
entropy

Article

Multivariate Multiscale Dispersion Entropy of
Biomedical Times Series

Hamed Azami 1,2,* , Alberto Fernández 3,4 and Javier Escudero 1

1 School of Engineering, Institute for Digital Communications, University of Edinburgh, King’s Buildings,
Edinburgh EH9 3FB, UK; javier.escudero@ed.ac.uk

2 Department of Neurology and Massachusetts General Hospital, Harvard Medical School,
Charlestown, MA 02129, USA

3 Departamento de Psiquiatría y Psicología Médica, Universidad Complutense de Madrid,
28040 Madrid, Spain; aferlucas@med.ucm.es

4 Laboratorio de Neurociencia Cognitiva y Computacional, Centro de Tecnología Biomédica,
Universidad Politecnica de Madrid and Universidad Complutense de Madrid, 28040 Madrid, Spain

* Correspondence: hazami@mgh.harvard.edu

Received: 22 July 2019; Accepted: 12 September 2019; Published:19 September 2019
����������
�������

Abstract: Due to the non-linearity of numerous physiological recordings, non-linear analysis
of multi-channel signals has been extensively used in biomedical engineering and neuroscience.
Multivariate multiscale sample entropy (MSE–mvMSE) is a popular non-linear metric to quantify the
irregularity of multi-channel time series. However, mvMSE has two main drawbacks: (1) the entropy
values obtained by the original algorithm of mvMSE are either undefined or unreliable for short
signals (300 sample points); and (2) the computation of mvMSE for signals with a large number of
channels requires the storage of a huge number of elements. To deal with these problems and improve
the stability of mvMSE, we introduce multivariate multiscale dispersion entropy (MDE–mvMDE),
as an extension of our recently developed MDE, to quantify the complexity of multivariate time
series. We assess mvMDE, in comparison with the state-of-the-art and most widespread multivariate
approaches, namely, mvMSE and multivariate multiscale fuzzy entropy (mvMFE), on multi-channel
noise signals, bivariate autoregressive processes, and three biomedical datasets. The results show
that mvMDE takes into account dependencies in patterns across both the time and spatial domains.
The mvMDE, mvMSE, and mvMFE methods are consistent in that they lead to similar conclusions
about the underlying physiological conditions. However, the proposed mvMDE discriminates
various physiological states of the biomedical recordings better than mvMSE and mvMFE. In addition,
for both the short and long time series, the mvMDE-based results are noticeably more stable than the
mvMSE- and mvMFE-based ones. For short multivariate time series, mvMDE, unlike mvMSE, does
not result in undefined values. Furthermore, mvMDE is faster than mvMFE and mvMSE and also
needs to store a considerably smaller number of elements. Due to its ability to detect different kinds
of dynamics of multivariate signals, mvMDE has great potential to analyse various signals.

Keywords: complexity; multivariate multiscale dispersion entropy; multivariate time series;
electroencephalogram; magnetoencephalogram

1. Introduction

Multivariate techniques are needed to analyse data consisting of more than one time series [1–3].
The majority of physiological and pathophysiological activities, and even many non-physiological
signals, include interactions between different kinds of single processes. Thus, we expect that
parameters or measures with different origins are considered in a multivariate way [1,4]. Furthermore,
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recent developments in sensor technology enabling routine recordings of multi-channel signals have
led to an increasing popularity of this kind of analysis on physiological data [1–3,5,6].

Advances on information theory and non-linear dynamical approaches have recently allowed the
study of different kinds of multivariate time series [3,7–9]. Due to the intrinsic non-linearity of diverse
physiological and non-physiological processes, non-linear analysis of multivariate time series has
been broadly used in biomedical signal processing with the aim of studying the relationship between
simultaneously recorded signals [3,7,8].

Multivariate multiscale entropy (mvMSE) as a powerful non-linear measure is based on a
combination of multivariate sample entropy (SampEn–mvSE) and the coarse-graining process [8].
mvSE characterizes the likelihood that similar multi-channel embedded patterns, which consider both
the time and spatial domains, within a time series will remain similar when the pattern length is
increased [3]. mvMSE, by taking into account both the spatial and time domains, shows the complexity
of multi-channel signals [8]. Complexity reflects the degree of structural richness of time series [8,10]
and is different with that of irregularity or uncertainty defined from classical entropy methods such as
SampEn [11], permutation entropy (PerEn) [12], and dispersion entropy (DisEn) [13]. That is to say,
neither completely regular or certain nor completely irregular (uncorrelated random) time series are
truly complex, since none of them is structurally rich at a global level [8,10,14–16].

The multivariate multiscale entropy-based analysis is interpreted based on: (1) the multivariate
time series X is more complex than the multivariate time series Y, if for the most temporal scales,
the mvSE measures for X are larger than those for Y; (2) a monotonic fall in the multivariate entropy
values along the temporal scale factors shows that the signal only includes useful information at the
smallest scale factors; and (3) a multivariate signal illustrating long-range correlations and complex
creating dynamics is characterized by either a constant mvSE or this demonstrates a monotonic rise in
mvSE with the temporal scale factor [8].

Although the mvMSE is a powerful and widely-used method, when applied to short signals,
the results may be undefined or unreliable [17]. To alleviate this shortcoming, multivariate multiscale
fuzzy entropy (mvMFE) based on multivariate fuzzy entropy (mvFE) and the coarse-graining process
was suggested [18]. To decrease the running time of the mvMFE proposed in [18], we have recently
proposed an mvMFE with a new fuzzy membership function [17]. Nevertheless, the mvMFE is still
slow for real-time applications and may lead to unreliable results for short signals, as shown later.

To overcome the problem of unreliable values for mvMFE and mvMSE, multivariate multiscale
PerEn (mvMPE) was proposed [19]. To have more information regarding the amplitude of
multi-channel signals, multivariate weighted multiscale PerEn (mvWMPE) has recently been
developed [20]. However, both the mvMPE and mvWMPE do not take into account the cross-statistical
properties between multiple input channels and do not follow the concept of complexity for some
signals such as white Gaussian noise (WGN) and 1/ f noise [8,14,17].

mvMSE and mvMFE have growing appeal and broad use. They have been successfully
used in a number of biomedical and mechanical engineering applications, such as, to characterise
electroencephalogram (EEG) signals in Alzheimer’s disease (AD) [21,22], to quantitatively distinguish
different horizontal oil–water flow patterns [23], to analyze mechanical vibration noise to stimulate the
patient’s feet while wearing the shoes [24], to analyze the multivariate cardiovascular time series [25],
to characterize focal and non-focal EEG time series [17], to analyze the complexity of interbeat interval
and interbreath signals [8], and to analyze the postural fluctuations in fallers and non-fallers older
adults [26].

