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Abstract: In graph theory, Hamiltonian path refers to the path that visits each vertex exactly once.
In this paper, we designed a method to generate random Hamiltonian path within digital images,
which is equivalent to permutation in image encryption. By these means, building a Hamiltonian
path across bit planes can shuffle the distribution of the pixel’s bits. Furthermore, a similar thought
can be applied for the substitution of pixel’s grey levels. To ensure the randomness of the generated
Hamiltonian path, an adjusted Bernoulli map is proposed. By adopting these novel techniques,
a bit-level image encryption scheme was devised. Evaluation of simulation results proves that the
proposed scheme reached fair performance. In addition, a common flaw in calculating correlation
coefficients of adjacent pixels was pinpointed by us. After enhancement, correlation coefficient
becomes a stricter criterion for image encryption algorithms.
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1. Introduction

When computers and the internet came on the scene, here came the era of information, accompanied
by the formidable challenge of information security. Among complicated information, the vivid
multimedia information is preferred by people, especially digital images. Consequently, such
information involves both collective interests and personal interests. For instance, images of military
affairs are related to the safety of whole country. Privacy and copyright of images influence everyone’s
peace of mind. To protect the rights of image’s owners, methods like steganography, watermarking,
and encryption are frequently utilized [1]. Among these techniques, encryption is a direct and thorough
means. Nowadays, image encryption is an inviting and fruitful field, and many imaginative image
encryption algorithms are proposed.

One picture is worth more than ten thousand words, and there indeed are tens of thousands of
pixels in a digital image. To encrypt the bulk data of images, traditional cryptosystems are not efficient
enough. Among specific image encryption schemes, the permutation–diffusion structure is widely
used. Essentially, permutation is to rearrange image pixels on different dimensions. In [2], 2D CMT
(chaotic magic transform) was proposed for permutation. In [3], image scrambling was performed by
a parametric 2D Sudoku matrix. In [4], horizontal and vertical wave lines were utilized to realize row
rotation and column rotation. This is also a 2D method. In [5], spatial permutation was performed on
a 3D bit matrix by using orthogonal Latin cubes. Moreover, file-based algorithms like [6] deem images
as 1D binary files when realizing permutation. Considering the features of bit distribution in digital
images, encryption schemes [7,8] with bit-level permutation are proposed.

Sometimes, the permutation phase is accompanied by a sort operation, such as [2]. However,
time complexity of sorting is usually nonlinear. To obtain high efficiency, the additional operation
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should be avoided. Regarding an image as a 1D pixel array, permutation can be depicted as an
arrangement of pixels, which is represented in the bijective map from plain image to permuted image.
If we connect the pixels by order of the arrangement, all the pixels are traversed exactly once. Deeming
pixels as the vertices of a graph, such a path of traversing is known as a Hamiltonian path in graph
theory. Conversely, a Hamiltonian path corresponds to an arrangement of permutations. Following
this thought, the method of building Hamiltonian path is equal to a permutation scheme. As a
Hamiltonian path can be generated without sort operation, the corresponding permutation algorithm
has the advantage of efficiency. In cryptography, substitution is a classical method of cipher schemes.
To substitute pixel’s grey value, arrangement of all the possible grey levels is requisite. Hence, the
thought of random Hamiltonian path is also suitable for the substitution of grey levels.

It is common knowledge that chaotic systems have conspicuous advantages for cryptosystems.
High dimension chaotic systems possess complex chaotic behavior, while 1D chaotic systems are
convenient for implementation. Under synthetical consideration, some combined chaotic maps have
been explored in recent encryption schemes [2,9–12]. Just resembling the series-parallel connection of
resistors in circuits, these chaotic maps are a combination or adjustment of the original chaotic maps.
Multiple chaotic maps can be coupled as CML (chaotic map lattice) [13,14]. By these means, chaotic
behavior is magnified, leading to better chaotic performance. In this paper, a new chaotic map was
also explored.

There are some innovative works in this paper:

• A method of building a random Hamiltonian path within digital images was designed, which is
equivalent to permutation. On this basis, bit-level permutation of high efficiency was achieved.

