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Abstract: Fiber–fiber interaction plays an important role in the evolution of fiber orientation in
semi-concentrated suspensions. Flow induced orientation in short-fiber reinforced composites
determines the anisotropic properties of manufactured parts and consequently their performances.
In the case of dilute suspensions, the orientation evolution can be accurately described by using
the Jeffery model; however, as soon as the fiber concentration increases, fiber–fiber interactions
cannot be ignored anymore and the final orientation state strongly depends on the modeling of those
interactions. First modeling frameworks described these interactions from a diffusion mechanism;
however, it was necessary to consider richer descriptions (anisotropic diffusion, etc.) to address
experimental observations. Even if different proposals were considered, none of them seem general
and accurate enough. In this paper we do not address a new proposal of a fiber interaction model,
but a data-driven methodology able to enrich existing models from data, that in our case comes from
a direct numerical simulation of well resolved microscopic physics.

Keywords: fiber suspensions; data-driven modeling; machine learning

1. Introduction

Short fiber reinforced composite is being used in a wide range of sectors in our society.
The composite is manufactured from processes such as, among many others, injection molding,
compression molding and extrusion. The mechanical performances of the manufactured composite,
such as stiffness and strength, is determined by the final state of fiber orientation. The final fiber
state results from the flow induced orientation evolution that in the case of semi-concentrated or
concentrated flow regimes involves strong fiber–fiber interactions whose modeling is crucial for
determining the final part properties and performance.

Predicting flow induced anisotropy in reinforced polymer forming processes is of major interest.
However, most of the existing models, as the ones described below, have important limitations
associated with the numerous hypotheses introduced during their analytical derivation. When
proceeding out of the domain of validity of those models, a pragmatic approach consists of assuming
the existing models are still valid and calibrating them from experimental tests.
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When these calibrated nominal models are unable to reproduce experimental findings, some ad
hoc terms are usually added, being then calibrated accordingly (e.g., diffusion term reflecting fiber
interactions).

Thus, data was traditionally employed for calibrating models derived from physical considerations.
However, many times those models failed to address experimental findings even when they were
finely calibrated. It is the case of models describing intense fiber interactions in semi-concentrated and
concentrated fiber suspensions. This issue motivated numerous works referred to later, and remains
even today not totally solved.

Recent advances in artificial intelligence, and more particularly in machine learning, are opening
new routes. Thus, data can be used not only for calibrating pre-assumed models, i.e., assimilating data
into existing models to identify the most adequate values of their parameters. Data can be also used
for inferring the model itself, or eventually the correction of a nominal pre-existing model to enhance
its predictability capacity.

The present paper aims at addressing this important and timely topic of data-driven model
enrichment, here addressed from a methodological viewpoint. Future works will focus on (i) the use of
data-driven models for improving computational efficiency in the simulation of complex flows as the
ones encountered in processing; (ii) the derivation of more accurate rheological models for describing
complex fluids; and (iii) the use of these more accurate rheological models in processing simulations
for circumventing, or at least alleviating, the limitation of current models and procedures and their
associated predictions.

1.1. Revisiting Standard Flow-Induced Orientation Models

The orientation description and its flow induced evolution can be addressed at three different
scales [1]:

• At the microscopic scale the orientation state is described from the orientation of each fiber. Thus,
in the case of a population consisting of N fibers of length 2L with an almost infinite aspect ratio
(length to diameter), all of them are located into a representative volume element –RVE– ω,
the orientation state in ω at time t reduces to the knowledge of the N unit vectors pi(t), centered
at the i-fiber centre of gravity Gi and aligned along its axis.

If we assume that population immersed in a fluid flow characterized by the velocity gradient ∇v,
assumed unperturbed by the fibers’ presence and orientation, when neglecting the fiber–fiber
interactions, the fiber rotary velocity is expressed by the Jeffery equation [2], which reads

ṗi = ∇vpi − (pT
i ∇vpi)pi, ∀i = 1, . . . , N. (1)

• The mesoscopic description makes use of the probability distribution function Ψ(x, t, p), giving
the fraction of fibers that at position x and time t are oriented along p.

