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Abstract: We explore the geometric phase in a system of two non-interacting qubits embedded
in two separated open cavities linked via an optical fiber and leaking photons to the external
environment. The dynamical behavior of the generated geometric phase is investigated under the
physical parameter effects of the coupling constants of both the qubit–cavity and the fiber–cavity
interactions, the resonance/off-resonance qubit–field interactions, and the cavity dissipations. It is
found that these the physical parameters lead to generating, disappearing and controlling the number
and the shape (instantaneous/rectangular) of the geometric phase oscillations.
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1. Introduction

The mathematical manipulations of the open quantum systems, of the qubit–field interactions,
depend on the ability of solving the master-damping [1] and intrinsic-decoherence [2] equations,
analytically/numerically. To remedy the problems of these manipulations, the quantum phenomena
of the open systems were studied for limited physical circumstances [3–7].

The quantum geometric phase is a basic intrinsic feature in quantum mechanics that is used as the
basis of quantum computation [8]. The evolution of quantum systems (from an initial wave function
to final time-dependent wave function) is cyclic, if the final time-dependent wave function returns to
its initial wave function. When the evolution of these quantum systems is not cyclic, the geometric
phase no longer exhibits robustness and the pertinent quantity of interest is the total phase, that is
called the Pancharatnam geometric phase (PGP) [9]. The PGP means physically that the initial and the
final states interfere, and the amplitude of the inner product reflects the phase difference between the
states. The PGP was performed experimentally in neutron interferometry [10,11].

After that, the geometric phase was defined explicitly by Berry [12] in adiabatic systems,
it extended to the quantum states of nonadiabatic cyclic [13] and noncyclic [14,15] evolutions.
Geometric phase was proposed to realize the geometric quantum computations for different
quantum model as: ion traps [16], atoms in cavity field [17], and superconducting circuits [18].
The time-dependent geometric was investigated in more physical models as: the model of a cavity
QED was filled with a nonlinear medium and containing a quantum well [19], the model of a phase
qubit dispersively coupled to a lossy LC circuit [20] and the model of a trapped ion with Stark shift [21].

The physical models which describe the transmitting quantum state between qubits located
in isolated cavities, which are linked by an optical fiber mode, are effective systems for
constructing quantum networks. There are essential developments in using optical fibers for quantum
communication on the single photon level [22]. These models are very important to design the
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quantum network [23,24]. The models of the isolated qubit–cavity systems have other applications as
the realization of quantum gates [25,26].

On the other hand, the transmitting quantum in the models of the isolated open cavities has
problems due to the interaction of the leaky cavities with the external environment. When these isolated
qubit–cavity systems interact with the environment, the quantum computations are confronted to the
loss of their coherence [24]. A way to get around this problem is to introduce geometric phase shifts [27].
The geometric phase of the open quantum systems are inevitably affected by the decoherence of the
external environment [19].

In this work, the physical model and its differential equations are introduced in Section 2.
The Pancharatnam geometric phase and its computational results for different initial wave functions
will be presented in Section 3. In Section 4, we end up by a conclusion.

2. The Physical Model and Its Differential Equations

The model consists of two cavities, A and B, linked by a waveguide mode of an optical fiber mode,
each cavity field interacting with a two-level system (qubits). The general Hamiltonian is given by

Ĥ = ∑
i=A,B

ωi â†
i âi +

1
2

ωi
0σz

i + ωi
f f̂ †

i f̂i

+ ∑
i=A,B

χi(â†
i σ−i + âiσ

+
i ) + νi( f̂i â†

i + f̂ †
i âi), (1)

where the three terms represent the free Hamiltonian of the cavity modes, the qubits, and the fiber
modes, respectively, while the last two terms represent the interactions between the qubits and the
cavity modes, and between the fibers and the cavity modes, respectively. â†

i and âi represent the
creation and annihilation operators of the i-th cavity field, whereas f̂i represent the lower operator
of the fiber modes. The ωi, ωi

0 and ωi
f are the frequencies of the cavity modes, the qubits and the

fiber modes, respectively. The σz
i and σ±i are the operators of the inversion Pauli’s spin and up and

down matrices of the i-th qubit. The χi and νi designate respectively the coupling constants of the i-th
qubit–field and the fiber–field interactions, which are real values, thus the Hamiltonian is hermitian.

