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Abstract: We examine issues of prior sensitivity in a semi-parametric hierarchical extension of the
INAR(p) model with innovation rates clustered according to a Pitman–Yor process placed at the
top of the model hierarchy. Our main finding is a graphical criterion that guides the specification
of the hyperparameters of the Pitman–Yor process base measure. We show how the discount and
concentration parameters interact with the chosen base measure to yield a gain in terms of the
robustness of the inferential results. The forecasting performance of the model is exemplified in the
analysis of a time series of worldwide earthquake events, for which the new model outperforms the
original INAR(p) model.

Keywords: time series of counts; Bayesian hierarchical modeling; Bayesian nonparametrics;
Pitman–Yor process; prior sensitivity; clustering; Bayesian forecasting

1. Introduction

Integer-valued time series are relevant to many fields of knowledge, ranging from finance and
econometrics to ecology and meteorology. An extensive number of models for this kind of data has
been proposed since the introduction of the INAR(1) model in the pioneering works of McKenzie [1]
and Al-Osh and Alzaid [2] (see also the book by Weiss [3]). A higher-order INAR(p) model was
considered in the work of Du and Li [4].

In this paper, we generalize the Bayesian version of the INAR(p) model studied by Neal and
Kypraios [5]. In our model, the innovation rates are allowed to vary through time, with the distribution
of the innovation rates being modeled hierarchically by means of a Pitman–Yor process [6]. In this way,
we account for potential heterogeneity in the innovation rates as the process evolves through time,
and this feature is automatically incorporated in the Bayesian forecasting capabilities of the model.

The semi-parametric form of the model demands a robustness analysis of our inferential
conclusions as we vary the hyperparameters of the Pitman–Yor process. We investigate this
prior sensitivity issue carefully and find ways to control the hyperparameters in order to achieve
robust results.

This paper is organized as follows. In Section 2, we construct a generalized INAR(p) model with
variable innovation rates. The likelihood function of the generalized model is derived and a data
augmentation scheme is developed, which gives a specification of the model in terms of conditional
distributions. This data augmented representation of the model enables the derivation in Section 4 of
full conditional distributions in simple analytical form, which are essential for the stochastic simulations
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in Section 5. Section 3 recollects the main properties of the Pitman–Yor process which are used to define
the PY-INAR(p) model in Section 4, including its clustering properties. In building the PY-INAR(p),
we propose a form for the prior distribution of the thinning parameters vector which improves on the
choice made for the Bayesian INAR(p) model studied in [5]. In Section 5, we investigate the robustness
of the inference with respect to changes in the Pitman–Yor process hyperparameters. Using the full
conditional distributions of the innovation rates derived in Section 4, we inspect the behavior of the
model as we concentrate or spread the mass of the Pitman–Yor base measure. This leads us to a
graphical criterion that identifies an elbow in the posterior expectation of the number of clusters as we
vary the hyperparameters of the base measure. Once we have control over the base measure, we study
its interaction with the concentration and discount hyperparameters, showing how to make choices
that yield robust results. In the course of this development, we use geometrical tools to inspect the
clustering of the innovation rates produced by the model. Section 6 puts the graphical criterion to work
for simulated data. In Section 7, using a time series of worldwide earthquake events, we finish the
paper comparing the forecasting performance of the PY-INAR(p) model against the original INAR(p)
model, with favorable results.

2. A Generalization of the INAR(p) Model

We begin by generalizing the original INAR(p) model of Du and Li [4] as follows.
Let {Yt}t≥1 be an integer-valued time series, and, for some integer p ≥ 1, let the innovations

{Zt}t≥p+1, given positive parameters {λt}t≥p+1, be a sequence of conditionally independent
Poisson(λt) random variables. For a given vector of parameters α = (α1, . . . , αp) ∈ [0, 1]p, let Fi =