Again, when neglecting fiber interaction, the evolution of that distribution function is given by
the Fokker–Planck equation

Ψ̇ +∇p(ṗΨ) = 0, (2)

where Ψ̇ represents the material derivative and ∇p(•) the gradient operator involving the
conformational coordinates p.

• The main difficulty of the previous descriptions is their complexity, the microscopic one due to
the fact of needing to track all the fibers immersed in the flow and the mesoscopic due to the fact
that the distribution function is defined in a high-dimensional space involving the physical space
x, the time t and the orientation p, the last defined on the unit sphere. Macroscopic descriptions
circumvent both difficulties by operating with the probability distribution function moments [3].
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Thus, the second moment of the probability distribution function, also known as second order
orientation tensor a(x, t), reads

a =
∮

p⊗ pΨ dp, (3)

where the integral applies on the unit sphere surface and “⊗” denotes the tensor product.

As described in [1], the second order moment time evolution, again ignoring fiber interaction,
reads

ȧ = ∇va + a(∇v)T − 2A : ∇v, (4)

where A is the fourth order moment and “:” represents the tensor product twice contracted.
In what follows the orientation rate in Equation (4) will be referred to as ȧJe f f for indicating that it
is associated to the Jeffery model that ignores fiber–fiber interactions.

The macroscopic description is retained in most of works and commercial software because of its
relative simplicity. However, for employing it, one must consider closure relations [4] for expressing the
fourth order orientation tensor as a function of the second one, whose validity remains nowadays an
open issue. In the numerical tests performed in the present paper the IBOF closure [5] (invariant-based
orthotropic fitted) is considered. Moreover, by restricting the orientation description to the second
moment, only some probability distribution functions can be accurately described, others cannot
be expressed from the solely use of the second order orientation tensor. On the other hand, size
effects were neglected when deriving the models at different scales, limiting the model validity when
addressing confined flows.

In the discussion above, fiber–fiber interaction was ignored. Pioneering works assumed that
interactions can be considered as randomizing events that tends to push the systems towards an
isotropic orientation state, and then, they were modeled from a diffusion term into the Fokker-Planck
equation by Folgar and Tucker [6]. Thus, the probability distribution function time evolution is now
expressed from

Ψ̇ +∇p(ṗΨ) = ∇p(D∇pΨ), (5)

with D the diffusion coefficient, assumed scaling the flow intensity from the second invariant of the
velocity gradient.

By using this expression it results in an orientation evolution equation composed of two terms,
the usual Jeffery-based orientation model complemented with a correction that can be easily derived as
illustrated in [1]. Thus the time evolution of the orientation can be written in its most general form as

ȧ = ȧJe f f + ȧdev, (6)

where the first term corresponds to the Jeffery contribution given by Equation (4) and the second
contribution, the deviation with respect to the Jeffery model, comes from the interactions, modeled as
a diffusion term within the Folgar and Tucker (F&T) model.

For addressing anomalous experimental orientation findings at odds with F&T predictions,
in particular a delay in the orientation rates, other models of fiber–fiber interactions have been
proposed [7–12]. In these studies, the observed delay was attributed to the intense fiber–fiber
interactions and modeled either with a modified diffusion term, a microscopic description of
interactions, or by introducing a sliding mechanism between fibers and fluid, with an anisotropic
rotary diffusion.

At present neither, closure relations nor interaction models that are general and accurate enough,
exist. A recent comparison of different approaches can be found in [13]. The accuracy of the fiber
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orientation is tested usually by predicting the effect on mechanical properties due to the error in
predicting of fiber orientation. This issue is beyond the scope of this work but references [3,4] have
done that comparison. In [14] authors noticed that for example, the incorrect prediction of fiber
orientation as the suspension flows into a rib could seriously compromise the part performance.

Despite the fact that numerous works continue to introduce improved models, the present
paper proposes an alternative methodology for improving existing models, based on the data-driven
enriching of the model.

In our former works [15] we addressed the fully data-driven modeling of suspensions, here we
restrict to enriching the Jeffery model with a data-driven description of interactions, a methodology
also considered in some of our former works [16,17].