Here, we consider the short fiber limit that applies in most realistic experimental situations [28–31].
In short fiber limit requires that 2lν̄

2πc � 1, where l is the length of fiber, c is the light velocity in fiber and
ν̄ is the decay rate of the cavity fields into a continuum of fiber modes, only one resonant mode f̂ of the
fiber interacts with the cavity modes. In this case, ωi = ωi

f = ω and νi = χ f . Therefore, the interaction
picture of the total Hamiltonian of the atom–cavity–fiber combined system is

Ĥint = ∑
i=A,B

{
∆iσ

z
i + χi(â†

i σ−i + âiσ
+
i ) + χ f ( f̂ â†

i + f̂ † âi)
}

. (2)

where, ∆i =
δi
2 and δi = ωi

0 − ω that represents the detuning between the i-th qubits and the fields
that describes the resonance/off-resonance cases.

However, a real quantum system will unavoidably interact with its surrounding environment,
and the dissipation will cause degradation of the non-classical effects. To study the dissipation effect on
the geometric phase, the time evolution of the system, described by the density matrix ρ̂, is governed
by the master equation [32],

∂ρ̂

∂t
= −[Ĥ, ρ̂] + ∑

i=A,B
κi(2âiρâ†

i − â†
i âiρ− ρâ†

i âi). (3)

where κi are the cavity dissipation constants.
If we consider a situation where the evolution preserving the total number of excitation inside the

cavity (i.e., no photons are emitted from the cavities), then diagonal terms in the Lindblad generator
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are only considered and presented full density operator when no quanta being lost in the interval 0 to
t. The excitation is sufficiently small so that at few correlation times, the quantum state just undergoes
evolution while the probability of cavity loss is negligible, and the purity of the state is preserved.
Therefore, in this case, the non-diagonal terms of the Lindblad generator 2âiρâ†

i (which describes the
escape of the cavity photons) can be neglected in Equation (3) and it becomes [32–34]

i
d
dt

ρ̂ = Ĥe f f ρ̂− (ρĤe f f )
†, (4)

where the He f f is non-Hermitian operator and is given by

He f f = Ĥ − iκA â†
A âA − iκB â†

B âB. (5)

The last imaginary terms means that the dissipation is added into the zero Green’s function or
spectrum. By using Equation (5), the differential equation of the wave function is given by

d
dt
|ψ(t)〉 = −i Ĥe f f |ψ(t)〉. (6)

The model of Equation (2) describes the interactions between the i-qubits and i-cavity,
and between the i-cavity field and the fiber field; therefore, the total number of the excitations
is f̂ † f̂ + ∑i(σ̂

+
i σ̂−i + â†

i âi). Since the non-Hermitian Hamiltonian Ĥe f f conserves the number of
excitations in the system, we restrict the number of excitations to 3 and consider only single photon
processes to contribute to the wave function of the total system. Therefore, in the two-qubit basis space:
{|v1〉 = |0A0B〉, |v2〉 = |0A1B〉, |v3〉 = |1A0B〉, |v4〉 = |1A1B〉}, the wave function of the system is
given by

|ψ(t)〉 = [α1|000〉+ α5|001〉+ α9|010〉+ α13|011〉 (7)

+ α17|100〉+ α21|101〉+ α25|110〉+ α29|111〉]|v1〉
+ [α2|000〉+ α6|001〉+ α10|010〉+ α14|011〉
+ α18|100〉+ α22|101〉+ α26|110〉+ α30|111〉]|v2〉
+ [α3|000〉+ α7|001〉+ α11|010〉+ α15|011〉
+ α19|100〉+ α23|101〉+ α27|110〉+ α31|111〉]|v3〉
+ [α4|000〉+ α8|001〉+ α12|010〉+ α16|011〉
+ α20|100〉+ α24|101〉+ α28|110〉+ α32|111〉]|v4〉.

where, the state |mnl〉means that the A-cavity field in the state |m〉, the B-cavity field in the state |n〉
whereas the fiber state is |l〉.

