is
removed, up to 200 lags.
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Figure 9. Autocorrelation of returns, absolute returns and square returns after MA(1) and GARCH
filtering, up to 200 lags.

The test results are shown in Table 5 for both MA(1) de-meaned and de-seasoned data, as well as
EGARCH filtered data. Although not reported here, there is statistical evidence for strong bi-directional
causality among all currency pairs on raw return data at 5-min lag. These bi-directional causalities do
not disappear after removing the MA(1) component and seasonal component. However, the observed
information spillover is significantly weaker after the EGARCH filtering. When testing based on
the EGARCH standardized residuals, only a few pairs still show signs of a strong causal relation.
Especially, the directional relation of EUR→ CHF is the only one detected by both the DP test and the
modified DP test at the 1% level of significance. A graphical representation is provided in Figure 10,
where one can clearly see that most causal links are gone after EGARCH filtering. The modified DP
test exposes five uni-directional linkages among the EGARCH filtered returns at the 5% level. The EUR
and GBP are the most important driving currencies. While the DP test also admits the importance of
JPY and particularly AUD, which shows bi-directional causality between JPY and GBP.

To sum up, we find evidence of strong causal links among exchange returns at an intraday
high-frequency timescale. Each currency has predictive power for other currencies, implying high
co-movements in the international exchange market. Although those directional linkages are not
affected by the de-meaning procedure, we may reduce most of them by taking the volatility dynamics
into account. When filtering out heteroskedasticity by EGARCH estimation, there only exist a few
pairs containing spillover effects.
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Table 5. Test statistics for the pairwise Granger causality on raw exchange returns.

Pair MA Residuals EGARCH Residuals

DP MDP DP MDP

JPY AUD 4.0180 ** 3.0086 ** 1.9843 * 1.2611
JPY EUR 4.4724 ** 3.7586 ** 0.9336 0.5734
JPY GBP 4.4096 ** 3.9775 ** 0.4305 0.3480
JPY CHF 4.3236 ** 3.9867 ** 1.6542 * 1.5474

AUD JPY 4.4872 ** 3.6505 ** 2.0162 * 1.4173
AUD EUR 4.5398 ** 3.5291 ** 2.7414 ** 1.9737 *
AUD GBP 3.9936 ** 2.8616 ** 1.6532 * 0.6208
AUD CHF 3.2458 ** 3.2727 ** 1.5546 1.5006
EUR JPY 4.0257 ** 3.2913 ** 1.1139 0.3133
EUR AUD 3.7456 ** 3.1796 ** 1.5543 1.0551
EUR GBP 5.3053 ** 4.3236 ** 3.0613 ** 2.2103 *
EUR CHF 5.5101 ** 4.6634 ** 3.8299 ** 3.5006 **
GBP JPY 4.2506 ** 3.4310 ** 0.3216 0.0284
GBP AUD 4.7248 ** 4.0036 ** 2.3418 ** 1.9653 *
GBP EUR 4.7092 ** 3.9164 ** 1.3648 0.5487
GBP CHF 2.7094 ** 2.2224 * 2.0109 * 1.6580 *
CHF JPY 4.0033 ** 3.4545 ** 0.9972 0.3293
CHF AUD 3.3506 ** 2.5622 ** 0.8823 0.0981
CHF EUR 3.8227 ** 2.6958 ** 1.6378 0.2864
CHF GBP 3.6522 ** 3.0242 ** 1.8381 * 1.5102

Note: Statistics for pairwise Granger non-causality tests on high-frequency returns of five major currencies. The data
are first cleaned by the MA(1) and seasonal components, and then standardized based on the EGARCH conditional
variance. Results are shown both for the DP test and the modified DP test with bandwidth h = 0.2877. The asterisks
indicate significance at the 5% (*) and 1% (**) levels.
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(b) Modified DP test on MA
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(d) Modified DP test on EGARCH residuals

Figure 10. Graphical representation of pairwise causalities on MA and seasonally filtered residuals,
as well as EGARCH filtered residuals. The arrows in the graph indicate a directional causality at the
5% level of significance.
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5. Summary and Conclusions

Borrowing the concept of transfer entropy from Information Theory, this paper develops a
novel nonparametric test statistic for Granger non-causality. The asymptotic normality of the test
statistic is derived by taking advantage of a U-statistic representation, similar to that applied in the
DP test. The modified DP statistic, however, improves the DP statistic in at least the two respects:
firstly, the positive definiteness of the quantity on which the test statistic is based, paves the way for
properly testing for differences between conditional densities; secondly, the weight function in our test
is motivated from an information-theoretical point of view, while the weight function in the DP test
was selected in an ad hoc manner.