As our main aim is not the derivation of a new interaction model for fiber suspensions, in what
follows we will consider a molecular dynamics (MD) simulation, able to represent in absence of
interactions Jeffery motion, and in presence of interactions describing them with a a standard
Lennard–Jones potential. Here we are only interested in assimilating that data extracted from
the data-driven interaction model that when added to the Jeffery contribution enables an accurate
prediction of the orientation evolution in flow conditions that are different from the ones used to
extract the model.

This fine-scale simulated data-generator does not pretend to infer an improved model for
simulating processes, but only proving that a macroscopic orientation model can be learned from
microscopic data in order to accurately describe that orientation state. By having access to more
accurate data associated with the orientation evolution of a population of rods, from adequate
measurements or generated from more accurate microscopic models (direct numerical simulations
solving the fluid kinematics and induced fibers motion) more accurate macroscopic models could
be derived.

The methodology described in this paper remains totally general, the only difference being the
quality of the data that serves for learning the model, and consequently it can be applied to any flow
regime, from dilute (without major interest being the Jeffery model valid) to the highly concentrated
regime (where standard model fail).

The next section addresses the data-generator based on a MD fine-scale simulation. Then in
Section 3 we introduce the machine learning techniques that will be applied in Section 4 to extract the
interaction term. Finally in Section 5 we proceed to verify the proposal by conducting some numerical
experiments.

2. Data Generator Based on Molecular Dynamics (MD) Simulations

The fine scale simulation is performed by representing the fiber as M connected beads where forces
apply, the last derived from different potentials as well as the hydrodynamic drag.

We consider three different potentials: The Lennard–Jones potential VLJ to describe bead-bead
interaction (both beads belonging to different fibers) and VE and VB that describe the elongation and
bending interaction between neighbor beads of the same fiber.

As indicated at the end of the previous section, the MD simulation here addressed allows
recovering Jeffery model predictions in absence of interaction. When interactions occur nothing
was demonstrated on the ability of MD for representing fibers motion, but here as previously indicated,
our main aim is proving that a macroscopic model can be extracted from individual microscopic data.
The quality of the learned model only depends on the quality of the data that served to extract it.
The MD strategy here considered must be viewed as a simply synthetic data generator.

Thus, without loss of generality, in what follows we consider the following potential for addressing
the just mentioned mechanisms

V =
N

∑
j=1

M−1

∑
i=1

VE
i,i+1;j +

N

∑
j=1

M−1

∑
i=2

VB
i−1,i,i+1;j +

N

∑
j=1

N

∑
l=1

M

∑
i=1

M

∑
k=1

VLJ
i,j;k,lχj,l (7)
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where N is the number of fibers in the population and VLJ
i,j;k,l represents the Lennard–Jones potential

between bead i of fiber j and bead k of fiber l. The characteristic function χj,l = 1− δjl (with δ the
Kroenecker delta) ensures that the Lennard–Jones potential only acts between beads belonging to
different fibers.

The Lennard–Jones potential reads

VLJ
i,j;k,l = 4ε

((
σ

dik

)12
−
(

σ

dik

)6
)

, (8)

with dik = ||xk − xi|| the distance between beads Bi of fiber j and bead Bk of fiber l, located at positions
xi and xk respectively, and ε and σ are the two usual parameters involved in the Lennard–Jones
potential. The elongation potential is given by

VE
i,i+1 =

KE
2

(
1−

dij

deq

)2

, (9)

where deq is the equilibrium distance between two successive beads, distance at which the potential
reaches its minimum (and consequently the associated force vanishes). In the previous expression KE
reflects the potential intensity.

The bending potential between three successive beads

VB
i−1,i,i+1 =

KB
2
(
θi−1,i,i+1 − θeq

)2 , (10)

where θi−1,i,i+1 is the angle defined by vectors joining beads i− 1, i and i, i + 1 with θeq the angle at
equilibrium, that vanishes when considering straight fibers. In our study we consider parameters
ensuring an almost rigid behavior of the fiber.

The hydrodynamic drag was enforced by adding at each bead the external force

FD
i = ξ(v(xi)− ẋi), (11)

where ẋi denotes the velocity of bead Bi and ξ the friction coefficient.
The total force applied on each bead, inserted into the Newton equation, allows the acceleration

calculation, and from it the velocity and position update, as performed in standard MD simulations.
The problem is expressed in a dimensionless form prior to proceed with its solution. It is important

to emphasize that in absence of Lennard–Jones interactions and for almost rigid fibers, the previous
modeling framework recovers the usual Jeffery kinematics.