{Bij(t) : j ≥ 0, t ≥ 2} be a family of conditionally independent and identically distributed Bernoulli(αi)

random variables. For i 6= k, suppose that Fi and Fk are conditionally independent, given α.
Furthermore, assume that the innovations {Zt}t≥p+1 and the families F1, . . . , Fp are conditionally
independent, given α and λ. The generalized INAR(p) model is defined by the functional relation

Yt = α1 ◦Yt−1 + · · ·+ αp ◦Yt−p + Zt,

for t ≥ p + 1, in which ◦ denotes the binomial thinning operator, defined by αi ◦ Yt−i = ∑
Yt−i
j=1 Bij(t),

if Yt−i > 0, and αi ◦Yt−i = 0, if Yt−i = 0. In the homogeneous case, when all the λt’s are assumed to
be equal, we recover the original INAR(p) model.

When p = 1, this model can be interpreted as specifying a birth-and-death process, in which,
at epoch t, the number of cases Yt is equal to the new cases Zt plus the cases that survived from the
previous epoch; the role of the binomial thinning operator being to remove a random number of the
Yt−1 cases present at the previous epoch t− 1 (see [7] for an interpretation of the order p case as a
birth-and-death process with immigration).

Let y = (y1, . . . , yT) denote the values of an observed time series. For simplicity, we assume that
Y1 = y1, . . . , Yp = yp with probability one. The joint distribution of Y1, . . . , YT , given parameters α and
λ = (λp+1, . . . , λT), can be factored as

Pr{Y1 = y1, . . . , YT = yT | α, λ} =
T

∏
t=p+1

Pr{Yt = yt | Yt−1 = yt−1, . . . , Yt−p = yt−p, α, λt}.

Since, with probability one, αi ◦Yt−i ≤ Yt−i and Zt ≥ 0, the likelihood function of the generalized
INAR(p) model is given by
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Ly(α, λ) =
T

∏
t=p+1

min{yt , yt−1}

∑
m1,t=0

· · ·
min{yt−∑

p−1
j=1 mj,t , yt−p}

∑
mp,t=0

(
p

∏
i=1

(
yt−i
mi,t

)
α

mi,t
i (1− αi)

yt−i−mi,t

)
×

 e−λt λ
yt−∑

p
j=1 mj,t

t

(yt −∑
p
j=1 mj,t)!

 .

For some epoch t and i = 1, . . . , p, suppose that we could observe the values of the latent
maturations Mi,t. Postulate that Mi,t | Yt−i = yt−i, αi ∼ Binomial(yt−i, αi), so that the conditional
probability function of Mi,t is given by

p(mi,t | yt−i, αi) = Pr{Mi,t = mi,t | Yt−i = yt−i, αi}

=

(
yt−i
mi,t

)
α

mi,t
i (1− αi)

yt−i−mi,t I{0, ... , yt−i}(mi,t).

Furthermore, suppose that

p(yt | m1,t, . . . , mp,t, λt) = Pr{Yt = yt | M1,t = m1,t, . . . , Mp,t = mp,t, λt}

=
e−λt λ

yt−∑
p
j=1 mj,t

t

(yt −∑
p
j=1 mj,t)!

I{∑p
j=1 mj,t , ∑

p
j=1 mj,t+1, ... }(yt).

Using the law of total probability and the product rule, we have that

p(yt | yt−1, . . . , yt−p, α, λt) =
yt−1

∑
m1,t=0

· · ·
yt−p

∑
mp,t=0

p(yt, m1,t, . . . , mp,t | yt−1, . . . , yt−p, α, λt)

=
yt−1

∑
m1,t=0

· · ·
yt−p

∑
mp,t=0

p(yt | m1,t, . . . , mp,t, λt)×
p

∏
i=1

p(mi,t | yt−i, αi).