The simulation study confirms that the modified DP test has good size and power properties
for a wide range of data generating processes. In the first application, a direct comparison with the
DP test confirms that the DP test may suffer from a lack of power for specific processes, while the
second application to high frequency exchange return data helps us better understand whether the
spillover channel in exchange rate markets arises from conditional mean, conditional variance or
higher conditional moments. Some obvious extensions to future work include the incorporation of
additional lags of the variables and a generalization to higher-variate settings to allow for conditioning
on additional, possibly confounding, variables.
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Appendix A

Appendix A.1. Proof of Positive-Definiteness of the Transfer Entropy

According to the definition of TE in Equation (14), the expectation over the logarithm of the

density ratio is evaluated: TEX→Y = EW

(
log

fZ,X|Y(Z,X|Y)
fX|Y(X|Y) fZ|Y(Z|Y)

)
. Define the reciprocal of the density

ratio in the logarithm as a random variable R in such a way: R =
fX|Y(X|Y) fZ|Y(Z|Y)

fZ,X|Y(Z,X|Y) , we could rewrite the

TE as TEX→Y = E (− log(R)). Since log(R) is a concave function of R, following Jensen’s inequality
we have

E (log(R)) ≤ log (E(R)) . (A1)

Next, as random variable R is nonnegative since it is defined as a ratio of densities. For any
realization of R = r > 0, log(r) ≤ r− 1. This is because as a concave function, log(r) is bounded from
above by the tangent line at point (1,0), which is given by r− 1. It follows that

log (E(R)) ≤ E(R)− 1. (A2)

On combining Equations (A1) and (A2), we have E (log(R)) ≤ E(R) − 1 = 0, where the last
equality holds simply as a result of integral of the pd f over its full support delivering 1. A similar
argument can be found in [52]. Thus, we have proved that TEX→Y ≡ −E (log(R)) ≥ 0. It is
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obvious that the equality holds if and only if R = 1, which is equivalent to fZ,X|Y(Z, X|Y) =

fX|Y(X|Y) fZ|Y(Z|Y). This completes the proof of Equation (3).

Appendix A.2. Proof of Positive-Definiteness of the First Order Te Statistic

Starting from Equation (11) and the definition of t,

ϑ = EW

(
fZ,X|Y(Z, X|Y)

fX|Y(X|Y) fZ|Y(Z|Y) − 1

)

=
∫ ∫ ∫ ( fZ,X|Y(z, x|y)

fX|Y(x|y) fZ|Y(z|y)
− 1

)
fXYZ(x, y, z)dx dy dz

=
∫ ∫ ∫ ( f 2

Z,X|Y(z, x|y)
fX|Y(x|y) fZ|Y(z|y)

− fZ,X|Y(z, x|y)
)

dx dz fY(y)dy

=
∫ ∫ ∫

fX|Y(x|y) fZ|Y(z|y)
(

f 2
Z,X|Y(z, x|y)

f 2
X|Y(x|y) f 2

Z|Y(z|y)
−

fZ,X|Y(z, x|y)
fX|Y(x|y) fZ|Y(z|y)

)
dx dz fY(y)dy

=
∫ ∫ ∫

fX|Y(x|y) fZ|Y(z|y)
(

f 2
Z,X|Y(z, x|y)

f 2
X|Y(x|y) f 2

Z|Y(z|y)
− 2

fZ,X|Y(z, x|y)
fX|Y(x|y) fZ|Y(z|y)

+ 1

)
dx dz fY(y)dy

=
∫ ∫ ∫

fX|Y(x|y) fZ|Y(z|y)
(

fZ,X|Y(z, x|y)
fX|Y(x|y) fZ|Y(z|y)

− 1

)2

dx dz fY(y)dy

(A3)

with equality if and only if
fZ,X|Y(z,x|y)

fX|Y(x|y) fZ|Y(z|y) = 1 for any (x, y, z) in the support of (X, Y, Z). In the fourth

step, we completed the square by using the fact that the integral over the whole support of the pdf is 1.
Finally, ϑ ≥ 0 follows naturally from the integrand being non-negative.