3. Methods

Two dimensionality reduction methods, the principal component analysis (PCA) and the Code2Vect
will be employed for constructing the interaction data-driven model, the former for reducing the
dimensionality and the last for creating the nonlinear regression. For the sake of completeness both
are summarized in the next sections.

3.1. Principal Component Analysis (PCA)

Let us consider a vector y ∈ RD containing some data. If some correlations exists in that data,
one could find a linear transformation W to transform y into x, with x ∈ Rd, with d < D. This
mapping reads

y = Wx. (12)

The transformation matrix W, D× d, satisfies the orthogonality condition WTW = Id, where Id
represents the d× d-identity matrix (WWT is not necessarily ID).
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Assume that there exist M different snapshots y1, . . . , yM, which we store in the columns of a
D×M matrix Y. The associated d×M reduced matrix X contains the associated vectors xi, i = 1, . . . , M.
We assume without loss of generality centered variables.

PCA proceeds by guaranteeing maximal preserved variance and enforcing the latent variables in
x being uncorrelated. In other words, the covariance

Cxx = E{XXT}, (13)

will be diagonal. PCA extracts the d uncorrelated latent variables from

Cyy = E{YYT} = E{WXXTWT} = WE{XXT}WT = WCxxWT . (14)

Pre- and post-multiplying by WT and W, respectively, and making use of the fact that WTW = Id,
gives us

Cxx = WTCyyW. (15)

The covariance matrix Cyy can then be factorized by applying the singular value decomposition
(SVD), i.e.,

Cyy = VΛVT , (16)

with V containing the orthonormal eigenvectors and Λ the diagonal matrix containing the eigenvalues,
sorted in descending order.

Substituting Equation (16) into Equation (15), we arrive at

Cxx = WTVΛVTW, (17)

with Cxx diagonal as soon as the d columns of W are taken collinear with d columns of V.
In the data-driven modeling approach proposed later, PCA will be used for expressing a time

history in a time reduced basis. Thus, instead of describing a time function from its value at different
time steps, it will be described by the weight of few functions defined in the whole time interval
involved in the time reduced basis.

3.2. Code2Vect

In [18] the authors proposed a supervised classification and nonlinear regression procedure that
was called Code2Vect because of its ability to map data from a representation (non-metric) space into a
vector space equipped of a metric.

We assume that points in the origin space consists of M arrays composed on D entries, noted by
yi. Theirs images in the vector space are noted by xi ∈ Rd, with in general d � D. The mapping is
described by the d× D matrix W ensuring

xi = Wyi, ∀i = 1, . . . , M, (18)

where both, the components of W and the images xi ∈ Rd, i = 1, · · · , M, must be calculated. Each
point xi keeps the label (value of the quantity of interest (QoI)) associated with is origin point yi,
denoted by Oi.

We would like placing points xi, such that the Euclidian distance with each other point xj scales
with their outputs difference, i.e.,

(Wyi) · (Wyi) = ‖xi − xj‖2 = |Oi −Oj|, (19)
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where the coordinates of one of the points xi can be arbitrarily chosen. Linear mappings are limited
and do not allows proceeding in nonlinear settings. Thus, a better choice consists of the nonlinear
mapping W(y), expressible from the general polynomial form

W(y) =
K

∑
k=1

WkPk(y), (20)

where Wk are d× D matrices and P(y) a polynomial basis.
Equation (19) ensures clustering due to the fact that data with similar output will be placed closer

than when the outputs differ significantly. As well as the mapping has been determined, Equation (18)
(or its nonlinear counterpart) becomes an efficient nonlinear regression as described in [18].

In the data-driven modeling approach proposed later, Code2Vect will be used for defining nonlinear
regressions eventually involving heterogeneous data (e.g., the components of the orientation and
velocity gradient tensors).

3.3. Model Training

In what follows the orientation based on the Jeffery model that ignores interaction will be denoted
by the superscript •Je f f , whereas the orientation evaluated from MD simulations will be denoted
by •MD.