Since

I{∑p
j=1 mj,t , ∑

p
j=1 mj,t+1, ... }(yt) = I{0, ... , yt}

(
∑

p
j=1 mj,t

)
= I{0, ... , yt}(m1,t)× · · · × I{0, ... , yt−∑

p−1
j=1 mj,t}

(mp,t)

and
I{∑p

j=1 mj,t , ∑
p
j=1 mj,t+1, ... }(yt)× I{0, ... , yt−i}(mi,t) = I{0, 1, ... , min{yt−∑j 6=i mj,t , yt−i}}(mi,t),

we recover the original likelihood of the generalized INAR(p), showing that the introduction of the
latent maturations Mi,t with the specified distributions is a valid data augmentation scheme (see [8,9]
for a general discussion of data augmentation techniques).

In the next section, we review the needed definitions and properties of the Pitman–Yor process.

3. Pitman–Yor Process

Let the random probability measure G ∼ DP(τ, G0) be a Dirichlet process [10–12] with
concentration parameter τ and base measure G0. If the random variables X1, . . . , Xn, given G = G,
are conditionally independent and identically distributed as G, then it follows that

Pr{Xn+1 ∈ B | X1 = x1, . . . , Xn = xn} =
τ

τ + n
G0(B) +

1
τ + n

n

∑
i=1

IB(xi),
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for every Borel set B. If we imagine the sequential generation of the Xi’s, for i = 1, . . . , n, the former
expression shows that a value is generated anew from G0 with probability proportional to τ, or we
repeat one the previously generated values with probability proportional to its multiplicity. Therefore,
almost surely, realizations of a Dirichlet process are discrete probability measures, perhaps with
denumerable infinite support, depending on the nature of G0. Also, this data-generating process,
known as the Pólya–Blackwell–MacQueen urn, implies that the Xi’s are “softly clustered”, in the
sense that in one realization of the process the elements of a subset of the Xi’s may have exactly the
same value.

The Pitman–Yor process [6] is a generalization of the Dirichlet process which results in a model
with added flexibility. Essentially, the Pitman–Yor process modifies the expression of the probability
associated with the Pólya-Blackwell-MacQueen urn introducing a new parameter so that the posterior
predictive probability becomes

Pr{Xn+1 ∈ B | X1 = x1, . . . , Xn = xn} =
τ + kσ

τ + n
G0(B) +

1
τ + n

n

∑
i=1

(
1− σ

ni

)
IB(xi),

in which 0 ≤ σ < 1 is the discount parameter, τ > −σ, k is the number of distinct elements in
{X1, . . . , Xn}, and ni is the number of elements in {X1, . . . , Xn} which are equal to Xi, for i = 1, . . . , n.
It is well known that E[G(B)] = G0(B) and

Var[G(B)] =
(

1− σ

τ + 1

)
G0(B)(1− G0(B)),

for every Borel set B. Hence, G is centered on the base probability measure G0, while τ and σ control
the concentration of G around G0. We use the notation G ∼ PY(τ, σ, G0). When σ = 0, we recover the
Dirichlet process as a special case. The PY process is also defined for σ < 0 and τ = |σ|m, for some
positive integer m. For our purposes, it is enough to consider the case of non-negative σ.

Pitman [6] derived the distribution of the number of clusters K (the number of distinct Xi’s),
conditionally on both the concentration parameter τ and the discount parameter σ, as

Pr{K = k | τ, σ} = ∏k−1
i=1 (τ + iσ)

σk × (τ + 1)n−1
× C (n, k; σ),

in which (x)n = Γ(x + n)/Γ(x) is the rising factorial and C (n, k; σ) is the generalized factorial
coefficient [13].

In the next section, we use a Pitman–Yor process to model the distribution of the innovation rates
in the generalized INAR(p) model.

4. PY-INAR(p) Model

The PY-INAR(p) model is as a hierarchical extension of the generalized INAR(p) model defined
in Section 2. Given a random measure G ∼ PY(τ, σ, G0), in which G0 is a Gamma(a0, b0) distribution,
let the innovation rates λp+1, . . . , λT be conditionally independent and identically distributed with
distribution Pr{λt ∈ B | G = G} = G(B).