• Following the thought of the random Hamiltonian path, arrays for grey levels’ substitution can
be generated.

• An adjusted Bernoulli map is proposed, which is suitable for image encryption schemes.
• The ambiguous definition of diagonal direction is normalized to two orthogonal directions when

calculating correlation coefficients.

The rest of this paper is organized as following: Section 2 explains the Hamiltonian path and the
procedures to generate such paths within images. Section 3 expounds the adjusted Bernoulli map.
In Section 4 the proposed scheme is thoroughly introduced. The results of simulation experiments are
exhibited in Section 5. Section 6 is the summary of the entire paper.

2. Hamiltonian Path

As was mentioned earlier, the scheme of generating a random Hamiltonian path is tantamount to
permutation. In this section, the relevant theories are presented, while the method of generating a
Hamiltonian path is proposed.

2.1. Basic Theory of Hamiltonian Path

Graph theory is a classical branch of mathematics. The term graph refers to the figures composed
by points and the connecting lines between the points. Commonly, the points are called vertices, and
the lines are called edges. The definition of graph is G = (V, E). Here V is a nonempty set of finite
vertices and the set of edges E = {(x, y)|x, y ∈ V}. If the vertex pair (x, y) in E is ordered, the graph is
named a direct graph. Otherwise, it is named an undirected graph.

In an undirected graph, a path P is a sequence of vertices v1 v2 . . . vk, and there exists anedge
between each of the vertex pairs vi vi+1. The k is the number of vertices that P contains, in other words,
the length of P.

There are two special categories of path, Euler path and Hamiltonian path. Euler path refers to
the paths that traverse each edge once and only once. A famous instance is the problem of Konigsberg
bridges [15]. In 1736, Leonhard Euler had proved that there is no solution for the problem. This is
known as the beginning of graph theory. Hamiltonian path refers to the paths that traverse each node
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once and only once, or an arrangement of all vertices in which every adjacent vertex pair is connected
by at least one edge. The problem of Hamiltonian path can be traced back to 1859, when Willian
Hamilton talked about a mathematical game: traverse all the vertices of a dodecahedron and pass by
the vertices exactly once. Figure 1 is the graphic illustration of the two famous problems.

Entropy 2020, 22, x FOR PEER REVIEW 3 of 17 

 

vertex pair is connected by at least one edge. The problem of Hamiltonian path can be traced back to 

1859, when Willian Hamilton talked about a mathematical game: traverse all the vertices of a 

dodecahedron and pass by the vertices exactly once. Figure 1 is the graphic illustration of the two 

famous problems. 

 
(a) 

 
(b) 

Figure 1. (a) The problem of Konigsberg bridges and (b) Hamiltonian path. 

Graphs are generally intricate. The problem of finding a Hamiltonian path is a nondeterministic 

polynomial complete problem (NP-C problem), one of the most burdensome challenges in 

mathematics [16–19]. Off the beaten track, DNA computing [20] and light-based computers [21] have 

been developed to solve this problem efficiently. However, generating a Hamiltonian path within 

digital images can be much easier. 

2.2. Hamiltonian Path Within Digital Images 

For an undirected graph of N vertices, there are, at most, N × (N + 1)/2 edges. Under this 

condition, any two vertices are connected by an edge. Such a graph is called a complete graph. Some 

instances of complete graphs are shown in Figure 2. The complete graphs with three nodes, four 

nodes, and five nodes are shown in Figure 2a–c, respectively. 

 
 

 

 
(a) 

 

 

 

(b) 
 

(c) 

Figure 2. Complete graphs. (a) Three nodes, (b) Four nodes, (c) Five nodes. 

There are varieties of theorems to measure whether there are Hamiltonian paths in a graph. 

One of the theorems is as below: 

Dirac theorem: In a graph G of N vertices, if for each vertex vi there always is d(vi) ≥ N/2, then at 

least one Hamiltonian path exists in G. 

The d(vi), otherwise called the degree of vi, represents the quantity of edges connected with vi. 

e3

e7

e2

e4

e1

e6e5

Figure 1. (a) The problem of Konigsberg bridges and (b) Hamiltonian path.