The deviation •dev is expected to describe the fiber interactions because the proposed MD model
in absence of interactions (with a vanishing Lennard–Jones potential) was able to reproduce very
accurately fiber motion as described by Jeffery’s equation (Equation (4)) . The associated rate equation
can be written as

ȧdev = ȧMD − ȧJe f f (21)

with components

ȧdev =

ȧdev
11 ȧdev

12 ȧdev
13

ȧdev
21 ȧdev

22 ȧdev
23

ȧdev
31 ȧdev

32 ȧdev
33

 (22)

It is expected that in absence of confinement, size effect, and for a given fiber concentration, ȧdev

will depend on the flow velocity gradient and the orientation state a itself.
In what follows we consider two scenarios:

• The first is related to the orientation process from a given initial orientation state for different
flows characterized by their velocity gradient kept constant during all the flow process;

• The second is more general and looks for expressing the deviation rate as a function of both the
applied flow (defined by its changing velocity gradient) and the existing orientation state at a
given time instant.

3.3.1. Orientation Evolution in Homogeneous Flows

In this case, the deviation rate at any time is assumed depending on the initial orientation state a0

and the applied flow ∇v. Our main purpose is determining accurately a(t; a0,∇v). For the sake of
simplicity and without loss of generality, we assume the same initial orientation, almost isotropic.

The procedure for learning the model consists of the following steps:

• Consider an almost initial isotropic fiber distribution pk(t = 0), k = 1, . . . , N, defining the initial
orientation tensor a0 ≈ I/3.

• Generate randomly or using a design of experiments (DoE) different flows characterized by the
velocity gradients ∇vj, j = 1, . . . , M.
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• The second invariant of tensors ∇vj, γ̇j, allows defining the maximum simulation time for each
flow tj

max such that γ̇jtj
max = Γ, with Γ total strain large enough for reaching an almost steady

orientation state.
• Perform the MD integration for all the considered flows from the initial fiber distribution pk(t = 0),

leading to pj
k(t), from which the second order orientation tensor aMD

j (t) can be computed at time
t from

aMD
j (t) =

1
N

N

∑
k=1

pj
k ⊗ pj

k (23)

that enables calculating its time derivative ȧDM
j (t).

• Perform the integration of the Jeffery model from a0 for the different flows, to obtain aJe f f
j (t) and

its associate orientation rate ȧJe f f
j (t).

• The deviation results ȧdev
j (t) = ȧMD

j (t)− ȧJe f f
j (t).

• The interval Γ is divided in D intervals, and the deviation rate at the associated deformation (the
deformation is defined from γ = γ̇t) extracted, i.e., ȧdev

j (γl), l = 1, . . . , D.

• Thus, each component (m, n) of ȧdev
j (γl), ȧdev

mn,j(γl), can be expressed as a point in RD, ydev
mn,j, whose

l−component results ȧdev
mn,j(γl).

• Now, the PCA is applied and the first d modes retained. For facilitating visualization we will
consider in fact the first three modes, i.e., d = 3, defining the matrix W. Thus, the image of ydev

mn,j is
given by

zdev
mn,j = Wydev

mn,j, (24)

with zdev
mn,j ∈ Rd.

• Now, Code2Vec applies on vectors Gj (with Gj the vector form of the velocity gradient ∇vj), that
are transformed into gj from the nonlinear mapping Wmn(Gj), i.e.,

gj = Wmn(Gj)Gj, (25)

where the mapping is constructed by enforcing

‖Wmn(Gr)Gr −Wmn(Gs)Gs‖ = ‖gr − gs‖ = ‖zdev
mn,r − zdev

mn,s‖. (26)

With orientation model Wmn(G) constructed, as soon as a new orientation trajectory must be
evaluated for a given velocity gradient G it suffices to proceed as follows:

• Map G into the vector space according to g = W(G)G;
• Identify the set S containing the closest neighbors gi of g;
• Compute the approximation weights ωi, i = 1, . . . , S, depending on the distance between gi and

g, for example by using radial basis;
• Interpolate the deviation reduced orientation trajectories according to

zred
mn =

S

∑
i=1

ωizdev
mn,i. (27)

• Push up to reconstruct the time evolution according to

yred
mn =

S

∑
i=1

ωiydev
mn,i. (28)
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It is important to note that the inverse mapping Rd → RD is not defined, and by this reason we
perform the same interpolation that in the reduced space (previous item)

3.3.2. Instantaneous Orientation Behavior

The present case is even simpler. We consider different orientation states, that can be computed
by taking some snapshots of the fibers orientation at different time during a complex flow simulation.
Then, for each of them, we applied different flows to evaluate the instantaneous orientation rate
of change.