However, mvMSE and mvMFE have the following shortcomings: (1) mvMSE and mvMFE values
may be unreliable and unstable for short signals (300 sample points); (2) they are not quick enough for
real-time applications; and (3) computation of mvMSE and mvMFE of a signal with a large number
of channels needs to have large memory space, as shown later. To address these drawbacks and
due to the advantages of multiscale dispersion entropy (DispEn-MDE) over the state-over-the-art
multiscale entropy techniques in terms of distinguishing different kinds of dynamics of univariate
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synthetic and real time series and computation time [27–29], we propose four algorithms to extend our
recently developed MDE to its multivariate forms, termed multivariate MDE (mvMDE). To evaluate
the mvMDE methods, we use both synthetic and real multivariate datasets. Our results indicate that
mvMDE is noticeably faster than the existing methods, leads to more stable results, better discriminates
different kinds of biomedical time series, does not lead to undefined values for short multivariate time
series, and needs to store a considerably smaller number of elements in comparison with mvMSE
and mvMFE.

2. Multivariate Multiscale Dispersion Entropy (mvMDE)

In this study, we propose and explore three different alternative implementations of mvMDE until
we arrive at a fourth and preferred one. All the mvMDE implementations include two main steps:
(1) coarse-graining process for multivariate time series; and (2) multivariate DispEn (mvDE), as an
extension of our recently developed DisEn [13]. It is worth noting that for all the mvMDE algorithms,
the mapping based on the normal cumulative distribution function (NCDF) used in the calculation of
mvDE for the first temporal scale factor is maintained fixed across all scales. In fact, in the mvMDE, µ

and σ of the NCDF are respectively set at the average and standard deviation (SD) of the original time
series and they remain constant for all temporal scale factors. This fact is similar to r in the mvMSE and
mvMFE, setting at a certain percentage (usually 15%) of the SD of the original signal and remaining
constant for all scales [8,17].

2.1. Coarse-Graining Process for Multivariate Signals

Assume we have a p-channel time series U = {uk,b}b=1,2,... ,L
k=1,2,... ,p of length L. In the mvMDE

algorithms, for each channel, the original signal is first divided into non-overlapping segments
of length τ, named scale factor. Next, for each channel, the average of each segment is calculated to
derive the coarse-grained signals as follows [8,17]:

xk,i
(τ) =

1
τ

iτ

∑
b=(i−1)τ+1

uk,b, 1 ≤ i ≤
⌊

L
τ

⌋
= N , 1 ≤ k ≤ p (1)

where N denotes the length of the coarse-grained signal. The second step of mvMDE is calculating the
mvDE of each coarse-grained signal.

2.2. Background Information for the mvDE

We build four diverse alternative implementations of mvDE (mvDEI to III and mvDE) until we
arrive at a preferred (or optimal) one, i.e., mvDE. However, here, we present all the simpler alternatives
(mvDEI to mvDEIII), since they can still be useful in some settings and allow for clearer comparisons
with other current approaches.

2.2.1. mvDEI

The mvDEI of the multi-channel coarse-grained time series X = {xk,i}i=1,2,... ,N
k=1,2,... ,p , which is based on

the mvMPE algorithm [19], is calculated as follows:
(a) First, X = {xk,i}i=1,2,... ,N

k=1,2,... ,p are mapped to c classes with integer indices from 1 to c. To this aim,
there are a number of linear and nonlinear mapping approaches [30]. The simple linear mapping
technique may lead to the problem of assigning the majority of xk,i to limited classes when maximum
or minimum values are noticeably larger or smaller than the mean/median value of the image [30].
The weak permanence of DispEn with linear mapping for the characterization of syntactic and real
data was illustrated in [13].

A large number of natural processes illustrate a progression from small beginnings that accelerates
and approaches a climax over time (e.g., a sigmoid function) [31,32]. When there is not detailed
information, a sigmoid function is often used [30,32–34]. The choice of sigmoid function in the context
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of DispEn was discussed in [30]. We here use NCDF as a well-known sigmoid function like in [13].
Note that using NCDF for each channel also deals with the shortcoming of the amplitude values
of each of series xk (k = 1, 2, . . . , p) may be dominated by the components of vectors coming from
the time series with the largest amplitudes. The NCDF maps X into Y = {yk,i}i=1,2,... ,N

k=1,2,... ,p from 0 to 1
as follows:

yk,i =
1

σk
√

2π

xk,i∫
−∞

e
−(t−µk)

2

2σ2
k dt (2)

where σk and µk are the SD and mean of time series xk, respectively. Then, we use a linear algorithm
to assign each yk,i to an integer from 1 to c. To do so, for each member of the mapped signal, we
use zc

k,i = round(c · yk,i + 0.5), where zc
k,i denotes the ith member of the classified signal in the kth

channel and rounding involves either increasing or decreasing a number to the next digit. Note that,
although this part is linear, the whole mapping approach is non-linear because of the use of NCDF.

(b) Time series zm,c
k,j are made with embedding dimension m and time delay d according to zm,c

k,j =

{zc
k,j, zc

k,j+d,+ · · ·+ zc
k,j+(m−1)d}, j = 1, 2, . . . , N − (m− 1)d [11–13]. Each time series zm,c

k,j is mapped to
a dispersion pattern πv0v1 ...vm−1 , where zc

k,j = v0 ,zc
k,j+d = v1 ,. . . , zc

k,j+(m−1)d = vm−1. The number of

possible dispersion patterns that can be assigned to each time series zm,c
k,j is equal to cm, since the signal

has m members and each member can be one of the integers from 1 to c [13].
(c) For each channel 1 ≤ k ≤ p and for each of cm potential dispersion patterns πv0 ...vm−1 , relative

frequency is obtained as follows:

p(πv0 ...vm−1) =
#{j
∣∣∣j ≤ N − (m− 1)d, zm,c

k,j has type πv0 ...vm−1 }
(N − (m− 1)d)p

(3)

where # means cardinality. In fact, p(πv0 ...vm−1) shows the number of dispersion patterns of πv0 ...vm−1

that is assigned to zm,c
k,j , divided by the total number of embedded signals with embedding dimension

m multiplied by the number of channels.
(d) Finally, based on the Shannon’s definition of entropy, the mvDEI is calculated as follows:

mvDEI(X, m, c, d) = −
cm

∑
π=1

p(πv0 ...vm−1) · ln
(

p(πv0 ...vm−1)
)

(4)

In case all possible dispersion patterns have equal probability value, the highest value of mvDEI

is obtained, which has a value of ln(cm). In contrast, if there is only one p(πv0 ...vm−1) different from
zero, which demonstrates a completely regular/certain signal, the smallest value of mvDEI is obtained.
In the algorithm of mvDEI, we compare Np dispersion patterns of a p-channel signal with cm potential
patterns. Thus, at least cm + Np elements are stored.