Graphs are generally intricate. The problem of finding a Hamiltonian path is a nondeterministic
polynomial complete problem (NP-Cproblem), one of the most burdensome challenges in mathematics [16–19].
Off the beaten track, DNA computing [20] and light-based computers [21] have been developed to
solve this problem efficiently. However, generating a Hamiltonian path within digital images can be
much easier.

2.2. Hamiltonian Path Within Digital Images

For an undirected graph of N vertices, there are, at most, N × (N + 1)/2 edges. Under this condition,
any two vertices are connected by an edge. Such a graph is called a complete graph. Some instances of
complete graphs are shown in Figure 2. The complete graphs with three nodes, four nodes, and five
nodes are shown in Figure 2a–c, respectively.
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Figure 2. Complete graphs. (a) Three nodes, (b) Four nodes, (c) Five nodes.

There are varieties of theorems to measure whether there are Hamiltonian paths in a graph. One of
the theorems is as below:

Dirac theorem: In a graph G of N vertices, if for each vertex vi there always is d(vi) ≥ N/2, then at
least one Hamiltonian path exists in G.

The d(vi), otherwise called the degree of vi, represents the quantity of edges connected with vi.
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In our scheme, digital images were regarded as complete graphs. Hereof, the pixels are the
vertices, and there is an edge between every two pixels. According to Dirac theorem, there always
exist Hamiltonian paths in such graphs.

To build a Hamiltonian path within an image, pixels are divided into two parts. One is composed
by the pixels that have been added into the path. The other one is composed by the rest of the pixels.
Firstly, a pixel is chosen to be the path’s outset. Then, the other pixels are added to the path one by one.
If the image’s size is M × N and its pixels are {P1, P2, . . . , PM×N}, this progress can be generalized as
the following steps:

Step 1: Choose a pixel from {P1, P2, . . . , PM×N} and put it in the position of PM×N.
Step 2: Choose a pixel from {P1, P2, . . . , PM×N-1} and put it in the position of PM×N-1.
Step 3: Choose a pixel from {P1, P2, . . . , PM×N-2} and put it in the position of PM×N-2.
. . .

Step M×N–1: Choose a pixel from {P1, P2} and put it in the position of P2.
In the above process, pixels that have been added into the path are insulated at the back

of image’s pixel array. Among the whole image, these pixels are deemed as permutated pixels.
The complete process is shown in Figure 3. Figure 4 illustrates the generated Hamiltonian path from a
graph perspective.
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2.3. Hamiltonian Path across Bit Planes

In [7], the intrinsic features of bit distribution in digital images were revealed. Higher bits of pixels
hold higher weight of an image’s information, and there are strong correlations among the higher bit
planes. In the instance of Figure 5, the 8th bit plane and the 7th bit plane tend to have opposite values.
These features shall not be neglected in a secure cryptosystem.

Entropy 2020, 22, x FOR PEER REVIEW 5 of 17 

 

2.3. Hamiltonian Path across Bit Planes 

In [7], the intrinsic features of bit distribution in digital images were revealed. Higher bits of 

pixels hold higher weight of an image’s information, and there are strong correlations among the 

higher bit planes. In the instance of Figure 5, the 8th bit plane and the 7th bit plane tend to have 

opposite values. These features shall not be neglected in a secure cryptosystem. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 5. Bit planes of Lena, (a–h) are from the 8th bit plane to the 1st bit plane, respectively. 

To build a Hamiltonian path across bit planes, the strategy of [7] was extended to greyscale 

images in this paper. By these means, a plain image of size M × N is expanded to 2M × 2N. All the bit 

planes of a plain image’s pixels were placed to the 1st bit plane and the 2nd bit plane of the 

expanded image’s pixels. After generating a Hamiltonian path, the bit planes were restored, and a 

permutated image of size M×N was formed. The whole procedure can be generalized into Figure 6. 

 

Figure 6. Modified expand–shrink strategy. 

Figure 7 is the illustration of the generated Hamiltonian path across bit planes. 

Figure 5. Bit planes of Lena, (a–h) are from the 8th bit plane to the 1st bit plane, respectively.