The procedure reads:

• Define at t = 0, Q initial orientation states pq
k, k = 1, . . . , N & q = 1, . . . , Q, using for example a MD

simulation in a complex flow.
• Compute the associated orientation tensors aq

0

aq
0 =

1
N

N

∑
k=1

pq
k ⊗ pq

k. (29)

• Define J flows defined by their velocity gradient tensor ∇vj, j = 1, . . . , J.
• Update the orientation state at time t = ∆t from both the MD procedure and from the Jeffery

equation, the former proceeding from pq
k, the last from aq

0, leading to aMD,q
j (t = ∆t) (evaluated

from pq,j
k (t = ∆t)) and aJe f f ,q

j (t = ∆t) respectively, from which the associated rates can be

obtained, respectively ȧMD,q
j (t = ∆t) and ȧJe f f ,q

j (t = ∆t), and from both the deviation ȧdev,q
j =

ȧMD,q
j (t = ∆t)− ȧJe f f ,q

j (t = ∆t).

• Define the M = J× Q data-sets, yqj, each one containing the vector representation of aq
0 and ∇vj,

with as quantity of interest, QoI, ȧdev,q
j .

• Now, Code2Vect can apply to map each yqj into zmn,qj, by constructing for each component (m, n)
the model W̃mn (linear or in general nonlinear as previously dicussed)

Now, online, for any a and ∇v, it results y that by applying the mapping leads to zmn = W̃mny.
As in the previous section, the set of closest neighbors can be defined, and an interpolation performed
to obtain ȧdev, that is used in the time-marching integration procedure according to

ȧ = ȧJe f f + ȧdev, (30)

that adds to the standard Jeffery contribution the one extracted from the data related to the deviations.

4. Results

In the considered suspension the fiber volume fraction (φ) is kept at 0.01 (semi-dilute regime,
0.0025 < φ < 0.05 for a fiber aspect ratio of 20). These conditions apply to both procedures previously
defined.

4.1. Orientation Evolution in Homogeneous Flows

Total 35 cases with different ∇vj are prepared for this case study (some of them related to pure
shear and elongation flows). Out of 35 cases, its aimed to predict the ȧdev of the case number 10.
The initial orientation state is almost isotropic, whereas the velocity gradient is

∇v10 =

−1 0 1
0 −1 0.25
1 0.25 2

 . (31)
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The prediction for the 10th flow is made according to the procedure described in Section 3.3.1 and
is shown in Figure 1. The mapped point representing the 10th flow has as closest neighbors flows 4, 7,
9 and 11.

Figure 1. Code2vect with d = 3. The closest neighbors of the mapped ∇v10 are also indicated.

The velocity gradient ∇vj for j = 4, 7, 9&11 are:

∇v4 =

−0.5 0.5 1
0.5 −0.5 −0.75
1 −0.75 1

 ,∇v7 =

 −1 −0.25 0
−0.25 −1 1

0 1 2

 , (32)

∇v9 =

−1 0 0.25
0 −1 0.75

0.25 0.75 2

 ,∇v11 =

 −1 0.5 −0.5
0.5 −1 −0.75
−0.5 −0.75 2

 . (33)

In what follows, and for the sake of representation clarity, only the component •11 of the
orientation tensor will be discussed.

The corresponding ȧdev
11 (t) for the five flows j = 4, 7, 9, 10, 11 are presented in Figure 2a, whereas

the prediction and reference solution (original data) for that flow, j = 10, are presented in Figure 2b.
The proposed strategy perform quite reasonably by capturing the main behavior. Obviously the finer
is the sampling, the more accurate is the prediction.

Figure 2. ȧdev
11 for flows 4, 7 and 9–11 (a) and ȧdev

11 predicted and original data for the tenth flow (b).