The amplitudes αn(n = 1− 32) are derived from Equation (6) and they verify the following
differential equations:
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α̇2 = −i(−∆A + ∆B)α2 − iχBα9,

α̇3 = −i(∆A − ∆B)α3 − iχAα17,

α̇4 = −i(∆A + ∆B)α4 − iχAα18 − iχBα11,

α̇5 = i(∆A + ∆B)α5 − iχ f α9 − iχ f α17,

α̇6 = −i(−∆A + ∆B)α6 − iχBα13 − iχ f α10 − iχ f α18,

α̇7 = −i(∆A − ∆B)α7 − iχAα21 − iχ f α11 − iχ f α19,

α̇8 = −i(∆A + ∆B)α8 − iχAα22 − iχ f α15 − iχ f α12 − iχ f α20,

α̇9 = i(∆A + ∆B)α9 − iχBα2 − iχ f α5 − κBα9,

α̇10 = −i(−∆A + ∆B)α10 − iχ f α6 − κBα10,

α̇11 = −i(∆A − ∆B)α11 − iχAα25 − iχBα4 − iχ f α7 − κBα11,

α̇12 = −i(∆A + ∆B)α12 − iχAα26 − iχ f α8 − κBα12,

α̇13 = i(∆A + ∆B)α13 − iχBα6 − iχ f α25 − κBα13,

α̇14 = −i(−∆A + ∆B)α14 − iχ f α26 − κBα14, (8)

α̇15 = −i(∆A − ∆B)α15 − iχAα29 − iχBα8 − iχ f α27 − κBα15,

α̇16 = −i(∆A + ∆B)α16 − iχAα30 − iχ f α28 − κBα16,

α̇17 = i(∆A + ∆B)α17 − iχAα3 − iχ f α5 − κAα17,

α̇18 = −i(−∆A + ∆B)α18 − iχAα4 − iχBα25 − iχ f α6 − κAα18,

α̇19 = −i(∆A − ∆B)α19 − iχ f α7 − κAα19

α̇20 = −i(∆A + ∆B)α20 − iχBα27 − iχ f α8 − κAα20,

α̇21 = i(∆A + ∆B)α21 − iχAα7 − iχ f α25 − κAα21,

α̇22 = −i(−∆A + ∆B)α22 − iχAα8 − iχB A29 − iχ f α26 − κAα22,

α̇23 = −i(∆A − ∆B)α23 − iχ f α27 − κAα23,

α̇24 = −i(∆A + ∆B)α24 − iχBα31 − iχ f α28 − κAα24,

α̇25 = i(∆A + ∆B)α25 − iχAα11 − iχBα18 − iχ f α13 − iχ f α21 − (κA + κB)α25,

α̇26 = −i(−∆A + ∆B)α26 − iχAα12 − iχ f α14 − iχ f α22 − (κA + κB)α26,

α̇27 = −i(∆A − ∆B)α27 − iχBα20 − iχ f α15 − iχ f α23 − (κA + κB)α27,

α̇28 = −i(∆A + ∆B)α28 − iχ f α16 − iχ f α24 − (κA + κB)α28,

α̇29 = i(∆A + ∆B)α29 − iχAα15 − iχBα22 − (κA + κB)α29,

α̇30 = −i(−∆A + ∆B)α30 − iχAα16 − (κA + κB)α30,

α̇31 = −i(∆A − ∆B)α31 − iχBα24 − (κA + κB)α31.

Also,

α1(t) = α1(0)ei(∆A+∆B)t,

α32(t) = α32(0)e−i(∆A+∆B)t−(κA+κB)t.

To solve numerically the above differential equations in order to determine the wave function
|ψ(t)〉, we assume that the total system is initially in two different maximally entangled states:

|ψ(0)〉1 =
1√
5
[(|001〉+ |011〉+ |101〉+ |111〉)⊗ |v1〉 (9)

+eiϕ|110〉 ⊗ |v4〉].

|ψ(0)〉2 =
1
4
[|000〉+ |001〉+ |010〉+ |011〉 (10)

+ |100〉+ |101〉+ |110〉+ |111〉](|v2〉+ |v3〉),
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where we take the phase angle ϕ = π
4 . The type of entanglement of the initial states of

Equations (9) and (10) is very useful for distributed quantum information processing [29–31], and it
possible to realize them experimentally [35–37].