To build a Hamiltonian path across bit planes, the strategy of [7] was extended to greyscale images
in this paper. By these means, a plain image of size M × N is expanded to 2M × 2N. All the bit planes
of a plain image’s pixels were placed to the 1st bit plane and the 2nd bit plane of the expanded image’s
pixels. After generating a Hamiltonian path, the bit planes were restored, and a permutated image of
size M × N was formed. The whole procedure can be generalized into Figure 6.
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3. Adjusted Bernoulli Map

To ensure the randomness of the Hamiltonian path, chaotic maps can serve as pseudo random
number generators. Theoretically, any 1D chaotic map is compatible. In this section, an adjusted
Bernoulli map is proposed.

3.1. Bernoulli Map

The original definition of Bernoulli map [22,23] is given by:

xn+1 = 2xnmod1 =

{
2xn 0 < xn < 0.5

2xn − 1 0.5 ≤ xn < 1
. (1)

The piecewise linear property of a Bernoulli map is demonstrated in Figure 8. When implemented
into discrete computer systems, the map resembles bit shifting of floating numbers. Such degradation
means that the original Bernoulli map is seldom applied to encryption algorithms directly.
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3.2. Adjusted Bernoulli Map

To amplify the limited nonlinear property of original Bernoulli map, cascaded modulus operations
are adopted in the adjusted Bernoulli map (ABM).

xn+1 = β(αxnmod1)mod1. (2)

The parameters α and β can be many of the floating-point numbers that are bigger than two.
Though the multiplication operation is linear in mathematics, the multiplication operation in computer
systems involves the conversion between decimal number and binary number. The ABM possesses
fair chaotic behavior in practice, especially when the parameters α and β are random. Owing to the
finite precision of computers, the ABM does not work well when its parameters are big numbers, and
special values such as 2N and 10N should be avoided. Here the N is the set of natural numbers. Part of
the parameters’ value range is shown in Figure 9.
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To examine the randomness of the pseudo-random numbers generated by the ABM, the NIST
SP800-22 test suite [24] was utilized. In our experiment, 300 bitstreams of length 106 were generated
and tested. The α = 10.45678 and β = 10.123 in these bitstreams. The initial value of x was increased by
0.0033, ranging from 0.001 to 0.991. The test results are listed in Table 1.

Table 1. Randomness test using NIST SP800-22 test suite.

Statistical Tests P-value Pass Rate (%)

Frequency 0.798139 100.00
Block frequency 0.108791 99.33

Cumulative Sums * 0.282804 99.83
Runs 0.588652 99.67

Longest run 0.245072 99.33
Rank 0.319084 100.00
FFT 0.280306 99.00

Non overlapping template * 0.468139 98.95
Overlapping template 0.425059 98.00

Universal 0.449672 99.33
Approximate entropy 0.561227 99.67
Random excursions * 0.533005 98.95

Random excursions variant * 0.419542 99.27
Serial * 0.464632 98.83

Linear complexity 0.915745 99.33

∗ Average value of multiple tests.
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4. Proposed Scheme

After the progress of Section 2, a bit-level permutation was completed. To obtain fair diffusion
properties, XOR operations were performed on pixels, and their grey values were substituted
dynamically. The whole encryption scheme is detailed in this section.

4.1. Encryption Algorithm

As is illustrated in Figure 10, the whole cryptosystem is handled by ABM. The inputs of the
algorithm are the plain image P of size M × N and the parameters of ABM. The output is the cipher
image C.
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The whole encryption process is as below:
Step 1: Read in P. Iterate ABM to avoid transient effect.
Step 2: Decompose P’s bit planes. Make a montage of these bit planes to obtain an image B of size

2M × 2N.
Step 3: For i = 2M × 2N, 2M × 2N − 1, 2M × 2N − 2, . . . , 3, 2, iterate ABM to generate pseudo

random number ri and use Equation (3) to quantize it. Swap M’s ith pixel Mi and jth pixel Mj.

j = round(ri × 1014)modi + 1. (3)