To work with reliable statistics to calculate MDE, it was recommended cm <
⌊

L
τmax

⌋
[27]. Since

mvDEI counts the dispersion patterns for every channel of a multivariate time series, it is suggested
cm <

⌊
pL

τmax

⌋
. mvDEI extracts the dispersion patterns from each of channels regardless of their

cross-channel information. Thus, mvDEI works appropriately when the components of a multivariate
signal are statistically independent. However, the mvDEI algorithm, like mvPE [19], does not consider
the spatial domain of time series. To overcome this problem, we propose mvDEII based on the Taken’s
theorem [17,35].

2.2.2. mvDEII

The algorithm of mvDEII is as follows:

(a) First, like mvDEI, X = {xk,i}i=1,2,... ,N
k=1,2,... ,p are mapped to Z = {zk,i}i=1,2,... ,N

k=1,2,... ,p based on the NCDF.
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(b) To take into account both the spatial and time domains, multi-channel embedded vectors
are generated according to the multivariate embedding theory [35]. The multivariate embedded
reconstruction of Z is defined as:

Zm(j) = [z1,j, z1,j+d1 , . . . , z1,j+(m1−1)d1
,

z2,j, z2,j+d2 , . . . , z2,j+(m2−1)d2
, . . . ,

zp,j, zp,j+dp , . . . , zp,j+(mp−1)dp ]

(5)

where m = [m1, m2, . . . , mp] and d = [d1, d2, . . . , dp] denote the embedding dimension and the time
lag vectors, respectively. Note that the length of Zm(j) is ∑

p
k=1 mk. For simplicity, we assume dk = d

and mk = m, that is, all the embedding dimension values and all the delay values are equal.
(c) Each series Zm(j) is mapped to a dispersion pattern πv0v1 ...vmp−1 , where zc

1,j = v0, zc
1,j+d = v1,. . . ,

zp,j+(m−1)d = vmp−1. The number of possible dispersion patterns that can be assigned to each time
series Zm(j) is equal to cmp, since the signal has mp members and each member can be one of the
integers from 1 to c.

(d) For each of cmp potential dispersion patterns πv0 ...vmp−1 , relative frequency is obtained based on
the DisEn algorithm [13] as follows:

p(πv0 ...vmp−1) =
#{j
∣∣∣j ≤ N − (m− 1)d, Zm(j) has type πv0 ...vmp−1 }

N − (m− 1)d
(6)

(e) Finally, based on the Shannon’s definition of entropy, the mvDEII is calculated as follows:

mvDEI I(X, m, c, d) = −
cmp

∑
π=1

p(πv0 ...vmp−1) · ln
(

p(πv0 ...vmp−1)
)

(7)

In the algorithm of mvDEII, at least cmp + Np elements are stored. Thus, when p is large, the algorithm
needs huge space of memory to store elements. To work with reliable statistics to calculate mvMDEII, it
is recommended cmp <

⌊
L

τmax

⌋
. Thus, although mvDEII deals with both the spatial and time domains,

the length of a signal and its number of channels should be very large and small, respectively, to reliably
calculate mvDEII values. To alleviate the problem, we propose mvDEIII.

2.2.3. mvDEIII

The algorithm of mvDEIII is as follows:

(a) First, like the mvDEI and mvDEII approaches, X = {xk,i}i=1,2,... ,N
k=1,2,... ,p are mapped to

Z = {zk,i}i=1,2,... ,N
k=1,2,... ,p .

(b) Multivariate embedded vectors Zk,m(j) with length m + p− 1 are generated according to the
Taken’s embedding theorem [35] with p embedding dimension vectors mk = [1, 1, . . . , mk, . . . , 1, 1]
(k = 1, . . . , p), where mk denotes the kth element of m. For simplicity, we assume mk = m and dk = d.

(c) Each series Zk,m(j) is mapped to a dispersion pattern πv0v1 ...vm+p−2 . The number of possible
dispersion patterns that can be assigned to each time series Zk,m(j) is equal to cm+p−1, since the signal
has m + p− 1 members and each member can be one of the integers from 1 to c [13]. Since we count
the number of patterns for each of p different mk leading to a considerable increase in the number of
dispersion patterns, compared with mvDEII, we have more reliable results for a signal with a small
number of samplthan those fore points, as shown later.
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(d) For each channel 1 ≤ k ≤ p and for each of cm+p−1 potential dispersion patterns πv0 ...vm+p−2 ,
relative frequency is obtained as follows:

p(πv0 ...vm+p−2) =
#{j
∣∣∣j ≤ N − (m− 1)d, Zk,m(j) has type πv0 ...vm+p−2 }

(N − (m− 1)d)p
(8)

(e) Finally, based on the Shannon’s definition of entropy, the mvDEIII is calculated as follows:

mvDEI I I(X, m, c, d) = −
cm+p−1

∑
π=1

p(πv0 ...vm+p−2) · ln
(

p(πv0 ...vm+p−2)
)

(9)

mvDEIII assumes embedding dimension 1 for all signals except one, which might limit the potential
to explore the dynamics. Moreover, in the algorithm of mvDEIII, at least cm+p−1 + Np elements are
stored. Although this number is noticeably smaller than that for mvDEII, the algorithm still needs
to have large memory space for a signal with a large number of channels. To work with reliable
statistics to calculate mvMDEIII, it is recommended cm+p−1 <

⌊
pL

τmax

⌋
. Therefore, albeit mvDEIII takes

into account both the spatial and time domains and needs to smaller number of sample points in
comparison with mvDEII, there is a need to have a large enough number of samples and small number
of channels. To alleviate these deficiencies, we propose mvDE.

2.3. Multivariate Dispersion Entropy (mvDE)

The mvDE algorithm is as follows:

(a) First, like mvDEI to III, the multivariate signal X = {xk,i}i=1,2,... ,N
k=1,2,... ,p is mapped to c classes with

integer indices from 1 to c.
(b) Like mvDEII, to consider both the spatial and time domains, multivariate embedded vectors

Zm(j), 1 ≤ j ≤ N − (m− 1)d are created based on the Taken’s embedding theorem [35]. For simplicity,
we assume dk = d and mk = m.