Appendix A.3. Proof of Lemma 2

For a vector w = (x, y, z), let

η(w) = fX,Y,Z(x, y, z) fY(y)− fX,Y(x, y) fY,Z(y, x),

and

η̂(w) = f̂X,Y,Z(x, y, z) f̂Y(y)− f̂X,Y(x, y) f̂Y,Z(y, x).

By Equation (1), f̂ (·) a.s.−→ f (·) uniformly, as n → ∞, but also v̂(·) a.s.−→ v(·) and η̂(·) a.s.−→ η(·)
uniformly by the continuous mapping theorem.

Write vi = v(Wi) and vi,n = v̂(Wi) for v(Wi) and its estimator based on W1, . . . , Wn, and likewise

ηi = η(Wi)

and

ηi,n = f̂X,Y,Z(Xi, Yi, Zi) f̂Y(Yi)− f̂X,Y(Xi, Yi) f̂Y,Z(Yi, Zi).

One may write T′n(hn) = 1
n ∑n

i=1
ηi,n

vi,n(hn)
and T̃′n(hn) = 1

n ∑n
i=1

ηi,n
vi

. We then find that, up to

higher-order terms in n−1 resulting from the factor (n− 1)/(n− 2) in Equation (14),

√
n
(
T′n(hn)− T̃′n(hn)

)
=

1√
n

n

∑
i=1

ηi,n

vi

(
vi

vi,n
− 1
)

.

The squared difference satisfies
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n
(
T′n(hn)− T̃′n(hn)

)2
= n

(
1
n ∑n

i=1
ηi,n
vi

(
vi

vi,n
− 1
))2

≤ supj∈{1,...,n}

(( vj
vj,n
− 1
)2
)

1
n ∑n

i=1

(
ηi,n
vi

)2

P−→ 0× E
((

ηi
vi

))2
.

by the uniform convergence of v̂(·). It follows that

T′n(hn)− T̃′n(hn) = oP

(
1√
n

)
,

if Var
(

ηi
vi

)
< ∞.

Appendix A.4. Asymptotic Distribution of the Modified Dp Statistic

Applying Lemma 2, it remains to be proven that

√
n

T̃′n(h)− ϑ

Sn

d−→N(0, 1).

According to the definition of T̃′n(h), Equation (14) is a re-scaled DP statistic with the scaling factor
(1/v(.)). In a similar manner of Theorem 1 in DP, we can obtain the asymptotic behavior of T̃′n(h)
by making use of the optimal mean squared error (MSE) bandwidth developed in [53] for this point
estimator. For the moment, we consider the case where the vectors Wi are assumed to be independent
and identically distributed. We later allow for weak dependence in the time series context as described
at the end of this section.

The test statistic T̃′n(h) can be expressed by a degree three U-statistic K̃(Wi, Wj, Wk, h) by
symmetrization with respect to the indices i, j, k. Further, defining two kernel functions as K̃1(wi) =

E[K̃(wi, Wj, Wk, h)] and K̃2(wi, wj, h) = E[K̃(wi, wj, Wk, h)], we assume the three mild conditions
adapting from [53] for controlling the rate of convergence of the point-wise bias as well as the serial
expansions of the kernel functions, being

K̃1(wi, h)− lim
h→0

K̃1(wi, h) = s(wi)hα + s∗(wi, h), α > 0,

E[(K̃2(Wi, Wj, h))2] = q2h−γ + q∗2(h), γ > 0,

E[(K̃(Wi, Wj, Wk, h))2] = q3h−δ + q∗3(h), δ > 0,

(A4)

where all remainder terms are of higher orders, i.e., E||s∗(Wi, h)||2 = oP(h2α), q∗2(h) = oP(h−γ) and
q∗3(h) = oP(h−δ) and the convergence rate is controlled by the parameters α, γ and δ. The conditions
in Equation (A4) are satisfied if α is set as the order of kernel function K(.), which is 2 for the Gaussian
kernel, and γ, δ depend on the dimensions of the variables under consideration via γ = dX + dY + dZ
and δ = dX + 2dY + dZ. Define C0 = 2Cov