Step 4: Merge the decomposed bit planes to obtain the permutated image H of size M × N.
Step 5: Initialize two 1D arrays or vectors S and T by Equation (4). For i = 0, 1, 2, . . . , 255,

Si = Ti = i. (4)

Step 6: For i = 255, 254, . . . , 2, 1, iterate ABM to generate pseudo random number ui and use
Equation (5) to quantize it. Swap Si and Sj.

j = round(ui × 1014)modi. (5)
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Step 7: For i = 255, 254, . . . , 2, 1, iterate ABM to generate pseudo random number pi and use
Equation (6) to quantize it. Swap Ti and Tj.

j = round(pi × 1014)modi. (6)

Step 8: For i = 1, 2, . . . , M × N − 1, use Equation (7) to diffuse H’s pixel Hi+1. Here, ai is the
pseudo random number generated by ABM.

Hi+1 = Hi+1 ⊕ STHi
⊕ (round(ai × 1014)mod256). (7)

Step 9: For i = M × N, M × N − 1, . . . , 3, 2, use Equation (8) to diffuse H’s pixel Hi−1. Here, bi is
the pseudo random number generated by ABM.

Hi−1 = Hi−1 ⊕ TSHi
⊕ (round(bi × 1014)mod256). (8)

Step 10: Save H as the C.

4.2. Discussion

In Step 2, Step 3, and Step 4, the permutation phase that works on a bit-level was performed.
According to the method of building a Hamiltonian path, two arrays were generated for grey value’s
substitution in Step 5, 6, and 7. The arrays were arrangements of integers from 0 to 255, in accordance
with pixel’s grey levels. As the arrays were randomly generated, there were 256! ≈ 8.578 × 10506

possible arrangements. In this way, the modification of plain images could be amplified and transmitted
in Step 8 and Step 9, causing an avalanche effect.

4.3. Decryption Algorithm

The decryption algorithm is the reverse progress of the encryption algorithm, as can be seen from
Figure 11.
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In the encryption process, the substitution is realized by arrays S and T. The reverse operation of
substitution needs the inverse map of S and T, which can be generated by Equation (9).

S′Si = T′Ti
= i. (9)

In the formula, i = 255, 254, . . . , 2, 1, 0. The S’ and T’ are the inverse maps of S and T, respectively.

5. Simulation Experiments

To check the performance of the proposed scheme, the results of simulation experiments were
evaluated by several criteria in this section. Our experimental environment was a desktop PC with
64-bit Windows 10 OS, Intel i7-2600 CPU, and 8GB RAM. The programming language was C++, and
the developing environments were Visual Studio 2019 and OpenCV 4.1.0. The test images were chosen
from SIPI image database [25].

5.1. Secret Key Analysis

Secret key is an indispensable component of a cryptosystem. The key space is suggested to be no
less than 2100 [26]. The secret keys of the proposed scheme are parameters of ABM. In our simulation
experiment, the data type of the keys was double precision floating point numbers. According to IEEE
754 standard, each key occupies 8 Bytes and owns significant digit of 52 bits. The structure of secret
key is as shown in Figure 12, and the key space is bigger than 2100.
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To examine the key sensitivity in the encryption process and decryption process, a strict test for
bit change rate—NBCR (the number of bit change rate) [27]—was utilized:

NBCR(C1, C2) =
Ham(C1, C2)

M×N × d
(10)

In the above formula, C1 and C2 are two images of size M × N and bit-depth d. Ham(C1,C2)
represents the Hamming distance between C1 and C2; in other words, the number of different bits
between the two images. The calculation results of NBCR should be close to 50%, which indicates that
around 50% of the bits are different between C1 and C2.

In our work, three groups of modified keys were set as the illegal keys. These illegal keys are
utilized to encrypt the plain images in the encryption process and decrypt the cipher images in the
decryption process. The obtained encrypted images and decrypted images were made in comparison
with the original plain images and cipher images. The NBCRs are listed in Table 2.

Table 2. Key sensitivity (∆ = 0.00000000000001).