3. Geometric Phase and Its Computational Results

To perform computation using geometric phase, it is necessary to understand the relation between
geometric phase and dissipation noise. In open systems, the dissipation leads to converting a system
from a pure state to a mixed state that often describes via a density matrix, say ρ(t). For this case,
Uhlmann mathematically extended the geometric phase to the case of non-unitary evolution of mixed
states [38,39]. But, if the effective description of the open system is governed by the master equation
that is derived by neglecting the non-diagonal terms, then the open system can be described by
the nonHermitian Hamiltonian Ĥe f f . Therefore, the unitary evolution of the initial state |ψ(0)〉 is
governed by the Schrödinger equation as

|ψ(0)〉 → |ψ(t)〉 = (U(t) = e−iĤe f f t)|ψ(0)〉.

In this case, the total geometric phase being the argument of 〈ψ(0)|ψ(t)〉. it is given by [9]

GP(t) = arg{〈ψ(0)|e−iĤe f f t|ψ(0)〉} = arg{〈ψ(0)|ψ(t)〉}, (11)

that is Pancharatnam geometric phase (PGP). If α̃i(0) are the amplitudes of complex conjugate transpose
of the initial state, then the geometric phase has the following expression

GP(t) = arg[
32

∑
i=1

α̃i(0)αi(t)]. (12)

For the especial initial state 1√
2
[|000v1〉 + |111v4〉] with κi = 0, the exact expression of the

geometric phase is given by

GP(t) = arg[cos(∆A + ∆B)t] =

{
π, cos θ < 0;
0, cos θ > 0.

(13)

where θ = (∆A +∆B)t. With this the exact expression, we can measure the geometric phase analytically
and verify the predictions of the numerical results.

In the numerical simulations, the geometric phase is investigated under the effects of all coupling
constants which are in the units of megahertz (MHz), and accordingly the time t is in the units of
microseconds (µs). This choice of units was suggested with experimental parameters [40,41].

3.1. Dynamics of GP of |ψ(0)〉1
When the entire system is prepared initially in the state |ψ(0)〉1, the dynamics of the GP are

given by

GP(t) =
1√
5

arg[α5(t) + α13(t) + α21(t) + eiϕα28(t) + α29(t)] (14)

In Figure 1a, the geometric phase is plotted for the initial state |ψ(0)〉1 and the strong coupling
constants, (χA, χB, χF) = (2.0, 2.0, 2.0) MHz in the absence of the cavity dissipation effects, where
κi = κ = 0 (i = A, B). We note that; (1) The PGP arises from initial zero-value to oscillating between
its extremes values, where the amplitudes of its oscillations satisfy the inequality −π < GP(t) < π.
The phenomena of the collapses and revivals appear as rectangular oscillations (it does not reach its
extreme values instantly), where the PGP has invariant dynamics during some time intervals. (2) The
coupling constants, (χA, χB, χF) = (2.0, 2.0, 2.0) MHz, lead to generating oscillations quickly during
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some intervals which are called uncertain intervals [19]. In these the intervals, the GP values can not be
certainly determined.

Figure 1b–c shows that the dynamical behavior of the PGP is much sensitive to the coupling
constants χi(i = A, B). If one of them is weakened (say χA = 0.5 MHz), the intervals of the collapse
phenomenon (GP(t) = 0) increase. This observation is confirmed by weakening both the interaction
couplings of the qubit–cavity systems, χA = χB = 0.5 MHz.
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Figure 1. GP(t) for |ψ(0)〉1 and δi = 0 with (χA, χB, χ f , κ) = (2, 2, 2, 0) MHz in (a),
(χA, χB, χ f , κ) = (0.5, 2, 2, 0) MHz in (b), (χA, χB, χ f , κ) = (0.5, 0.5, 2, 0) MHz in (c).