To complete the PY-INAR(p) model, we need to specify the form of the prior distribution for the
vector of thinning parameters α = (α1, . . . , αp). By comparison with standard results from the theory
of the AR(p) model [14], Du and Li [4] found that in the INAR(p) model the constraint ∑

p
i=1 αi < 1

must be fulfilled to guarantee the non-explosiveness of the process. In their Bayesian analysis of
the INAR(p) model, Neal and Kypraios [5] considered independent beta distributions for the αi’s.
Unfortunately, this choice is problematic. For example, in the particular case when the αi’s have
independent uniform distributions, it is possible to show that Pr{∑p

i=1 αi < 1} = 1/p!, implying that
we would be concentrating most of the prior mass on the explosive region even for moderate values of
the model order p. We circumvent this problem using a prior distribution for α that places all of its
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mass on the nonexplosive region and still allows us to derive the full conditional distributions of the
αi’s in simple closed form. Specifically, we take the prior distribution of α to be a Dirichlet distribution
with hyperparameters (a1, . . . , ap; ap+1), and corresponding density

π(α) =
Γ
(

∑
p+1
i=1 ai

)
∏

p+1
i=1 Γ(ai)

p+1

∏
i=1

α
ai−1
i ,

in which ai > 0, for i = 1, . . . , p + 1, and αp+1 = 1−∑
p
i=1 αi.

Let m = {mi,t: i = 1, . . . , p, t = p + 1, . . . , T} denote the set of all maturations, and let µG be the
distribution of G. Our strategy to derive the full conditionals distributions of the model parameters
and latent variables is to consider the marginal distribution

p(y, m, α, λ) =
∫

p(y, m, α, λ | G) dµG(G)

=

{
T

∏
t=p+1

p(yt | m1,t, . . . , mp,t, λt)
p

∏
i=1

p(mi,t | yt−i, αi)

}

× π(α)×
∫ T

∏
t=p+1

p(λt | G) dµG(G).

From this expression, using the results in Section 3, the derivation of the full conditional
distributions is straightforward. In the following expressions, the symbol ∝ denotes proportionality
up to a suitable normalization factor, and the label “all others” designate the observed counts y and all
the other latent variables and model parameters, with the exception of the one under consideration.

Let λ\t denote the set {λp+1, . . . , λT} with the element λt removed. Then, for t = p + 1, . . . , T,
we have

λt | all others ∼ wt ×Gamma(yt −mt + a0, b0 + 1) + ∑
r 6=t

(
1− σ

nr

)
λ

yt−mt
r e−λr δ{λr},

in which the weight

wt =
(τ + k\t σ)× ba0

0 × Γ(yt −mt + a0)

Γ(a0)× (b0 + 1)yt−mt+a0
,

nr is the number of elements in λ\t which are equal to λr, and k\t is the number of distinct elements in
λ\t. In this mixture, we suppressed the normalization constant that makes all weights add up to one.

Making the choice ap+1 = 1, we have

αi | all others ∼ TBeta

(
ai +

T

∑
t=p+1

mi,t, 1 +
T

∑
t=p+1

(yt−i −mi,t), 1−∑
j 6=i

αj

)
,

for i = 1, . . . , p, in which TBeta denotes the right truncated Beta distribution with support
(0, 1−∑

p
j 6=i αj).

For the latent maturations, we find

p(mi,t | all others) ∝
1

(mi,t)!(yt −∑
p
j=1 mj,t)!(yt−i −mi,t)!

(
αi

λt(1− αi)

)mi,t

× I{0, 1, ... , min{yt−∑j 6=i mj,t , yt−i}}(mi,t).
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To explore the posterior distribution of the model, we build a Gibbs sampler [15] using these full
conditional distributions. Escobar and West [16] showed, in a similar context, that we can improve
mixing by resampling simultaneously the values of all λt’s inside the same cluster at the end of each
iteration of the Gibbs sampler. Letting (λ∗1 , . . . , λ∗k ) be the k unique values among (λp+1, . . . , λT),
define the number of occupants of cluster j by νj = ∑T

t=p+1 I{λ∗j }(λt), for j = 1, . . . , k. It follows that

λ∗j | all others ∼ Gamma

(
a0 +

T

∑
t=p+1

(
yt −

p

∑
i=1

mi,t

)
· I{λ∗j }(λt), b0 + νj

)
.

for j = 1, . . . , k. At the end of each iteration of the Gibbs sampler, we update the values of all λt’s
inside each cluster by the corresponding λ∗j using this distribution.