(c) For every Zm(j), all combinations of the ∑
p
k=1 mk elements in Zm(j) taken m at a time, termed

φq(j) (q = 1, ...(mp
m )), are created. The number of the combinations is equal to (mp

m ). Therefore, for all
channels, we have (N − (m− 1)d)(mp

m ) dispersion patterns.
(d) For each 1 ≤ q ≤ (mp

m ) and for each of cm potential dispersion patterns πv0 ...vm−1 , relative frequency
is obtained as follows:

p(πv0 ...vm−1) =
#{j
∣∣j ≤ N − (m− 1)d, φq(j) has type πv0 ...vm−1 }

(N − (m− 1)d)(mp
m )

(10)

(e) Finally, based on the Shannon’s definition of entropy, the mvDE is calculated as follows:

mvDE(X, m, c, d) = −
cm

∑
π=1

p(πv0 ...vm−1) · ln
(

p(πv0 ...vm−1)
)

(11)

In fact, mvDE explores all combinations of patterns of length m within an mp-dimensional embedding
vector. In the mvDE algorithm, at least cm + Np elements are stored. This number is noticeably smaller
than those for mvDEII to III, leading to more stable results for signals with a short length and a large
number of samples. As the number of patterns obtained by the mvMDE method is (N− (m− 1)d)(mp

m ),

it is suggested cm <
⌊

L(mp
m )

τmax

⌋
to work with reliable statistics. It is worth mentioning that if the order of

channels in a multi-channel time series changes, although the assignment to each dispersion pattern
obtained by the mvMDE-based methods may change, the entropy value will stay the same.
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2.4. Parameters of the mvMDE, mvMSE, and mvMFE Methods

In addition to the maximum scale factor τmax described before, there are three other parameters for
the mvMDE methods, including the embedding dimension vector m, number of classes c, and time
delay vector d. Although some information with regard to the frequency of signals may be ignored
for dk > 1, it is better to set dk > 1 for oversampled time series. However, like previous studies about
multivariate entropy methods [2,8], we set dk = 1 for simplicity. Nevertheless, when the sampling
frequency is considerably larger than the highest frequency component of a time series, the first
minimum or zero crossing of the autocorrelation function or mutual information can be utilized for
the selection of an appropriate time delay [36]. We need 1 < c to keep away the trivial case of having
only one dispersion pattern. For simplicity, we use c = 5 and mk = 2 for all signals used in this study,
although the range 2 < c < 9 leads to similar findings. For more information about c, mk, and dk,
please refer to [13,30].

In this study, dk, mk, and r for the mvMSE and mvMFE were respectively set as 1, 2, and 0.15
of the SD of the original time series following recommendations in [8,17]. The maximum scale
factor for mvMSE and mvMFE also follows [8,17]. In the algorithm of mvSE and mvFE, at least
(Np

2 ) + Np(pm + 1) elements are stored (the mvSE code available at http://www.commsp.ee.ic.ac.
uk/~mandic/research/Complexity_Stuff.htm). Matlab codes of mvMFE and mvMSE are available at
http://dx.doi.org/10.7488/ds/1432. Overall, the characteristics and limitations of the mvSE, mvFE,
and mvDE algorithms for a p-channel signal with length N are summarized in Table 1.

Table 1. Ability to deal with spatial domain and characterization of short signals (300 sample points),
typical number of elements to be stored, and typical number of samples needed for each of the mvSE,
mvFE, and mvDE algorithms for a p-channel signal with length N sample points.

Methods Spatial Domain Short Signals Typical Number of
Elements Stored

Typical Number
of Samples

mvSE [3] yes undefined (Np
2 ) + Np(pm + 1) 10m < N

mvFE [17] yes unreliable (Np
2 ) + Np(pm + 1) 10m < N

mvPE [19] and mvWPE [20] no reliable m! + Np m! < N
mvDEI no reliable cm + Np cm

p < N
mvDEII yes unreliable cmp + Np cmp < N
mvDEIII yes unreliable cm+p−1 + Np cm+p−1

p < N
mvDE yes reliable cm + Np cm

(mp
m )

< N

3. Evaluation Signals

In this section, the descriptions of correlated and uncorrelated noise signals, bivariate autoregressive
(BAR) process, and real time series used in this study are given.

3.1. Synthetic Signals

The irregularity of multivariate 1/ f noise is lower than multivariate WGN, whereas the complexity
of the former is higher than the latter [8,14,17]. Thus, 1/ f noise and WGN signals have been commonly
used to assess the multivariate multiscale entropy techniques [8,17,37]. For more information about
the algorithms used for multivariate 1/ f noise and WGN, please refer to [8,17].

To understand the behaviour of the mvMDE methods on uncorrelated WGN and 1/ f noise, we first
generated a trivariate time series, where originally all three data channels were realization of mutually
independent 1/ f noise. Then, we gradually decreased the number of data channels representing 1/ f
noise (from 3 to 0) and at the same time, increased the number of variates representing independent
WGN (from 0 to 3) [37]. The number of channels was always three.

To create correlated bivariate noise time series, we first generated a bivariate uncorrelated random
time series H. Afterwards, H was multiplied with the standard deviation (hereafter, sigma) and then,

http://www.commsp.ee.ic.ac.uk/~mandic/research/Complexity_Stuff.htm
http://www.commsp.ee.ic.ac.uk/~mandic/research/Complexity_Stuff.htm
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the value of the mean (hereafter, mu) was added. Next, H was multiplied by the upper triangular
matrix L obtained from the Cholesky decomposition of a defined correlation matrix R (which is

positive and symmetric) to set the correlation. Here, we set R =

[
1 0.95

0.95 1

]
according to [8,17].

An in-depth study on the effect of correlated and uncorrelated 1/ f noise and WGN on multiscale
entropy approaches can be found in [8,10].

Based on the fact that the larger the order of an autoregressive process, the more complex the AR
process [8], we evaluate the mvMDE, mvMSE, and mvMFE methods on a BAR(α) process with the
maximum lag α describing the evolution of a set of two variables as a linear function of their past
values according to:

yn = en +
α

∑
γ=1

yn−γAγ (12)

where yn = {yn(1), yn(2)} is the nth sample of a bidimensional time series, Aγ denotes the 2× 2 matrix
of parameters corresponding to lag order γ, and en is the 2× 1 vector of error terms assumed to be
WGN [38].