4.2. Instantaneous Orientation Behavior

In the present case we consider two numerical tests reported below.
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• In this first test, we perform a MD simulation for extracting different orientation states when
considering an almost isotropic initial orientation state a the flow characterized by

∇v =

−0.75 0.5 0
−0.5 −0.75 0

0 0 1.5

 (34)

The extracted Q = 4 intermediate orientation states are defined in Table 1.

Table 1. a0 at γ̇t = 0.3, 0.6, 1 and 2.

γ̇t a11 a22 a33 a12 a13 a23

0.3 0.32 0.30 0.36 −0.01 −0.01 0.01
0.6 0.28 0.27 0.43 −0.03 −0.01 0.01
1 0.22 0.21 0.56 −0.05 −0.01 0.01
2 0.14 0.13 0.71 −0.06 −0.01 0.01

For these four orientation states a total of 38 samples at different ∇v are prepared.

As discussed in Section 3.3.2 Code2Vect applies on the M data ∇vj and aq
0 whose results are

presented in Figure 3, where original data and predictions of ȧdev
11 up to γ̇t = 2 is depicted (left).

Prediction at the evaluation point (star) along with 37 samples (filled circle) is depicted on the
right image of that figure, where color scales with the value of ȧdev

11 at γ̇t = 0.3. The predicted data
shows a good agreement with the raw data validating the proposed methodology.

Figure 3. Numerical results

• The last numerical test addresses a more complex scenario where the velocity gradient changes
within the simulation-time window.

The prediction for ȧdev is made when fibers (almost isotropically distributed at the initial time) are
placed under two velocity gradient fields, ∇v1 (shear) and ∇v2 (elongation), consecutively, the
former applying during the first 3.3 s and the last the subsequent 10 s.

The velocity gradient ∇v for these flow fields is

∇v1 =

 0 0.75 0.25
0.75 0 −0.5
0.25 −0.5 0

 ,∇v2 =

1 0 0
0 1 0
0 0 −2

 . (35)
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Data-driven enriched Jeffery solution and the one provided by MD simulation are compared
over the entire time period in Figure 4a,b, whereas Figure 4c depicts the deviation prediction
(following the procedure described in Section 3.3.2) versus the reference one provided directly by
the data. As it can be noticed, the numerical values of the prediction when compared with the
reference data, both reported in Table 2, exhibit an excellent accuracy.

Figure 4. Time evolution of the data-based enriched Jeffery solution (dotted line) with respect to the
molecular dynamics (MD) solution (continuous) (a,b) and ȧdev

11 prediction versus the reference data (c).

Table 2. Raw data and predicted data from Figure 4 at different time instants.

γ̇t Raw Data: ȧdev
11 Predicted Data: ȧdev

11

0.1 0.004 −0.03
1 0.0019 0.0034
2 0.003 0.02
3 −0.001 0.002

3.4 −0.249 −0.205
4.3 0.038 0.025
4.6 0.067 0.066
5.3 0.048 0.044
6.3 0.008 0.025
8.3 0.006 −0.002
10.3 −0.002 −0.004

5. Conclusions and Prospects

This work shows the opportunity of hybrid modeling methodologies, combining a model based
on physics complemented with a data-driven enrichment to account for the gap between the model
predictions and the collected data. In this work the synthetic data was used from a high-fidelity
fine-scale simulation based on molecular dynamics, a simulation which took fiber–fiber interactions
into account.

The data-driven model was constructed by using advanced machine learning techniques able to
operate at the low-data limit, in particular the PCA and the so-called Code2Vect.

The proposed methodology was verified with numerical experiments that show the efficiency of
our hybrid approach and the techniques employed for constructing the data-driven model.

Currently injection molding simulations use a constitutive model in which they have to provide
an interaction parameter which is the same everywhere and is determined from experiments
conducted under simple shear. It has been shown that the flow field is very different around corners,
inserts, ribs and undercuts in complex injection molded parts. It is expected that the constitutive
interaction parameter locally will be different but there is no model or methodology to determine
this. Our approach should allow for more accurate fiber orientation prediction in such situations. The
extension of the present work to efficient processing simulations constitute a work in progress.
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