Boat
(512 × 512)

Couple
(512 × 512)

Tank
(512 × 512)

Male
(1024 × 1024)

Clock
(256 × 256)

Key sensitivity in
encryption process

(x0 + ∆, α, β) 0.499321 0.499997 0.500057 0.499904 0.501156

(x0, α + ∆, β) 0.499923 0.500155 0.499765 0.499937 0.500164

(x0, α, β + ∆) 0.49994 0.500076 0.500499 0.500078 0.500856

Key sensitivity in
decryption process

(x0 + ∆, α, β) 0.500289 0.499741 0.500082 0.499858 0.500328

(x0, α + ∆, β) 0.500154 0.499415 0.5001 0.49992 0.501308

(x0, α, β + ∆) 0.499747 0.500337 0.499742 0.49986 0.499378
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5.2. Histograms

The histogram is the foundation of various spatial image processing techniques, e.g., image
enhancement. Moreover, the inherent information of histograms is useful in image compression and
segmentation. For an image of size M × N and bit-depth d, the histogram is a discrete function:

h(ri) = qi. (11)

Here i = 0, 1, 2, . . . , 2d
− 1, qi is the pixels’ quantity of grey value ri. The variance of histogram can

be calculated by Equation (12).

Var(hi) =
1
2d

2d
−1∑

i=0

(qi − µh)
2. (12)

The µh is the arithmetic mean value of qi. The histogram of a cipher image should be relatively
uniform. After encryption, the variance of an image’s histogram should be reduced. In Table 3, the
variance of several images’ histograms are listed.

Table 3. Variance of histograms.

Plain Image Cipher Image

Chemical plant (256 × 256) 50,326.4 248.469
Clock (256 × 256) 282,062 248.328

Moon surface (256 × 256) 135,688 248.094
Boat (512 × 512) 1,535,880 1137.66

Couple (512 × 512) 1,195,460 1002.11
Lena (512 × 512) 632,254 986.281
Tank (512 × 512) 8,103,600 1043.73

Airplane (1024 × 1024) 115,199,000 3783.7
Airport (1024 × 1024) 31,596,400 3832.03

Male (1024 × 1024) 11,349,400 4412.8

In practice, histograms are often normalized by Equation (13).

p(ri) =
qi

M×N
. (13)

After normalization, p(ri) represents the emergence probability of the ith grey value. The normalized
histograms of plain images and cipher images are shown in Figure 13.
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Figure 13. Histograms. (a) Plain image boat; (b) plain image male; (c) plain image clock; (d) histogram
of plaintext boat; (e) histogram of plaintext male; (f) histogram of plaintext clock; (g) cipher image
boat; (h) cipher image male; (i) cipher image clock; (j) histogram of cyphertext boat; (k) histogram of
cyphertext male; (l) histogram of cyphertext clock.

5.3. Information Entropy

Information entropy was proposed by C. E. Shannon, which is a measurement of information’s
randomness. For a digital image, it is hard to predict the content if its information entropy is high.
The calculation formula of information entropy is as shown in Equation (14). Here, the p(ri) is identical
to Equation (13).

H = −
2d
−1∑

i=0

p(ri) log2 p(ri). (14)

The ideal value of a cipher image’s information entropy is its bit-depth d. In Table 4, the information
entropy of plain images and cipher images are listed.
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Table 4. Information entropy.

Plain Image Proposed Scheme [2] [4] [28]

Chemical plant(256 × 256) 7.34243 7.99725 7.99716 7.99692 7.99683
Clock(256 × 256) 6.70567 7.99727 7.99726 7.99692 7.99705

Moon surface(256 × 256) 6.70931 7.99725 7.99738 7.9974 7.9972
Boat(512 × 512) 7.19137 7.99922 7.99934 7.9994 7.99921

Couple(512 × 512) 7.20101 7.99931 7.99934 7.99931 7.99936
Lena(512 × 512) 7.44551 7.99932 7.99929 7.99934 7.99932
Tank(512 × 512) 5.49574 7.99928 7.99934 7.99923 7.99934

Airplane(1024 × 1024) 5.64145 7.99984 7.99984 7.99983 7.99981
Airport(1024 × 1024) 6.83033 7.99984 7.99983 7.99981 7.99983