3.2. Real Biomedical Datasets

(1) Dataset of Stride Interval Fluctuations: To investigate the ability of the proposed mvMDE methods to
reveal the long-range correlations and dynamics of multivariate signals, the stride interval recordings
are used [2,39]. The time series were recorded from ten young, healthy men. Mean age was
21.7 years, changing from 18 to 29 years. Height and weight were 1.77 ± 0.08 meters (mean ± SD)
and 71.8 ± 10.7 kg (mean ± SD), respectively. All ten participants provided informed written consent
walking for 1 hour at slow, 1 hour at normal, and 1 hour at fast paces and also walking a metronome set
to each subject’s mean stride interval. Three walking paces were considered as different variables from
the same system. In this way, we expect to be able to discriminate between the metronomically-paced
and self-spaced walking. For further information, please refer to [39].

(2) Dataset of Focal and Non-focal Brain Activity: The ability of the mvMDE methods, in comparison
with mvMFE and mvMSE, to differentiate focal from non-focal recordings is evaluated using a
publicly-available EEG dataset [40]. The dataset includes 5 patients and, for each patient, there
are 750 focal and 750 non-focal bivariate signals. The length of each recording was 20 s with sampling
frequency of 512 Hz (10,240 sample points). Further information can be found in [40]. Before computing
the aforementioned methods, all recordings were digitally filtered employing an FIR band-pass filter
with cut-off frequencies at 0.5 Hz and 40 Hz.

(3) Surface MEG Recordings in Alzheimer’s Disease: We analysed resting state MEG time series recorded
with a 148-channel whole-head magnetometer. All 62 participants agreed for the research, which
was approved by the local ethics committee. To screen the cognitive status, a mini-mental state
examination (MMSE) was done. There were 36 AD patients (age = 74.06 ± 6.95 years, all data
given as mean ± SD, and MMSE score = 18.06 ± 3.36) and 26 controls (age = 71.77 ± 6.38 years,
and MMSE score = 28.88± 1.18). The difference in age between two groups was not significant
(p-value = 0.1911, Student’s t-test) [41]. The distribution of MEG sensors is shown in Figure 2 in [41].
For each participant, five minutes of MEG resting state activity were recorded at a sampling frequency
of 169.5 Hz. The signals were divided into 10 s segments (1695 samples) and visually inspected
using an automated thresholding procedure to discard epochs noticeably contaminated with artifacts.
All recordings were digitally band-pass filtered with a Hamming window FIR filter of order 200 and
cut-off frequencies at 1.5 and 40 Hz. For more information, please see [41].
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4. Results and Discussions

4.1. Synthetic Signals

4.1.1. Uncorrelated White Gaussian and 1/ f Noises

We first apply the proposed and existing methods to 40 independent realizations of uncorrelated
trivariate WGN and 1/ f noise, described in Section 3. The number of sample points for each of the 1/ f
noise and WGN signals were 15,000. mvMSE and mvMFE are based on conditional entropy [2,8,17].
On the other hand, mvMDE is based on the Shannon’s entropy definition applied to dispersion
patterns. This means that the methods work on slightly different principles. However, the comparison
of mvMDE with mvMSE and mvMFE is meaningful because the latter two are the most common
multivariate entropy algorithms and MDE has been shown to have similar behaviour to MSE when
analysing real and synthetic signals [27]. Thus, we compare the mvMDE methods with mvMSE and
mvMFE. The average and SD of the results for mvMDEI, mvMDEII, mvMDEIII, mvMDE, mvMSE,
and mvMFE are depicted in Figure 1a–f, respectively. Using all the existing and proposed methods,
the entropy values of trivariate WGN signals are higher than those of the other trivariate time series
at low scale factors. However, the entropy values for the coarse-grained trivariate 1/ f noise signals
stay almost constant or decrease slowly along the temporal scale factor, while the entropy values for
the coarse-grained WGN signal monotonically decreases with the increase of scale factors. When
the length of WGN signals, obtained by the coarse-graining process, decreases (i.e., the scale factor
increases), the mean value of inside each signal converges to a constant value and the SD becomes
smaller. Therefore, no new structures are revealed at higher temporal scales. This demonstrates
a multivariate WGN time series has information only in small temporal scale factors. In contrast,
for trivariate 1/ f noise signals, the mean value of the fluctuations inside each signal does not converge
to a constant value.

For all the methods, the higher the number of variates representing 1/ f noise, the higher complexity
the trivariate signal, in agreement with the fact that multivariate 1/ f noise is structurally more complex
than multivariate WGN [8,14,17]. Here, for multivariate 1/ f noise and WGN, τmax was 20 for mvMDE,
according to Section 2.
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Figure 1. Mean value and SD of the results using (a) mvMDEI, (b) mvMDEII, (c) mvMDEIII, (d) mvMDE,
(e) mvMSE, and (f) mvMFE computed from 40 different uncorrelated trivariate WGN and 1/ f noise time series
with length 15,000 sample points.
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To compare the results obtained by the mvMDE, mvMSE, and mvMFE methods, we used the
coefficient of variation (CV). CV, as a measure of relative variability, is defined as the SD divided by
the mean of a time series. We use such a metric as the SDs of time series may increase or decrease
proportionally to the mean. We investigate the results obtained by uncorrelated noise signals at scale
factor 10, as a trade-off between short and long scale factors. As can be seen in Table 2, the smallest
CV values for uncorrelated trivariate 1/ f noise, an uncorrelated combination of bivariate 1/ f noise
and univariate WGN, an uncorrelated combination of bivariate WGN and univariate 1/ f noise,
and trivariate WGN are achieved by mvMDE, mvMDEII, mvMDEII, and mvMDEI, respectively.
Overall, the smallest CV values for trivariate 1/ f noise and WGN profiles are reached by the mvMDE
methods, showing the superiority of the mvMDE methods over mvMSE and mvMFE in terms of
stability of results.

Table 2. CV values of the proposed and existing multivariate multiscale entropy-based analyses at
scale factor 10 for the uncorrelated trivariate 1/ f noise and WGN.

Time Series mvMDEI mvMDEII mvMDEIII mvMDE mvMSE mvMFE

All three channels contain 1/ f noise 0.0028 0.0025 0.0037 0.0022 0.0405 0.0355
Two channels contain 1/ f
noise and one contains WGN 0.0042 0.0032 0.0036 0.0044 0.0283 0.0274

One channel contains 1/ f
noise and two contain WGN 0.0066 0.0052 0.0058 0.0061 0.0305 0.0292

All three channels contain WGN 0.0072 0.0080 0.0092 0.0101 0.0232 0.0211

To assess the ability of the mvMDE methods to characterize short signals in comparison with mvMFE
and mvMSE, we use trivariate 1/ f noise and WGN with length of 300 sample points. The results for
the mvMDE, mvMSE, and mvMFE approaches at temporal scales 1 to 20 are depicted in Figure 2a–f,
respectively. The results show that only mvMDEI is able to distinguish these four different kinds of
noise signals at scale factor 1. For the higher temporal scale factors, mvMDEI and mvMDE distinguish
these time series, showing a limitation of mvMDE for the discrimination of white from 1/ f noise at
lower scale factors and also the importance of considering higher temporal scales for the mvMDE
technique. As can be seen in Figure 2a,d, the mvMDEI and mvMDE methods better discriminate
different dynamics of the noise signals. However, the mvMSE values are undefined at higher scale
factors. It is worth mentioning that we compared mvMDE with the original algorithms of mvMSE and
mvMFE. However, more recent studies on entropy estimation of short physiological signals provided
methods to deal with this issue [17,42].