(
limh→0 K̃1(Wi, h), s(Wi)

)
, we can show that the mean

squared error of DP statistic as a function of sample size dependent bandwidth is given by

MSE[Tn(h)] = (E[s(Wi)])
2 h2α +

9
n

C0hα +
9
n

Var
[

lim
h→0

K̃1(Wi, h)
]
+

18
n2 q2h−γ +

6
n3 q3h−δ + h.o.t. (A5)

endgroup.
The scaling factor (1/v(·)) in the modified test statistic T̃′n(h) enters the MSE in Equation (A5) by

mainly changing the bandwidth-independent variance term. For the other bandwidth-dependent
terms, (1/v(·)) just re-scales the coefficients without affecting the convergence rates. Thus, we may
still allow for all the h-dependent terms to be oP(n−1) to ensure that 9

n Var
[
limh→0 K̃1(Wi, h)

]
-term
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asymptotically dominates (in which case asymptotic normality of the test statistic obtains).
Therefore, adopting a sample size-dependent bandwidth hn = Cn−β, with C, β > 0, one finds

√
n

T̃′n(h)− ϑ

Sn

d−→N(0, 1) if
1

2α
< β <

1
dX + dY + dZ

, (A6)

where S2
n is a consistent estimator of the asymptotic variance 9Var

[
limh→0 K̃1(Wi, h)

]
. The bivariate

case, for α = 2 and dX + dY + dZ = 3, requires β ∈ (1/4, 1/3). In the time series setting, under the
assumption that the processes are stationary and satisfies at least one of the mixing conditions
(a), (b) or (c) in Theorem 1 in [41], the long-run variance of

√
n(T′n(h) − ϑ) is given by σ2 =

9
(
Var (Ut) + 2 ∑∞

`=1 Cov [Ut, Ut+`]
)
, where Ut = limh→0(K̃1(Wt, h)). The variance σ2 can then be estimated

using an HAC estimator for the long-run variance of Ut [41,54].

Appendix A.5. Optimal Bandwidth for the Modified Dp Test

The optimal bandwidth should balance the squared bias and variance of the test statistic, given in
Equation (A5). Particularly, the first and fourth terms are leading, and all reminders are of higher order.
The optimal bandwidth should have a similar form as the one for DP test in Equation (15).

In fact, the difference between two bandwidths is up to a scalar as a result of replacing the square
kernel by a Gaussian one. Assuming the product kernel in Equation (6), the bias and variance of the
density estimator are described by the following [24,55]:

Bias( f̂ (x)) =
µν(κ)

ν!

k

∑
j=1

∂ν

∂xν
j

f (x)hν
j + oP(hν

1 + . . . + hν
k),

Var( f̂ (x)) =
f (x)R(κ)k

(n− 1)h1h2 . . . hk
+ oP((n− 1)h1h2 . . . hk),

(A7)

where µν(κ) =
∫ ∞
−∞ tνκ(t)dt is the νth moment of a kernel function, with ν the corresponding order of

the kernel. For Gaussian kernel κ(.), ν = 2. The function R(κ) =
∫ ∞
−∞ κ(t)2dt is the so called roughness

function of the kernel. For a k-dimensional vector, the multivariate density estimation is carried
out with a bandwidth vector H = (h1, . . . , hk)

′. It is not difficult to see that E[s(W)] and q2 defined in
Equation (A4) depend on the kernel function used trough the functions µν(κ) and R(κ).

Using the superscripts ‘G’ and ‘SQ’ to denote the Gaussian and square kernels respectively,
[55] shows

µSQ
ν (κ) = 1/3, RSQ(κ) = 1/2,

µG
ν (κ) = 1, RG(κ) = 1/2

√
π.

(A8)

In our research, when we substitute the square kernel by the Gaussian kernel, the squared
bias-related E[s(W)] and the variance-related q2 will change correspondingly. Directly applying
Equation (A8), we have qG(κ)2 = 3qSQ(κ)2, RG(κ) = RSQ(κ)/

√
π. After plugging this into Equation (15)

and performing some calculations, one finds

h∗ ≈ 0.6hDP. (A9)
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