Male(1024 × 1024) 7.52374 7.99981 7.99978 7.99981 7.99981

5.4. Differential Attack

To resist differential attacks, tiny modification in plain images should cause massive changes in
the cipher image. This is known as diffusion property in cryptography. NPCR (number of pixel change
rate) and UACI (unified averaged changed intensity) are two common indicators for an algorithm’s
ability of resisting differential attacks [29]. If C1 and C2 are two images of size M × N and bit-depth
d, then

NPCR =

 1
M×N

M∑
i=1

N∑
j=1

D(i, j)

× 100% (15)

UACI =

 1
M×N × 255

M∑
i=1

N∑
j=1

∣∣∣C1(i, j) −C2(i, j)
∣∣∣× 100%. (16)

Here,

D(i, j) =
{

0, C1(i, j) = C2(i, j)
1, C1(i, j) , C2(i, j)

. (17)

In our experiment, the plain image boat of size 512 × 512 was utilized for evaluating the diffusion
effect. Some pixels were chosen in the image, and the last bit of these pixels were reversed, respectively.
Then, the modified images were encrypted. As can be seen from Table 5, the NPCRs and UACIs were
close to theoretical values after two encryption rounds.

Table 5. Results of NPCR and UACI.

Index of Modified Pixel NPCR
(1 Round)

UACI
(1 Round)

NPCR
(2 Rounds)

UACI
(2 Rounds)

0 0.996983 0.3349 0.995941 0.335169
255 0.99733 0.335224 0.996063 0.3338
511 0.996616 0.334727 0.996143 0.333902

65,151 0.99897 0.3355 0.996078 0.333911
65,407 0.998333 0.335641 0.996254 0.334896

130,560 0.996365 0.333719 0.995861 0.334763
130,816 0.99995 0.335614 0.996147 0.334734
131,071 0.999985 0.335876 0.996216 0.335797
196,096 0.999943 0.336146 0.995804 0.333875
196,352 0.999031 0.335429 0.996269 0.334645
261,632 0.9981 0.335204 0.996181 0.333829
261,888 0.999249 0.335551 0.996037 0.334519
262,143 0.997608 0.335361 0.995998 0.334605

Theoretical value 0.996094 0.334635 0.996094 0.334635
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5.5. Correlation Coefficients

Plain images usually are redundant in the spatial domain, which means that adjacent pixels are
highly correlated. Whereas, in cipher images, such a correlation should be broken. To measure the
correlation between adjacent pixels, we calculated correlation coefficients as below:

rxy =
E[(x− µx)(y− µy)]

σxσy
. (18)

The x and y are pixel vectors of the same length. The µx and µy are their arithmetic mean values,
and the σx and σy are their standard deviations. The range of correlation coefficients is [−1, 1]. If x and
y are not correlated, rxy shall be close to 0.

Commonly, the adjacent pixels of three directions are calculated, respectively horizontal, vertical,
and diagonal. Whereas, there exist two orthogonal diagonal directions in 2D matrices of pixels—the
principal diagonal direction (from upper-left to lower-right) and the minor diagonal direction (from

upper-right to lower-left). For instance, in a pixel block
[

p1 p2

p3 p4

]
, p1 and p4 are adjacent in the

principal diagonal direction, while p2 and p3 are adjacent in the minor diagonal direction. In the field
of image encryption, the definition of diagonal direction is usually ambiguous. However, the two
diagonal directions are nonequivalent for some image processing techniques and image encryption
algorithms [30–34]. Under the extreme circumstances in Figures 14 and 15, it is not enough to calculate
only three of the four directions.
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Figure 14. One example. (a) An image in which all adjacent pixels of minor diagonal direction are
equal; (b) its scatter plots.

For all the plain images and cipher images in our experiments, correlation coefficients of 10,000
adjacent pixel pairs in each of the four directions were calculated. The results are listed in Table 6.
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Table 6. Correlation coefficients.