The outcomes of the applying weak coupling constant between the fiber and the cavities are
presented in the solid curves of Figure 2, where the dynamical behavior of GP(t) is displayed with
|ψ(0)〉1 and δi = 0 for (χA, χB, χ f , κ) = (0.5, 2, 0.5, 0.0) MHz in (a), (χA, χB, χ f , κ) = (0.5, 0.5, 0.5, 0.0)
MHz in (b). We can observe that the oscillations of the PGP reduce by taking the small coupling
constant χ f = 0.5 MHz. The collapse intervals are during most of the chosen time interval. Whereas,
if both the coupling constants χB and χ f are wreaked, the collapse intervals decrease.

In general, with the large values of χ f , the generated PGP are more robust than that for small
values. The effect strength of the small coupling constant χ f on the number of the PGP oscillations
and the appearance of the collapse/revival intervals depend on the coupling constants χi(i = A, B).

Dashed and dashed-dotted curves of the Figure 2 show the robustness of the PGP dynamical
behavior against the dissipation coupling constants of the cavities κi for (χA, χB, χ f , κ) = (0.5, 2, 2, 0.2)
MHz and (χA, χB, χ f , κ) = (0.5, 2, 0.5, 0.2) MHz. We note that the cavity dissipation terms lead to:
(1) The PGP has damped oscillatory dynamics, where the number and the amplitudes of its oscillations
decrease clearly. After a particular time, the oscillatory behavior of GP(t) disappears and reaches
its stationary zero-value approximately. (2) The damped oscillatory behavior of the PGP depends
on the coupling constants of both the qubit–cavity and the fiber–cavity interactions. It disappears
quickly with the cases (χA, χB, χ f , κ) = (0.5, 0.5, 2, 0.2) MHz and (χA, χB, χ f , κ) = (0.5, 0.5, 0.5, 0.2)
MHz, see Figure 3b.
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Figure 3 shows the effect of the detuning parameters δi on the dynamical behavior of the PGP.
Where GP(t) is plotted as in Figure 1a, but for δA = δB = 6 MHz in (a) and (δA, δB) = (6, 0) MHz in (b).
From Figure 3a, we not that the different off-resonance qubit–field interactions (non-zero detunings)
of the δi = 6 MHz lead to: (1) The function GP(t) has more oscillations and it reaches its extreme
values instantly. (2) The phenomena of the collapses and revivals, and the rectangular oscillations
disappear completely. If the effects of both the off-resonance and resonance qubit–field interactions
(δA, δB) = (6, 0) MHz are combined, the number of the fluctuations of GP(t) are less these of the case
δi = 6 MHz, see Figure 3b.

Finally, we can deduce that the robustness of the generated PGP depends on the coupling constants
χi (i = A, B, f ), the detuning parameters δi and the cavity dissipation κ.
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Figure 2. GP(t) for |ψ(0)〉1 and δi = 0 with (χA, χB, χ f , κ) = (0.5, 2, 0.5, 0.0) MHz (solid curve),
(χA, χB, χ f , κ) = (0.5, 2, 2, 0.2) MHz (dashed curve) and (χA, χB, χ f , κ) = (0.5, 2, 0.5, 0.2) MHz
(dashed-dotted curve) in (a). While in (b) for (χA, χB, χ f , κ) = (0.5, 0.5, 0.5, 0.0) MHz (solid curves),
(χA, χB, χ f , κ) = (0.5, 0.5, 2, 0.2) MHz (dashed curve) and (χA, χB, χ f , κ) = (0.5, 0.5, 0.5, 0.2) MHz
(dashed-dotted curve).
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Figure 3. As Figure 1a but for δA = δB = 6 MHz in (a) and (δA, δB) = (6, 0) MHz in (b).

3.2. Dynamics of GP of |ψ(0)〉2

In this case, we will investigate the dependence of the generated PGP dynamics on the initial
wave function of the total system. The PGP of the initial state |ψ(0)〉2 is given by

GP(t) =
1
4

arg[
7

∑
k=0

α2+4k(t) + α3+4k(t)]. (15)

In Figure 4, the function GP(t) for the initial state |ψ(0)〉2 is plotted for different sets of the
coupling constants in the absence of the effects of both the cavity dissipations and the detuning
parameters. By comparing the dynamical behaviors of PGP for |ψ(0)〉1 of Figure 1, and for |ψ(0)〉2
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of Figure 4, we observe notable changes as: (1) The PGP has regular oscillatory behavior, where the
GP(t) fluctuates instantly between its extreme values. The geometric phase of the initial state |ψ(0)〉2
presents instantaneous oscillations unlike of |ψ(0)〉1 that presents rectangular oscillations. (2) From
Figure 4a–c, we find that the instantaneous oscillations may be reduced by weakening the coupling
constants of the qubit–cavity systems.