Although the mvMFE- and mvMDEII-based values are defined at all scale factors, they cannot
distinguish the dynamics of different noise signals. The profiles obtained by mvMDEIII are more
distinguishable than mvMDEII, as mentioned that mvMDEIII needs a smaller number of sample
points. Nevertheless, the profiles obtained by mvMDEIII have overlaps at several scale factors.
Overall, the results show the superiority of mvMDEI and mvMDE over mvMDEII, mvMDEIII, mvMSE,
and mvMFE for short uncorrelated signals.
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Figure 2. Mean value and SD of the results obtained by (a) mvMDEI, (b) mvMDEII, (c) mvMDEIII, (d) mvMDE,
(e) mvMSE, and (f) mvMFE computed from 40 different uncorrelated trivariate WGN and 1/ f noise time series
with length 300 sample points.

4.1.2. Computational Time

To evaluate the computational time of mvMSE, mvMFE, mvMDEI to III, and mvMDE, we use
uncorrelated multivariate WGN time series with different lengths, changing from 100 to 10,000 sample
points, and different number of channels, changing from 2 to 8. The results are depicted in Table 3.
The simulations have been carried out using a PC with Intel (R) Core (TM) i7-7820X CPU, 3.6 GHz
and 16-GB RAM by MATLAB R2018b. The results show that the computation times for mvMSE and
mvMFE are close. The slowest algorithm is mvMDEII, while the fastest ones are mvMDEI and mvMDE,
in that order. For an 8-channel signal with 10,000 samples, using mvMDEII, the array exceeded the
memory available. Overall, in terms of computation time and memory space, mvMDE outperforms
the other methods that take into account both the time and spatial domains. We used the mvMSE code
provoided in [8] and the mvMDE, mvMSE, and mvMFE Matlab codes have not been optimized.

Table 3. Computational time of the mvMSE, mvMFE, and mvMDE algorithms with τmax = 10.

Number of Channels and Samples mvMSE mvMFE mvMDEI mvMDEII mvMDEIII mvMDE

2 channels and 1000 samples 0.051 s 0.066 s 0.014 s 0.023 s 0.026 s 0.020 s
2 channels and 3000 samples 0.237 s 0.296 s 0.035 s 0.057 s 0.068 s 0.052 s

2 channels and 10,000 samples 1.821 s 2.016 s 0.111 s 0.190 s 0.223 s 0.181 s
5 channels and 1000 samples 0.209 s 0.223 s 0.028 s 43.096 s 0.490 s 0.050 s
5 channels and 3000 samples 1.129 s 1.204 s 0.080 s 82.246 s 1.137 s 0.137 s

5 channels and 10,000 samples 9.432 s 9.801 s 0.260 s 218.553 s 3.343 s 0.491 s
8 channels and 1000 samples 0.489 s 0.501 s 0.042 s out of memory error 65.560 s 0.086 s
8 channels and 3000 samples 2.973 s 2.906 s 0.124 s out of memory error 150.122 s 0.243 s

8 channels and 10,000 samples 27.993 s 25.951 s 0.398 s out of memory error 363.752 s 0.824 s

4.1.3. Correlated white Gaussian and 1/ f Noises

Univariate multiscale entropy approaches only consider every data channel separately and fail
to take into account the cross-channel information of multivariate time series [8]. Uncorrelated
multi-channel WGN has less structural complexity and more irregularity compared with multi-channel
1/ f noise. To assess the ability of the existing and proposed multivariate entropy methods to reveal
the dynamics across the channels, we created 40 independent realizations of different combinations
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of bivariate 1/ f noise and WGN time series with length 20,000 (according to [8,17]), making the
channels correlated. Figure 3a–d respectively show the results obtained using the mvMDEI, mvMDEII,
mvMDEIII, and mvMDE to model both the within- and cross-channel properties in multivariate signals.

mvMDEI cannot discriminate the correlated from uncorrelated WGN or 1/ f noise. This fact
is revealed in Figure 3a. Therefore, mvMDEI should only be used when the components of a
multi-channel time series are statistically independent. Multivariate multiscale entropy-based methods
at scale factor 1 show the irregularity of multi-channel signals [8]. The mvMDEII, mvMDEIII,
and mvMDE values at scale 1 show that the uncorrelated WGN is the most irregular and unpredictable
time series in agreement with [10], while the most irregular signals using mvMFE and mvMSE are
the correlated WGN [8,17], in contrast with the fact that correlated multi-channel WGN signals are
more predictable and regular than uncorrelated WGN ones [10,27]. Although mvMDE was able to
distinguish all four different kinds of noises at the small scale factors, there are some overlaps between
the results for the correlated and uncorrelated bivariate WGN time series at the high scale factors
showing the importance both low and high temporal scale factors in mvMDE.

The correlated bivariate 1/ f noise is the most complex signal using the mvMDEII, mvMDEIII,
and mvMDE. The second most complex signal is the uncorrelated bivariate 1/ f noise, as can be seen
in Figure 3. The decreases of the uncorrelated bivariate WGN profiles using mvMDEII, mvMDEIII,
and mvMDE are the largest, evidencing the fact that the uncorrelated WGN is the least complex time
series. These facts are also in agreement with the previous studies [8,14,17]. Therefore, as desired,
the mvMDEII, mvMDEIII, and mvMDE deal with both the cross- and within-channel correlations.
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Figure 3. Mean value and SD of the results obtained by (a) mvMDEI, (b) mvMDEII, (c) mvMDEIII, and (d) mvMDE
computed from 40 different correlated and uncorrelated bivariate WGN and 1/ f noise time series with length
20,000 sample points.