Boat Male Clock Figure 14a Figure 15a

Plain image

Horizontal 0.936502 0.978016 0.956658 −0.0104305 −0.0347679

Vertical 0.970165 0.981711 0.973594 −0.0262352 −0.0253942

Principal diagonal 0.922103 0.965681 0.940988 0.0309025 1

Minor diagonal 0.924285 0.967724 0.934225 1 0.00261237

Proposed
scheme

Horizontal −0.00790818 −0.00530914 −0.00627326 0.0106215 0.00724055

Vertical −0.0032019 −0.00593338 −0.00787923 0.0000261687 0.00380631

Principal diagonal −0.00753223 0.0180877 −0.00519652 0.000707789 −0.0161754

Minor diagonal 0.001262 0.00994515 −0.00729377 −0.0060987 0.00262413

[2]

Horizontal 0.0272732 0.00444088 0.0105537 0.00498476 −0.00189389

Vertical −0.0321433 −0.000856047 −0.00733777 −0.0126175 0.0129397

Principal diagonal −0.00603878 −0.00964336 −0.0138118 0.0118652 −0.0067004

Minor diagonal −0.0013256 0.0046903 −0.00501911 0.00299615 −0.0185178

[4]

Horizontal 0.00361182 −0.00595886 −0.00236848 0.000340202 −0.0171794

Vertical 0.00145023 −0.0103426 −0.00437046 0.00520304 0.00879099

Principal diagonal 0.00395435 0.00305054 −0.000705693 −0.0120762 −0.00874923

Minor diagonal −0.000165327 0.00232492 0.000369637 −0.00743531 −0.00299425

[28]

Horizontal 0.00899491 0.00754775 0.000411031 0.0057195 −.00967912

Vertical −0.0041634 0.000629605 −0.00538419 −0.00266845 0.0105734

Principal diagonal −0.00463651 0.00000710876 0.011115 −0.0034216 −0.00922371

Minor diagonal 0.0127711 0.00677395 0.00671256 0.0121195 0.00781511

5.6. Efficiency

In the proposed scheme, bit-level permutation is performed in linear time complexity. Meanwhile,
the diffusion phase is also linear. If the encrypted image is of size M × N, the algorithm’s time
complexity is O(MN). The time complexity of the algorithm in [4] is also O(MN). However, our bit-level
scheme is slower than the pixel-level scheme of [4]. In [2], permutation was companied by sorting
operation. Thus, the scheme’s efficiency was related to the adopted sorting algorithm. In [28], the
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algorithm’s time complexity is O(MN(M + N)). The comparison between these algorithms’ efficiency is
presented in Table 7.

Table 7. Efficiency of algorithms.

Proposed Tcheme [2] [4] [28]

Chemical plant(256 × 256) 0.008 s 0.02 s 0.004 s 0.03 s
Clock(256 × 256) 0.008 s 0.019 s 0.003 s 0.028 s

Moon surface(256 × 256) 0.008 s 0.019 s 0.003 s 0.029 s
Boat(512 × 512) 0.029 s 0.093 s 0.011 s 0.236 s

Couple(512 × 512) 0.03 s 0.094 s 0.012 s 0.234 s
Lena(512 ×512) 0.028 s 0.09 1s 0.009 s 0.239 s
Tank(512 × 512) 0.029 s 0.091 s 0.011 s 0.243 s

Airplane(1024 × 1024) 0.129 s 0.441 s 0.032 s 2.392 s
Airport(1024 × 1024) 0.121 s 0.44 7s 0.033 s 2.388 s

Male(1024 × 1024) 0.116 s 0.434 s 0.033 s 2.398 s
Average throughput 66.062 Mbps 21.884 Mbps 194.571 Mbps 9.542 Mbps

6. Conclusions

In this paper, a 1D adjusted Bernoulli map is proposed, which is suitable for encryption
systems. Based on the new chaotic map, an innovative image encryption algorithm was designed.
The permutation phase was realized by generating a random Hamiltonian path, which was performed
across different bit planes. Then, the idea of random Hamiltonian path was extended for substitution
of grey levels in the diffusion phase. Various criterions indicate that our scheme had a pretty
good performance. Besides, for measuring the correlation of adjacent pixels more reasonably, both
the principal diagonal direction and the minor diagonal direction are involved when calculating
correlation coefficients.
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