5. Prior Sensitivity

As it is often the case for Bayesian models with nonparametric components, a choice of the
prior parameters for the PY-INAR(p) model which yields robustness of the posterior distribution is
nontrivial [17].

The first aspect to be considered is the fact that the base measure G0 plays a crucial role in the
determination of the posterior distribution of the number of clusters K. This can be seen directly by
inspecting the form of the full conditional distributions derived in Section 4. Recalling that G0 is a
gamma distribution with mean a0/b0 and variance a0/b2

0, from the full conditional distribution of λt

one may note that the probability of generating, on each iteration of the Gibbs sampler, a value for λt

anew from G0 is proportional to

(τ + k\t σ)× ba0
0 × Γ(yt −mt + a0)

Γ(a0)(b0 + 1)yt−mt+a0
.

Therefore, supposing that all the other terms are fixed, if we concentrate the mass of G0 around
zero by making b0 → ∞, this probability decreases to zero. This is not problematic, because it is hardly
the case that we want to make such a drastic choice for G0. The behavior in the other direction is more
revealing, since taking b0 ↓ 0, in order to spread the mass of G0, also makes the limit of this probability
to be zero. Due to this behavior, we need to establish a criterion to choose the hyperparameters of the
base measure which avoids these extreme cases.

In our analysis, it is convenient to have a single hyperparameter regulating how the mass of G0

is spread over its support. For a given λmax > 0, we find numerically the values of a0 and b0 which
minimize the Kullback-Leibler divergence between G0 and a uniform distribution on the interval
[0, λmax]. This Kullback-Leibler divergence can be computed explicitly as

− log λmax − a0 log b0 + log Γ(a0)− (a0 − 1)(log λmax − 1) +
b0λmax

2
.

In this new parameterization, our goal is to make a sensible choice for λmax. It is worth
emphasizing that by this procedure we are not truncating the support of G0, but only using the uniform
distribution on the interval [0, λmax] as a reference for our choice of the base measure hyperparameters
a0 and b0.

Our proposal to choose λmax goes as follows. We fix some value 0 ≤ σ < 1 for the discount
parameter and choose an integer k0 as the prior expectation of the number of clusters K, which, using
the results at the end of Section 3, can be computed explicitly as

E[K] =

{
τ × (ψ(τ + T − p)− ψ(τ)) if σ = 0;

((τ + σ)T−p/(σ× (τ + 1)T−p−1))− τ/σ if σ > 0,
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in which ψ(x) is the digamma function (see [6] for a derivation of this result). Next, we find the value
of the concentration parameter τ by solving E[K] = k0 numerically. After this, for each λmax in a grid
of values, we run the Gibbs sampler and compute the posterior expectation of the number of clusters
E[K | y]. Finally, in the corresponding graph, we look for the value of λmax located at the “elbow” of
the curve, that is, the value of λmax at which the values of E[K | y] level off.

6. Simulated Data

As an explicit example of the graphical criterion in action, we used the functional form of a
first-order model with thinning parameter α = 0.15 to simulate a time series of length T = 1000, for
which the distribution of the innovations is a symmetric mixture of three Poisson distributions with
parameters 1, 8, and 15. Figure 1 shows the formations of the elbows for two values of the discount
parameter: σ = 0.5 and σ = 0.75.

0

100

200

300

400

50 100
λmax

E[
K

 | 
y]

0

100

200

300

400

50 100
λmax

E[
K

 | 
y]

Figure 1. Formation of the elbows for σ = 0.5 (left) and σ = 0.75 (right). The red dotted lines indicate
the chosen values of λmax.