Solid curves of Figure 5a,b show the dynamical behavior of the PGP for the initial state |ψ(0)〉2
with the weak fiber–cavity interactions, χ f = 0.5 MHz. We note that the amplitudes and the number
of the instantaneous oscillations decrease with the small values of χ f .
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Figure 4. GP(t) for |ψ(0)〉2 and δi = 0 with (χA, χB, χ f , κ) = (2, 2, 2, 0) MHz in (a),
(χA, χB, χ f , κ) = (0.5, 2, 2, 0) MHz in (b), (χA, χB, χ f , κ) = (0.5, 0.5, 2, 0) MHz in (c).
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Figure 5. GP(t) for |ψ(0)〉2 and δi = 0 with (χA, χB, χ f , κ) = (0.5, 2, 0.5, 0.0) MHz (solid curve),
(χA, χB, χ f , κ) = (0.5, 2, 2, 0.2) MHz (dashed curve) and (χA, χB, χ f , κ) = (0.5, 2, 0.5, 0.2) MHz
(dashed-dotted curve) in (a). While in (b) for (χA, χB, χ f , κ) = (0.5, 0.5, 0.5, 0.0) MHz (solid curves),
(χA, χB, χ f , κ) = (0.5, 0.5, 2, 0.2) MHz (dashed curve) and (χA, χB, χ f , κ) = (0.5, 0.5, 0.5, 0.2) MHz
(dashed-dotted curve).



Entropy 2020, 22, 85 9 of 11

Dashed and dashed-dotted curves of the Figure 5 show the robustness of the PGP dynamical
behavior of the state |ψ(0)〉2 against the cavity dissipations for different cases of (χA, χB, χ f , κ).
With the large values of the cavity dissipation parameter, the instantaneous oscillations of PGP
disappear quickly. Finally, we can deduce that the robustness of the generated PGP against the cavity
dissipations depends on the chosen initial wave functions.

The predictions of the Pancharatnam phase are physically observable in more realistic
experiments [42–44]. Where, the Pancharatnam phase is originally introduced to deal with the relative
phase of two polarized light beams [9]. Therefore, the first experiment was tested the appearance
of Pancharatnam’s phase in polarization states describing closed paths on the Poincaré sphere was
performed by Bhandari and Samuel [42]. This test was however restricted to a limited set of two-level
atom transformations. After that, alternative tests performed via employing unitary transformations,
robust interferometric and polarimetric methods, and others [43,44]. Their experimental findings were
in very good agreement with theoretical predictions [43].

4. Conclusions

Here, we consider two non-interacting two-level systems embedded in two separated open
cavities linked via an optical fiber and leaking photons to the external environment. The geometric
phase of the entire system is investigated numerically with two different chosen initial wave functions.
It is found that, with the resonance qubit–field interactions and without the cavity dissipation effects,
the strong coupling constants lead to generating the geometric phase with the collapse/revival
phenomena and the rectangular oscillations. While, with the off-resonance qubit–field interactions,
the geometric phase has more instantaneous oscillations without the collapse/revival phenomena,
the rectangular oscillations disappear completely. If one or all of the coupling constants are
weakened, these observations on the geometric phase have notable changes. It is found that the
cavity dissipations lead to that the geometric phase has damped oscillatory behavior, and it reaches
quakily its zero-value with the increase of the cavity dissipation parameter. The fast of the damped
oscillatory dynamics can be controlled by the coupling constants. The physical models of two/more
qubit–cavity systems linked by a waveguide mode have more potential applications in the generation of
quantum correlations [24], the realization of quantum gates [25], distributed quantum computation [29],
and quantum networking [45].
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