4.1.4. Bivariate AR Processes

The ability of the mvMDE methods to characterize multivariate AR processes is further evaluated

using combinations of BAR(1), BAR(3), and BAR(5) with Aγ1 =

[
0.05 0.05

0.05 0.05

]
, Aγ2 =

[
0.10 0.10

0.10 0.10

]
,

and Aγ3 =

[
0.15 0.15

0.15 0.15

]
. The results obtained by the mvMDEI, mvMDEII, mvMDEIII, and mvMDE

methods are shown in Figure 4. As expected, when the lag order increases, the complexity of the
corresponding time series using the mvMDE approaches increases, in agreement with the fact that a
larger lag order denotes a more complex time series [8]. As the elements of Aγ1 are smaller than those
of Aγ2 and Aγ3 , the behaviour of the profiles obtained by the mvMDE methods are more similar to
the results for WGN (see Figure 1). In fact, the smaller the elements of Aγ, the less complex the BAR,
leading to lower entropy values at higher scale factors.

In order to investigate the dependence of the mvMDE methods on the sensitivity to changes in the
signals, we generated BAR(3) with length of 10,000 sample points and sampling frequency of 150 Hz

that Aγ linearly changes from

[
0.17 0

0 0.17

]
to

[
0.17 0.17

0.17 0.17

]
. In fact, the elements of the diagonal of
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A are constant and those of anti-diagonal linearly increase from 0 to 0.17, leading to more complex
series. We moved a bivariate window—termed temporal window—with length 2000 samples and
20% overlap along this BAR(3) signal. The entropy of each bivariate temproal window is caculated.
The results, depicted in Figure 5 show that when the time window is occupied at the beginning of

the BAR(3) (A =

[
0.17 0

0 0.17

]
), the mvMDEI, mvMDEII, mvMDEIII, and mvMDE values at higher

scale factors are the smallest, showing the least complexity of BAR(3) in lower temporal windows,

while their corresponding entropy values in the end of BAR(3) process (A =

[
0.17 0.17

0.17 0.17

]
) are the

largest. It is worth noting that as described before, mvMDEII needs a larger number of sample points
to appropriately characterize the dynamics of signals. This fact can be observed in Figure 5, showing
mvMDEII is the least able to distinguish such changes.
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Figure 4. Mean and SD values of the results using mvMDEI, mvMDEII, mvMDEIII, and mvMDE computed from
40 different BAR(1), BAR(3), and BAR(5) time series with Aγ1 (first row), Aγ2 (second row), and Aγ3 (third row).
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Figure 5. Results obtained by the mvMDE methods using a bivariate temporal window with length 2000 sample
points moving along the BAR(3) signal, which the elements of anti-diagonal of the matrix A linearly increase from 0
to 0.17, leading to more complex series.
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4.2. Real Biomedical Datasets

Discrimination of aged and diseased individuals’ from control or healthy subjects’ time series is
a long-lasting challenge in the physiological complexity literature [8,10,17]. To this end, we use the
mvMDE methods, in comparison with mvMFE as an improved version of mvMSE [17], to detect
different types of dynamical variability of multivariate recordings of three physiological datasets.
Of note is that we do not use the mvMDEI for biomedical signals, because it does not take into account
both the spatial and time domains at the same time.

(1) Dataset of Stride Interval Fluctuations: For the self-paced versus metronomically-paced stride
interval fluctuations, the results obtained by the mvMDEIII, mvMDE, and mvMFE, respectively
depicted in Figure 6a–c, show that the self-paced unconstrained walk’s fluctuations have more
complexity and greater long-range correlations than the metronomically-paced walk’s series,
in agreement with those reportred in [2]. We did not use mvMDEII, as the signals do not follow
the typical number of samples required for mvMDEII. To compare the results, the CV values for both
the metronomically- and self-paced walk (MPW and SPW) at scale factor 4, as a trade-off between the
long and short scales, are shown in Table 4. The CV values for the mvMDEIII- and mvMDE-based
profiles are smaller than those for mvMFE, showing the superiority of the proposed methods over
mvMFE in terms of the stability of results. The smallest CV values are achieved by the mvMDE.
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Figure 6. Mean value and SD of the results using (a) mvMDEIII, (b) mvMDE, and (c) mvMFE for
self-paced vs. metronomically-paced stride interval fluctuations.

Table 4. CV values of the entropy results at scale factor 4 using mvMDEIII, mvMDE, and mvMFE for self-paced
walk (SPW) vs. metronomically-paced walk (MPW).

Stride Interval Fluctuations mvMFE mvMDEIII mvMDE

Self-paced walk 0.040 0.005 0.002
Metronomically-paced walk 0.116 0.025 0.019

(2) Dataset of Focal and Non-focal Brain Activity: For the focal and non-focal EEG recordings, the results
obtained by mvMDEII, mvMDEIII, mvMDE, and mvMFE, respectively depicted in Figure 7a–d, show
that the focal time series are less complex than the non-focal ones, in agreement with previous
studies [40,43]. The CV values for the focal- and non-focal-based results at scale 6 are shown in Table 5.
All the mvMDE-based CV values are smaller than those using mvMFE, showing more stability of the
results obtained by the proposed methods. Moreover, the CV values for mvMDE are smaller than those
for mvMDEIII, and the latter ones are smaller than those for mvMDEII, suggesting that the mvMDE
leads to more stable profiles.
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Figure 7. Mean value and SD of the results using (a) mvMDEII, (b) mvMDEIII, (c) mvMDE, and
(d) mvMFE for focal vs. non-focal time series.

Table 5. CV values of the entropy results at scale factor 6 using mvMDEII, mvMDEIII, mvMDE, mvMSE,
and mvMFE for focal vs. non-focal EEG recordings.

Signals mvMSE mvMFE mvMDEII mvMDEIII mvMDE

focal EEGs 0.019 0.019 0.006 0.003 0.002
Non-focal EEGs 0.021 0.015 0.008 0.003 0.002

(3) Surface MEG Recordings in Alzheimer’s Disease: To assess the ability of mvMDE, in comparison
with mvMFE, we applied the methods to the 148-channel MEG signals to discriminate AD patients
from controls. Because mvMFE needs to store a huge number of elements for a signal with a large
number of channels, mvMFE was not able to simultaneously analyse all 148 time series. However,
the results using mvMDE are depicted in Figure 8. It represents an advantage of mvMDE over mvMFE
for signals with a large number of channels. To compare the mvMFE and mvMDE, we applied the
methods to five main scalp regions, namely, anterior (17 channels), right (34 channels) and left lateral
(34 channels), central (29 channels), and posterior (34 channels) areas, leading to the smaller number of
channels to noticeably decrease the number of elements stored by the use of the mvMFE algorithm.