For the simulated time series, Figures 2–5 display the behavior of the posterior distributions
obtained using the elbow method for (k0, σ) ∈ {4, 10, 16, 30} × {0, 0.25, 0.5, 0.75}. These figures make
the relation between the choice of the value of the discount parameter σ and the achieved robustness
of the posterior distribution quite explicit: as we increase the value of the discount parameter σ,
the posterior becomes insensitive to the choice of k0. In particular, for σ = 0.75, the posterior mode is
always near 3, which is the number of components used in the distribution of the innovations of the
simulated time series.
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Figure 2. Posterior distributions of the number of clusters K for the simulated time series with σ = 0
and k0 = 4, 10, 16, 30. The red dotted lines indicate the value of k0.

Once we understand the influence of the prior parameters on the robustness of the posterior
distribution, an interesting question is how to get a point estimate for the distribution of clusters, in the
sense that each λt, for t = p + 1, . . . , T, would be assigned to one of the available clusters.

From the Gibbs sampler, we can easily get a Monte Carlo approximation for the probabilities
drt = Pr{λr 6= λt | y}, for r, t = p+ 1, . . . , T. These probabilities define a dissimilarity matrix D = (drt)

among the innovation rates. Although D is not a distance matrix, we can use it as a starting point to
represent the innovation rates in a two-dimensional Euclidean space using the technique of metric
multidimensional scaling (see [18] for a general discussion). From this two-dimensional representation,
we use hierarchical clustering techniques to build a dendrogram, which is appropriately cut in order
to define three clusters, allowing us to assign a single cluster label to each innovation rate.
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Figure 3. Posterior distributions of the number of clusters K for the simulated time series with σ = 0.25
and k0 = 4, 10, 16, 30. The red dotted lines indicate the value of k0.

Table 1 displays the confusion matrix of this assignment, showing that 83% of the innovations
were grouped correctly in the clusters which correspond to the mixture components used to simulate
the time series.

Table 1. Confusion matrix for the cluster assignments.

True

Predicted 1 2 3
1 297 32 0
2 11 217 42
3 0 84 316
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Figure 4. Posterior distributions of the number of clusters K for the simulated time series with σ = 0.5
and k0 = 4, 10, 16, 30. The red dotted lines indicate the value of k0.
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Figure 5. Cont.
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Figure 5. Posterior distributions of the number of clusters K for the simulated time series with σ = 0.75
and k0 = 4, 10, 16, 30. The red dotted lines indicate the value of k0.

7. Earthquake Data

In this section, we analyze a time series of yearly worldwide earthquakes events of substantial
magnitude (equal or greater than 7 points on the Richter scale) from 1900 to 2018 (http://www.usgs.
gov/natural-hazards/earthquake-hazards/earthquakes).

The forecasting performances of the INAR(p) and the PY-INAR(p) models are compared using a
cross-validation procedure in which the models are trained with data ranging from the beginning of
the time series up to a certain time, and predictions are made for epochs outside this training range.

Using this cross-validation procedure, we trained the INAR(p) and the PY-INAR(p) models with
orders p = 1, 2, and 3, and made one-step-ahead predictions. Table 2 shows the out-of-sample mean
absolute errors (MAE) for the INAR(p) and the PY-INAR(p) models. In this table, the MAE’s are
computed predicting the counts for the last 36 months. For the three model orders, the PY-INAR(p)
model yields a smaller MAE than the original INAR(p) model.

Table 2. Out-of-sample MAE’s for the INAR(p) and the PY-INAR(p) models, with orders p = 1, 2, and 3.
The last column shows the relative variations of the MAE’s for the PY-INAR(p) models with respect to
the corresponding MAE’s for the INAR(p) models.

INAR PY-INAR ∆PY-INAR

p = 1 3.861 3.583 −0.072
p = 2 3.583 3.417 −0.046
p = 3 3.972 3.305 −0.202

http://www.usgs.gov/natural-hazards/earthquake-hazards/earthquakes
http://www.usgs.gov/natural-hazards/earthquake-hazards/earthquakes
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