The average and SD of mvMDE and mvMFE values for five regions are respectively shown in
Figure 9a,b. As can be seen in Figures 8 and 9, the average mvMDE and mvMFE values for AD
patients are smaller than those for controls at lower scale factors (short-time scale factors), while at
higher scales, the AD subjects’ recordings have larger entropy values (long-time scale factors) for both
the mvMFE and mvMDE, in agreement with [21,44,45]. Because the larger the number of channels,
the smaller the mvMSE and similarly mvMFE values [21], the entropy values for anterior region are
larger than those for the other four regions. It is worth noting that we only use mvMDE, as the signals
do not follow the typical number of samples required for mvMDEII and mvMDEIII.

The Mann–Whitney U-test was used to assess the differences between the mvMDE and mvMFE
profiles at each temporal scale for AD patients versus controls, because the mvMDE and mvMFE
values at each scale factor did not follow a normal distribution. The temporal scales with p-values
smaller than 0.001 are shown with * in Figures 8 and 9. The p-values show that the mvMDE, compared
with the mvMFE, significantly discriminated the controls from subjects with AD at a larger number of
scale factors. Moreover, the smallest p-value was achieved by the mvMDE, evidencing the superiority
of mvMDE over mvMFE.
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Figure 8. Mean value and SD of the results obtained by mvMDE computed from 36 AD patients versus
26 elderly controls for all the 148 channels. Red and blue respectively indicate AD patients and controls.
The scales with p-values smaller than 0.001 are shown with *.
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Figure 9. Mean value and SD of the results obtained by (a) mvMDE and (b) mvMFE computed
from 36 AD patients versus 26 elderly age-matched controls over five scalp regions. Red and blue
indicate AD patients and controls, respectively. The scale factors with p-values smaller than 0.001 are
shown with *.

The Hedges’ g effect size [46] was also used to quantify the differences between the entropy values
for the AD patients’ vs. healthy controls’ MEGs for the five main brain regions [47]. The Hedges’ g test
shows the difference between the means of two groups, divided by the weighted average of standard
deviations for these two groups. The differences, illustrated in Table 6, show that the highest effect size
is obtained by mvMDE, showing the advantage of this method over mvMFE.

Table 6. Differences between results for AD patients’ vs. healthy controls’ MEGs obtained by mvMFE and mvMDE
for five main brain regions based on the Hedges’ g effect size.

Region-Method Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Scale 7 Scale 8 Scale 9 Scale 10

Anterior-mvMFE 0.36 0.73 0.57 0.04 0.33 0.53 0.63 0.70 0.72 0.73
Central-mvMFE 0.68 0.67 0.49 0.10 0.23 0.48 0.65 0.76 0.79 0.83

Left lateral-mvMFE 0.53 0.64 0.34 0.18 0.60 0.83 0.92 0.98 0.97 0.98
Posterior-mvMFE 0.46 0.72 0.58 0.16 0.30 0.57 0.73 0.78 0.82 0.85

Right lateral-mvMFE 0.30 0.50 0.22 0.18 0.53 0.71 0.84 0.92 0.97 0.95

Anterior-mvMDE 0.18 0.37 0.36 0.03 0.49 0.80 0.95 1.02 1.06 1.04
Central-mvMDE 0.29 0.45 0.29 0.48 0.78 0.88 0.97 1.01 1.03 1.04

Left lateral-mvMDE 0.37 0.40 0.24 0.24 0.77 1.07 1.17 1.20 1.19 1.19
Posterior-mvMDE 0.05 0.19 0.18 0.24 0.67 0.90 1.015 1.05 1.06 1.06

Right lateral-mvMDE 0.15 0.19 0.00 0.51 0.90 1.05 1.14 1.18 1.20 1.16

On the whole, the profiles for the real datasets show the advantage of mvMDEII, mvMDEIII,
and mvMDE over mvMFE to discriminate different types of dynamics of multi-channel signals
as well as the superiority of mvMDE over mvMFE in terms of ability to discriminate various dynamics
of time series, computational time, and memory cost. As mentioned before, mvMPE does not consider
the spatial domain. We have also refined the mvMPE [19] on the basis of mvMDEII, mvMDEIII,
and mvMDE. These approaches have the following advantages over the first version of mvMPE [19]:
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(1) they take into account both the spatial and time domains; (2) their results were more stable than the
mvMPE-based ones; and (3) better distinguished different dynamics of multivariate signals. However,
since the mvMDE methods are considerably faster, result in more stable profiles, and lead to larger
differences between physiological conditions of recordings, for simplicity, we did not report the
mvMPE-based results.

In this article, we proposed four implementations of the mvDE methods combined with the most
commonly used coarse-graining process [3,8,17]. The key contribution of this study was introducing
the mvDE methods. The alternative coarse-graining processes based on multivariate empirical mode
decomposition [2,28,48–50], and FIR filters [28,51], though out of the scope of this paper, can be
employed instead of the classical implementation of coarse-graining process used herein.

Our future study will aim at proposing the refined composite mvMDE (RCmvMDE) approaches
according to [17]. Moreover, we will explore the mvMDE and RCmvMDE on other physiological
and non-physiological time series. The similarity of two multi-channel signals based on mvMDE and
cross-entropy [11] can also be developed as future work. An important step in making mvMDE a
useful and stable metric is the mapping of the data to discrete set of integers via the normal cumulative
distribution. Other mapping functions are available in [30]. The mvMDE method and its univariate
form can also be generalized based on Renyi entropy [52].

5. Conclusions

To quantify the complexity of multivariate time series, we built four diverse alternative
implementations of mvMDE as further developments of our recently introduced MDE [27].
These insights help towards a comprehensive understanding of four strategies to extend a
univariate-based entropy method to its multivariate versions and therefore, provide invaluable
information for future studies on multivariate time series. Although mvMDE was the best algorithm
in terms of ability to discriminate dynamics of multivariate signals, computational time, and memory
cost, the simpler alternatives (mvDEI to mvDEIII) may still be useful in some settings.

We assessed their performance on the correlated and uncorrelated multivariate noise signals,
the bivariate AR time series, and three physiological datasets. The results showed the similar behavior
of mvMSE-, mvMFE-, and mvMDE-based profiles. However, mvMDE had the following advantages
over the existing methods: (1) it was faster than the existing methods; (2) mvMDE, in comparison
with mvMSE and mvMFE, resulted in more stable profiles; (3) mvMDE better discriminated different
kinds of biomedical signals; (4) for short multivariate time series (300 sample points), mvMDE did not
result in undefined values; and (5) mvMDE, compared with mvMSE and mvMFE, needed to store a
considerably smaller number of elements.

Overall, we expect the mvMDE approach to play a key role in the assessment of complexity in
multivariate time series.
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